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Abