THE OPTIMAL PRECONDITIONING IN THE DOMAIN DECOMPOSITION METHOD FOR WILSON ELEMENT*

M. Wang
(Department of Mathematics, Beijing University, Beijing, China)
S. Zhang
(ICMSEC, Chinese Academy of Sciences, Beijing, China)

Abstract

This paper discusses the optimal preconditioning in the domain decomposition method for Wilson element. The process of the preconditioning is composed of the resolution of a small scale global problem based on a coarser grid and a number of independent local subproblems, which can be chosen arbitrarily. The condition number of the preconditioned system is estimated by some characteristic numbers related to global and local subproblems. With a proper selection, the optimal preconditioner can be obtained, while the condition number is independent of the scale of the problem and the number of subproblems.

1. The Construction of Preconditioner

Let Ω be a polygon domain in $R^{2}, f \in L^{2}(\Omega)$. Consider the homogeneous Dirichlet boundary value problem of Poisson equation,

$$
\left\{\begin{array}{l}
-\triangle u=f, \quad \text { in } \Omega \tag{1.1}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

Assume that, for domain Ω, there are a coarser subdivision T_{H} with mesh size H and an another one T_{h} with mesh size h, which is obtained by refining T_{H}. The both subdivisions satisfy the quasi-uniformity and the inverse hypothesis.

For a given element $T, P_{m}(T)$ denotes the space of all polynomials with the degree not greater than $m, Q_{m}(T)$ denotes the space of all polynomials with the degree corresponding to x or y not greater than m.

Let V_{H} and V_{h} be some nonconforming finite element spaces corresponding to T_{H} and T_{h} respectively. For problem (1.1), the nodal parameters on the boundary $\partial \Omega$ are all zero. For finite element spaces V_{h} and V_{H}, the finite element equations for problem (1.1) are

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h} \tag{1.2}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
a_{H}\left(u^{H}, v^{H}\right)=\left(f, v^{H}\right), \quad \forall v^{H} \in V_{H}, \tag{1.3}
\end{equation*}
$$

\]

respectively. Where (\cdot, \cdot) is $L^{2}(\Omega)$ inner product and

$$
\begin{aligned}
& a_{h}(v, w)=\sum_{T \in \mathbf{T}_{h}} \int_{T}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right) d x d y \\
& a_{H}(v, w)=\sum_{T \in \mathbf{T}_{H}} \int_{T}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right) d x d y
\end{aligned}
$$

For $v \in V_{h}$, denote the vector of its nodal parameters by $C_{h}(v)$, and for $v \in V_{H}$, denote the vector of its nodal parameters by $C_{H}(v)$. Thus, equations (1.2) and (1.3) can be written as

$$
\begin{align*}
& A_{h} C_{h}\left(u_{h}\right)=F_{h} \tag{1.4}\\
& A_{H} C_{H}\left(u^{H}\right)=F_{H} \tag{1.5}
\end{align*}
$$

where A_{h}, A_{H} are the stiffness matrices corresponding to problems (1.2) and (1.3) respectively, and F_{h}, F_{H} are the loading vectors.

Now consider how to solve (1.2). The Preconditioned Conjugate Gradient method (PCG) would be used. So the preconditioning matrix Q needs to be constructed.

Let $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{M}\right\}$ be a domain decomposition of Ω, i.e., $\bar{\Omega}=\cup_{k=1}^{M} \overline{\omega_{k}}$, and $\omega_{m} \cap$ $\omega_{n}=\emptyset(m \neq n)$. For each ω_{k}, it is extended to Ω_{k}, such that the boundary of Ω_{k} is consists of the edges of T_{h} and

$$
\begin{equation*}
\operatorname{dist}\left\{\partial \omega_{k}, \partial \Omega_{k}\right\} \geq L \tag{1.6}
\end{equation*}
$$

where L is a fixed positive constant. For each element $T \in \mathrm{~T}_{h}$, the number of subdomains $\bar{\Omega}_{k}$ containing T does not exceed a fixed number.

Corresponding to T_{h}, a subdivision of Ω_{k} can be obtained, and the corresponding nonforming finite element space is denoted by $V_{h, k}$. The corresponding finite element equation is

$$
\begin{equation*}
a_{k}\left(u_{k}, v_{k}\right)=\left(f, v_{k}\right)_{k}, \quad \forall v_{k} \in V_{h, k}, \tag{1.7}
\end{equation*}
$$

where $(\cdot, \cdot)_{k}$ is $L^{2}\left(\Omega_{k}\right)$ inner product and

$$
a_{k}\left(u_{k}, v_{k}\right)=\sum_{T \in \mathbf{T}_{h}, T \subset \bar{\Omega}_{k}} \int_{T}\left(\frac{\partial u_{k}}{\partial x} \frac{\partial v_{k}}{\partial x}+\frac{\partial u_{k}}{\partial y} \frac{\partial v_{k}}{\partial y}\right) d x d y .
$$

The stiffness matrix is denoted by A_{k}.
Let E_{k} be the zero extension operator from $V_{h, k}$ to V_{h}, i.e., $\forall v_{k} \in V_{h, k}, \forall T \in \mathrm{~T}_{h}$

$$
\left.E_{k} v_{k}\right|_{T}= \begin{cases}\left.v_{k}\right|_{T}, & T \subset \bar{\Omega}_{k} \tag{1.8}\\ 0, & \text { otherwise }\end{cases}
$$

For $v_{k} \in V_{h, k}$, its nodal parameter vector is denoted by $C_{k}\left(v_{k}\right)$. In the sense of nodal parameter vectors, a mapping matrix \mathbf{E}_{k} is given, that is

$$
\begin{equation*}
C_{h}\left(E_{k} v_{k}\right)=\mathbf{E}_{k} C_{k}\left(v_{k}\right), \quad \forall v_{k} \in V_{h, k} . \tag{1.9}
\end{equation*}
$$

Let I_{H} be a linear operator from V_{H} to V_{h}. Let \mathbf{I}_{H} be the matrix such that

$$
\begin{equation*}
C_{h}\left(I_{H} v^{H}\right)=\mathbf{I}_{H} C_{H}\left(v^{H}\right), \quad \forall v^{H} \in V_{H} . \tag{1.10}
\end{equation*}
$$

The expression for the inverse Q^{-1} of the preconditioner Q is defined as follows,

$$
\begin{equation*}
Q^{-1}=\mathbf{I}_{H} A_{H}^{-1} \mathbf{I}_{H}^{\top}+\sum_{k=1}^{M} \mathbf{E}_{k} A_{k}^{-1} \mathbf{E}_{k}^{\top}, \tag{1.11}
\end{equation*}
$$

while Q^{-1} is symmetric and positive.
In the PCG iteration, only Q^{-1} not Q will take part in the operation, the expression for Q is not necessary. The process of Q^{-1} is to solve the finite element equations on coarser subdivision and the subdomains simultaneously. The computing is fully parallel.

The convergence of PCG method is dependent on the condition number of matrix $Q^{-1} A_{h}$. Smaller the condition number is, faster the convergence is. The condition number of $Q^{-1} A_{h}$ is bounded by the ratio of the upper bounds of the generalized Rayleich quotient

$$
\begin{equation*}
R(v)=\frac{\left(A_{h} Q^{-1} A_{h} C_{h}(v), C_{h}(v)\right)}{\left(A_{h} C_{h}(v), C_{h}(v)\right)}, \quad \forall v \in V_{h} . \tag{1.12}
\end{equation*}
$$

to the low one.
The remainder of the paper will give the linear operator I_{H} for Wilson element, and estimate $R(v)$ and get the bound of the condition number.

Throughout the paper, C always denotes the positive constant independent of H, h and the choice of the subdomains.

For a set $G \in R^{2}$ and an integer m, Sobolev semi-norm is denoted by $|\cdot|_{m, G}$. For subdivisions T_{H} and T_{h}, define the following discrete Sobolev norms,

$$
|\cdot|_{m, H}=\left(\sum_{T \in \mathbf{T}_{H}}|\cdot|_{m, T}^{2}\right)^{1 / 2}, \quad|\cdot|_{m, h}=\left(\sum_{T \in \mathbf{T}_{h}}|\cdot|_{m, T}^{2}\right)^{1 / 2} .
$$

2. Wilson Element

In the case of Wilson element, the subdivision elements are rectangles. Wilson finite element space $V_{h}=\left\{v\left|v \in L^{2}(\Omega), v\right|_{T} \in P_{2}(T), \forall T \in \mathrm{~T}_{h}\right.$, and v is continuous at vertices of T_{h} and v vanishes at the vertices on $\left.\partial \Omega\right\}$. Similarly, spaces V_{H} and $V_{h, k}$ can be defined. The function v of Wilson space is uniquely determined by its values at the vertices, and the values of $\frac{\partial^{2}}{\partial x^{2}} v$ and $\frac{\partial^{2}}{\partial y^{2}} v$ on all elements.

The bilinear interpolation operator using the function values at the vertices, for element T, is denoted by $Q_{T}^{1} . Q_{H}^{1}$ and Q_{h}^{1} are the interpolation operators corresponding to T_{H} and T_{h} respectively.

For all $v^{H} \in V_{H}$, define $I_{H} v^{H} \in V_{h}$ as follows,

1. $I_{H} v^{H}$ equals to $Q_{H}^{1} v^{H}$ at the vertices of T_{h}.
2. For each element T^{\prime} of T_{h}, there exists an element $T \in \mathrm{~T}_{H}$ with $T^{\prime} \subset T$, then

$$
\left.\frac{\partial^{2}}{\partial x^{2}} I_{H} v^{H}\right|_{T^{\prime}}=\left.\frac{H}{h} \frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T},\left.\quad \frac{\partial^{2}}{\partial y^{2}} I_{H} v^{H}\right|_{T^{\prime}}=\left.\frac{H}{h} \frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}
$$

Before estimating the condition number of $Q^{-1} A_{h}$, some preparation results will be given.

Lemma 1. There exists a constant C independent of H, h, such that,

$$
\begin{equation*}
\left|v^{H}-I_{H} v^{H}\right|_{m, h} \leq C H^{1-m}\left|v^{H}\right|_{1, H}, \quad m=0,1 \forall v^{H} \in V_{H} \tag{2.1}
\end{equation*}
$$

Proof. For a given rectangle T, its four vertices are denoted by $A_{T}^{i}(1 \leq i \leq 4)$. It is easy to show that for arbitrary element T in T_{H} or in T_{h},

$$
\begin{gather*}
\frac{1}{C}|p|_{0, T}^{2} \leq\left\{\sum_{i=1}^{4}|T|\left|p\left(A_{T}^{i}\right)\right|^{2}+|T|^{3}\left(\left|\frac{\partial^{2} p}{\partial x^{2}}\right|^{2}+\left|\frac{\partial^{2} p}{\partial y^{2}}\right|^{2}\right)\right\} \leq C|p|_{0, T}^{2} \tag{2.2}\\
\frac{1}{C}|p|_{1, T}^{2} \leq\left\{\sum_{1 \leq i, j \leq 4}\left|p\left(A_{T}^{i}\right)-p\left(A_{T}^{j}\right)\right|^{2}+|T|^{2}\left(\left|\frac{\partial^{2} p}{\partial x^{2}}\right|^{2}+\left|\frac{\partial^{2} p}{\partial y^{2}}\right|^{2}\right)\right\} \leq C|p|_{1, T}^{2} \tag{2.3}
\end{gather*}
$$

are true for all $p \in P_{2}(T)$, where $|T|$ is the area of T.
Now let $v^{H} \in V_{H}$ and $T \in \mathrm{~T}_{H}$, then from the definition of I_{H} and (2.2),

$$
\begin{aligned}
\left|v^{H}-I_{H} v^{H}\right|_{0, T}^{2}= & \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left|v^{H}-I_{H} v^{H}\right|_{0, S}^{2} \leq C \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left\{\sum_{i=1}^{4} h^{2}\left|\left(v^{H}-I_{H} v^{H}\right)\left(A_{S}^{i}\right)\right|^{2}\right. \\
& \left.+h^{6}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}}\left(v^{H}-I_{H} v^{H}\right)\right|_{S}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}}\left(v^{H}-I_{H} v^{H}\right)\right|_{S}\right|^{2}\right)\right\} \\
= & C \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left\{\sum_{i=1}^{4} h^{2}\left|\left(Q_{h}^{1}-Q_{H}^{1}\right) v^{H}\left(A_{S}^{i}\right)\right|^{2}\right. \\
& \left.+h^{6}\left(1-\frac{H}{h}\right)^{2}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\} \\
\leq & C \sum_{S \in \mathbf{T}_{h}, S \subset T}\left\{\left|\left(Q_{h}^{1}-Q_{H}^{1}\right) v^{H}\right|_{0, S}^{2}+H^{2} h^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right| T\right|^{2}\right)\right\}
\end{aligned}
$$

By the interpolation property and the inverse inequality, one gets

$$
\left|v^{H}-I_{H} v^{H}\right|_{0, T}^{2} \leq C H^{2}\left|v^{h}\right|_{1, T}^{2}\left\{1+\sum_{S \in \mathrm{~T}_{h}, S \subset T} h^{4} H^{-4}\right\}
$$

Since the number of the elements contained in T is bounded by CH^{2} / h^{2}, one has

$$
\begin{equation*}
\left|v^{H}-I_{H} v^{H}\right|_{0, T}^{2} \leq C H^{2}\left|v^{h}\right|_{1, T}^{2} \tag{2.4}
\end{equation*}
$$

From the definition of I_{H} and (2.3),

$$
\begin{aligned}
\sum_{S \in \mathrm{~T}_{h}, S \subset T} \mid v^{H}- & \left.I_{H} v^{H}\right|_{1, S} ^{2} \leq C \\
& \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left\{\sum_{1 \leq i, j \leq 4}\left|\left(v^{H}-I_{H} v^{H}\right)\left(A_{S}^{i}\right)-\left(v^{H}-I_{H} v^{H}\right)\left(A_{S}^{j}\right)\right|^{2}\right. \\
= & \left.C \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left\{\sum_{1 \leq i, j \leq 4}\left|\left(Q_{h}^{1}-Q_{H}^{1}\right) v^{H}\left(A_{S}^{i}\right)-\left(Q_{h}^{1}-Q_{H}^{1}\right)\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}}\left(v^{H}-I_{H} v^{H}\right)\right|_{S}^{j}\right|^{2}\right)\right\} \\
& \left.+h^{4}\left(1-\frac{H}{h}\right)^{2}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right| T\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\} \\
\leq & C \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left\{\left|\left(Q_{h}^{1}-Q_{H}^{1}\right) v^{H}\right|_{1, S}^{2}+H^{2} h^{2}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\}
\end{aligned}
$$

It leads to

$$
\begin{equation*}
\sum_{S \in \mathrm{~T}_{h}, S \subset T}\left|v^{H}-I_{H} v^{H}\right|_{1, S}^{2} \leq C\left|v^{H}\right|_{1, T}^{2} \tag{2.5}
\end{equation*}
$$

Lemma 1 follows from (2.4) and (2.5).
Lemma 2. There exists a constant C independent of H, h, such that,

$$
\begin{equation*}
\left|v^{H}\right|_{1, H} \leq C\left|I_{H} v^{H}\right|_{1, h}, \quad \forall v^{H} \in V_{H} \tag{2.6}
\end{equation*}
$$

Proof. Let $v^{H} \in V_{h}$ and $T \in \mathrm{~T}_{H}$. (2.3) gives

$$
\begin{aligned}
\left|v^{H}\right|_{1, T}^{2} \leq & C\left\{\sum_{1 \leq i, j \leq 4}\left|v^{H}\left(A_{T}^{i}\right)-v^{H}\left(A_{T}^{j}\right)\right|^{2}+H^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right| T\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\} \\
= & C\left\{\sum_{1 \leq i, j \leq 4}\left|Q_{H}^{1} v^{H}\left(A_{T}^{i}\right)-Q_{H}^{1} v^{H}\left(A_{T}^{j}\right)\right|^{2}+H^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\} \\
\leq & C\left\{\left|Q_{H}^{1} v^{H}\right|_{1, T}^{2}+H^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right| T\right|^{2}\right)\right\} \\
= & C\left\{\sum_{S \in \mathbf{T}_{h}, S \subset T}\left|Q_{H}^{1} v^{H}\right|_{1, S}^{2}+H^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\} \\
\leq & C\left\{\sum_{S \in \mathrm{~T}_{h}, S \subset T} \sum_{1 \leq i, j \leq 4}\left|Q_{H}^{1} v^{H}\left(A_{S}^{i}\right)-Q_{H}^{1} v^{H}\left(A_{S}^{j}\right)\right|^{2}\right. \\
& \left.+H^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right| T\right|^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & C\left\{\sum_{S \in \mathbf{T}_{h}, S \subset T} \sum_{1 \leq i, j \leq 4}\left|I_{H} v^{H}\left(A_{S}^{i}\right)-I_{H} v^{H}\left(A_{S}^{j}\right)\right|^{2}\right. \\
& \left.+H^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\}
\end{aligned}
$$

Noticing that H^{2} / h^{2} is not greater than the number of elements in T_{h} which are contained in T, one gets, from the definition of I_{H},

$$
\begin{aligned}
\left|v^{H}\right|_{1, T}^{2} \leq & C \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left\{\sum_{1 \leq i, j \leq 4}\left|I_{H} v^{H}\left(A_{S}^{i}\right)-I_{H} v^{H}\left(A_{S}^{j}\right)\right|^{2}\right. \\
& \left.+H^{2} h^{2}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} v^{H}\right|_{T}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} v^{H}\right|_{T}\right|^{2}\right)\right\} \\
\leq & C \sum_{S \in \mathrm{~T}_{h}, S \subset T}\left\{\sum_{1 \leq i, j \leq 4}\left|I_{H} v^{H}\left(A_{S}^{i}\right)-I_{H} v^{H}\left(A_{S}^{j}\right)\right|^{2}\right. \\
& \left.+h^{4}\left(\left.\left|\frac{\partial^{2}}{\partial x^{2}} I_{H} v^{H}\right|_{S}\right|^{2}+\left.\left|\frac{\partial^{2}}{\partial y^{2}} I_{H} v^{H}\right| S\right|^{2}\right)\right\}
\end{aligned}
$$

Combining (2.3) and the above inequality, one has

$$
\begin{equation*}
\left|v^{H}\right|_{1, T}^{2} \leq C \sum_{S \in \mathbf{T}_{h}, S \subset T}\left|I_{H} v^{H}\right|_{1, S}^{2} . \tag{2.7}
\end{equation*}
$$

Lemma 2 follows.
Let $P: L^{2}(\Omega) \rightarrow V_{H}$ is the orthogonal projection operator in the sense of $L^{2}(\Omega)$, that is, for $v \in L^{2}(\Omega), P v \in V_{H}$ and

$$
\left(v, v^{H}\right)=\left(P v, v^{H}\right), \quad \forall v^{H} \in V_{H}
$$

Lemma 3. For all $v \in H_{0}^{1}(\Omega)$, the following estimates are uniformly true,

$$
\begin{gather*}
|v-P v|_{m, H} \leq C H^{1-m}|v|_{1, H}, \quad m=0,1, \tag{2.8}\\
|P v|_{1, H} \leq C|v|_{1, H} \tag{2.9}
\end{gather*}
$$

Lemma 3 can be proved by the similar way used in [2].

3. The Condition Number

Let $P_{H}: V_{h} \rightarrow I_{H} V_{H}$ and $P_{k}: V_{h} \rightarrow E_{k} V_{h, k}(k=1,2, \cdots, M)$ be the orthogonal projection operators in the sense of inner product $a_{h}(\cdot, \cdot)$, that is, for $v_{h} \in V_{h}, P_{H} v_{h} \in$ $I_{H} V_{H}$ and

$$
\begin{equation*}
a_{h}\left(P_{H} v_{h}, I_{H} v^{H}\right)=a_{h}\left(v_{h}, I_{H} v^{H}\right), \quad \forall v^{H} \in V_{H} \tag{3.1}
\end{equation*}
$$

and $P_{k} v_{h} \in E_{k} V_{h, k}$ and

$$
\begin{equation*}
a_{h}\left(P_{k} v_{h}, E_{k} v_{k}\right)=a_{h}\left(v_{h}, E_{k} v_{k}\right), \quad \forall v_{k} \in V_{h, k} . \tag{3.2}
\end{equation*}
$$

For all $v \in V_{h}$, let $u_{v}^{H} \in V_{H}$ be the solution of equation

$$
\begin{equation*}
a_{H}\left(u_{v}^{H}, v^{H}\right)=a_{h}\left(v, I_{H} v^{H}\right), \quad \forall v^{H} \in V_{H}, \tag{3.3}
\end{equation*}
$$

that is,

$$
A_{H} C_{H}\left(u_{v}^{H}\right)=\mathbf{I}_{H}^{\top} A_{h} C_{h}(v) .
$$

It is easy to show that

$$
\begin{equation*}
\left(A_{h} Q^{-1} A_{h} C_{h}(v), C_{h}(v)\right)=a_{h}\left(u_{v}^{H}, u_{v}^{H}\right)+\sum_{k=1}^{M} a_{h}\left(P_{k} v, v\right), \quad \forall v \in V_{h} . \tag{3.4}
\end{equation*}
$$

Lemma 4. There exists a constant C independent of H, h and the choice of subdomains, such that,

$$
\begin{equation*}
R(v) \leq C, \quad \forall v \in V_{h} \tag{3.5}
\end{equation*}
$$

Proof. By the way used in Lemma 2.1 in paper [4], one can prove that

$$
\begin{equation*}
\sum_{k=1}^{M} a_{h}\left(P_{k} v, v\right) \leq C a_{h}(v, v), \quad \forall v \in V_{h} . \tag{3.6}
\end{equation*}
$$

From (3.3) and (2.1), one gets

$$
\begin{align*}
a_{H}\left(u_{v}^{H}, u_{v}^{H}\right) & =a_{h}\left(v, I_{H} u_{v}^{H}\right) \leq a_{h}(v, v)^{1 / 2} a_{h}\left(I_{H} u_{v}^{H}, I_{H} u_{v}^{H}\right)^{1 / 2} \leq C a_{h}(v, v)^{1 / 2}\left|I_{H} u_{v}^{H}\right|_{1, h} \\
& \leq C a_{h}(v, v)^{1 / 2}\left|u_{v}^{H}\right|_{1, H} \leq C a_{h}(v, v)^{1 / 2} a_{H}\left(u_{v}^{H}, u_{v}^{H}\right)^{1 / 2} \\
a_{H}\left(u_{v}^{H}, u_{v}^{H}\right) & \leq C a_{h}(v, v) . \tag{3.7}
\end{align*}
$$

Lemma 4 follows from (3.6) and (3.7).
Lemma 5. For all $v \in V_{h}$,

$$
\begin{equation*}
a_{h}\left(P_{H} v, v\right)+\sum_{k=1}^{M} a_{h}\left(P_{k} v, v\right) \leq C a_{H}\left(u_{v}^{H}, u_{v}^{H}\right)+\sum_{k=1}^{M} a_{h}\left(P_{k} v, v\right) . \tag{3.8}
\end{equation*}
$$

Proof. It is sufficient to show the following inequality

$$
\begin{equation*}
a_{h}\left(P_{H} v, v\right) \leq C a_{H}\left(u_{v}^{H}, u_{v}^{H}\right) . \tag{3.9}
\end{equation*}
$$

By (3.1) and (3.3),

$$
a_{h}\left(P_{H} v, I_{H} v^{H}\right)=a_{h}\left(v, I_{H} v^{H}\right)=a_{H}\left(u_{v}^{H}, v^{H}\right), \quad \forall v^{H} \in V_{H},
$$

and

$$
\begin{aligned}
a_{h}\left(P_{H} v, P_{H} v\right)^{1 / 2} & =\sup _{0 \neq w \in V_{H}} \frac{a_{h}\left(P_{H} v, I_{H} w\right)}{a_{h}\left(I_{H} w, I_{H} w\right)^{1 / 2}}=\sup _{0 \neq w \in V_{H}} \frac{a_{H}\left(u_{v}^{H}, w\right)}{a_{h}\left(I_{H} w, I_{H} w\right)^{1 / 2}} \\
& \leq a_{H}\left(u_{v}^{H}, u_{v}^{H}\right)^{1 / 2} \sup _{0 \neq w \in V_{H}} \frac{a_{H}(w, w)^{1 / 2}}{a_{h}\left(I_{H} w, I_{H} w\right)^{1 / 2}} \\
& \leq C a_{H}\left(u_{v}^{H}, u_{v}^{H}\right)^{1 / 2} \sup _{0 \neq w \in V_{H}} \frac{|w|_{1, H}}{\left|I_{H} w\right|_{1, h}},
\end{aligned}
$$

(2.6) leads to (3.9).

Lemma 6. For all $v \in V_{h}$,

$$
\begin{equation*}
a_{h}(v, v) \leq C\left(1+\frac{H^{2}}{L^{2}}\right)\left(1+\frac{h^{2}}{L^{2}}\right)\left[a_{h}\left(P_{H} v, v\right)+\sum_{k=1}^{M} a_{h}\left(P_{k} v, v\right)\right] \tag{3.10}
\end{equation*}
$$

Proof. If there exist $\tilde{v}^{H} \in I_{H} V_{H}, u_{k} \in E_{k} V_{h, k}, k=1,2, \cdots, M$, such that,

$$
\left\{\begin{array}{l}
v=\tilde{v}^{H}+\sum_{k=1}^{M} u_{k} \tag{3.11}\\
a_{h}\left(\tilde{v}^{H}, \tilde{v}^{H}\right)+\sum_{k=1}^{M} a_{h}\left(u_{k}, u_{k}\right) \leq \beta a_{h}(v, v)
\end{array}\right.
$$

then (see [1])

$$
\begin{equation*}
a_{h}(v, v) \leq \beta a_{h}\left(P_{H} v+\sum_{k=1}^{M} P_{k} v, v\right) \tag{3.12}
\end{equation*}
$$

It is necessary to find a decomposition of v which makes (3.11) true for some β. The subdomains $\left\{\Omega_{k}, k=1,2, \cdots, M\right\}$ are an open covering of Ω. There exists a sufficiently smooth partition of unit for the open covering, $\left\{\varphi_{k}, k=1,2, \cdots, M\right\}$, such that

1. $\sum_{k=1}^{M} \varphi_{k}=1$, and $0 \leq \varphi_{k} \leq 1, k=1,2, \cdots, M$.
2. $\left|D \varphi_{k}\right| \leq C L^{-1},\left|D^{2} \varphi_{k}\right| \leq C L^{-2}, k=1,2, \cdots, M$.

Where C is a constant independent of M and the choice of subdomains.
For $v \in V_{h}$, define $\tilde{v}^{H}=I_{H} P Q_{h}^{1} v$, then v can be written by

$$
v=\tilde{v}^{H}+\sum_{k=1}^{M} \varphi_{k}\left(v-\tilde{v}^{H}\right)
$$

The interpolation operator of Wilson element, for $T \in \mathrm{~T}_{h}$, is denoted by Π_{T}, and Π_{h} is the interpolation operator corresponding to $\mathrm{T}_{h} . \Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)$ is well defined because $\varphi_{k}\left(v-\tilde{v}^{H}\right)$ is piecewise smooth. On the other hand, φ_{k} is sufficiently smooth, and $v-\tilde{v}^{H}$
is continuous at the vertices. Hence $\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right) \in V_{h} . \Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right) \in E_{k} V_{h, k}$ since $\left.\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right|_{\bar{\Omega}-\Omega_{k}}=0$. A decomposition of v is obtained by

$$
\begin{equation*}
v=\tilde{v}^{H}+\sum_{k=1}^{M} \Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right) . \tag{3.13}
\end{equation*}
$$

Inequalities (2.1) and (2.9) and the interpolation property of Q_{h}^{1} give

$$
\begin{equation*}
a_{h}\left(\tilde{v}^{H}, \tilde{v}^{H}\right) \leq C\left|\tilde{v}^{H}\right|_{1, h}^{2} \leq C|v|_{1, h}^{2} . \tag{3.14}
\end{equation*}
$$

Let $k \in\{1,2, \cdots, M\}, T \in \mathrm{~T}_{h}$ and $T \subset \bar{\Omega}_{k}$. Denote the center point of T by A_{T}^{0}. By inequality (2.3), one has

$$
\begin{aligned}
\mid \Pi_{h}\left[\left(\varphi_{k}-\right.\right. & \left.\left.\Pi_{T}^{1} \varphi_{k}\right)\left(v-\tilde{v}^{H}\right)\right]\left.\right|_{0, T} ^{2} \leq C\left\{\sum_{1 \leq i, j \leq 4}\left|\varphi_{k}\left(v-\tilde{v}^{H}\right)\left(A_{T}^{i}\right)-\varphi_{k}\left(v-\tilde{v}^{H}\right)\left(A_{T}^{j}\right)\right|^{2}\right. \\
& \left.+h^{4}\left(\left|\frac{\partial^{2}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)}{\partial x^{2}}\left(A_{T}^{0}\right)\right|^{2}+\left|\frac{\partial^{2}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)}{\partial y^{2}}\left(A_{T}^{0}\right)\right|^{2}\right)\right\} \\
\leq & C\left\{\sum_{1 \leq i, j \leq 4}\left|\varphi_{k}\left(A_{T}^{i}\right)\left(\left(v-\tilde{v}^{H}\right)\left(A_{T}^{i}\right)-\left(v-\tilde{v}^{H}\right)\left(A_{T}^{j}\right)\right)\right|^{2}\right. \\
& \left.+\sum_{1 \leq i, j \leq 4} \mid\left(\varphi_{k}\left(A_{T}^{i}\right)-\varphi\left(A_{T}^{j}\right)\right)\left(v-\tilde{v}^{H}\right)\left(A_{T}^{j}\right)\right)\left.\right|^{2} \\
& +h^{4}\left(\left|\frac{\partial^{2} \varphi_{k}}{\partial x^{2}}\left(A_{T}^{0}\right)\right|^{2}+\left|\frac{\partial^{2} \varphi_{k}}{\partial y^{2}}\left(A_{T}^{0}\right)\right|^{2}\right)\left|\left(v-\tilde{v}^{H}\right)\left(A_{T}^{0}\right)\right|^{2} \\
& +h^{4}\left(\left|\frac{\partial \varphi_{k}}{\partial x}\left(A_{T}^{0}\right)\right|^{2}\left|\frac{\partial\left(v-\tilde{v}^{H}\right)}{\partial x}\left(A_{T}^{0}\right)\right|^{2}+\left|\frac{\partial \varphi_{k}}{\partial y}\left(A_{T}^{0}\right)\right|^{2}\left|\frac{\partial\left(v-\tilde{v}^{H}\right)}{\partial y}\left(A_{T}^{0}\right)\right|^{2}\right) \\
& \left.+h^{4}\left(\left|\frac{\partial^{2}\left(v-\tilde{v}^{H}\right)}{\partial x^{2}}\left(A_{T}^{0}\right)\right|^{2}+\left|\frac{\partial^{2}\left(v-\tilde{v}^{H}\right)}{\partial y^{2}}\left(A_{T}^{0}\right)\right|^{2}\right)\left|\varphi\left(A_{T}^{0}\right)\right|^{2}\right\}
\end{aligned}
$$

Denote Sobolev maximum semi-norm by $|\cdot|_{m, \infty, T}$. The property of φ_{k} leads to

$$
\begin{align*}
\left|\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right|_{1, T}^{2} \leq & C\left\{\left(h^{2} L^{-2}+h^{4} L^{-4}\right)\left|v-\tilde{v}^{H}\right|_{0, \infty, T}^{2}\right. \\
& \left.+\left(h^{2}+h^{4} L^{-2}\right)\left|v-\tilde{v}^{H}\right|_{1, \infty, T}^{2}+h^{4}\left|v-\tilde{v}^{H}\right|_{2, \infty, T}^{2}\right\} . \tag{3.15}
\end{align*}
$$

From the inverse inequality, one gets

$$
\begin{align*}
\left|\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right|_{1, T}^{2} \leq & C\left\{\left(L^{-2}+h^{2} L^{-4}\right)\left|v-\tilde{v}^{H}\right|_{0, T}^{2}\right. \\
& \left.+\left(1+h^{2} L^{-2}\right)\left|v-\tilde{v}^{H}\right|_{1, T}^{2}\right\} . \tag{3.16}
\end{align*}
$$

Summing the above inequality for all $T \subset \bar{\Omega}_{k}$, one gets

$$
\left|\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right|_{1, h}^{2}=\sum_{T \in \mathbf{T}_{h}, T \subset \bar{\Omega}_{k}}\left|\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right|_{1, T}^{2}
$$

$$
\leq C \sum_{T \in \mathrm{~T}_{h}, T \subset \bar{\Omega}_{k}}\left\{\left(L^{-2}+h^{2} L^{-4}\right)\left|v-\tilde{v}^{H}\right|_{0, T}^{2}+\left(1+h^{2} L^{-2}\right)\left|v-\tilde{v}^{H}\right|_{1, T}^{2}\right\} .
$$

Summing the above inequality for all k, one has

$$
\sum_{k=1}^{M}\left|\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right|_{1, h}^{2} \leq C\left\{\left(L^{-2}+h^{2} L^{-4}\right)\left|v-\tilde{v}^{H}\right|_{0, h}^{2}+\left(1+h^{2} L^{-2}\right)\left|v-\tilde{v}^{H}\right|_{1, h}^{2}\right\} .
$$

where the fact, that the numbers of subdomains containing each elements in T_{h} are bounded, has been used.

Estimates (2.9) and (2.1) and the interpolation property of Q_{h}^{1} give that

$$
\sum_{k=1}^{M}\left|\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right|_{1, h}^{2} \leq C\left(1+\frac{H^{2}}{L^{2}}\right)\left(1+\frac{h^{2}}{L^{2}}\right)|v|_{1, h}^{2}
$$

Since the norms $|\cdot|_{1, h}$ and $a_{h}(\cdot, \cdot)^{1 / 2}$ are equivalent, the above estimate and (3.14) lead to
$a_{h}\left(\tilde{v}^{H}, \tilde{v}^{H}\right)+\sum_{k=1}^{M} a_{h}\left(\Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right), \Pi_{h}\left(\varphi_{k}\left(v-\tilde{v}^{H}\right)\right)\right) \leq C\left(1+\frac{H^{2}}{L^{2}}\right)\left(1+\frac{h^{2}}{L^{2}}\right) a_{h}(v, v)$.
(3.10) follows.

The main theorem of the paper can be immediately obtained by (3.4), (3.5), (3.8) and (3.10).

Theorem. For Wilson element and the operator I_{H} defined in section 2, there exists a constant C independent of H, h and the choice of subdomains, such that the condition number of $Q^{-1} A_{h}$ satisfies

$$
\begin{equation*}
\operatorname{Cond}\left(Q^{-1} A_{h}\right) \leq C\left(1+\frac{H^{2}}{L^{2}}\right)\left(1+\frac{h^{2}}{L^{2}}\right) \tag{3.18}
\end{equation*}
$$

Estimate (3.18) leads to that the condition number is independent of the scale of problem and the number of subdomains if $H=L$. So the optimal preconditioning is obtained.

References

[1] P.L. Loins, On Schwarz alternating method I, in Domain Decomposition Method for PDE's (R. Glowinski et al eds.), SIAM Philadelphia, 1988.
[2] M. Wang, L^{∞} error estimates of nonconforming finite elements for the biharmonic equation, J. Comput. Math., 11(1993), 276-288.
[3] H.Q. Zhang and M. Wang, The Mathematical Theory of Finite Element Methods, Science Press, Beijing, 1991(in chinese).
[4] S. Zhang, On optimal preconditioning in the domain decomposition method for second order elliptic equation, Mathematica Numerica Sinica, 15(1993), 235-241.

[^0]: * Received April 22, 1994.

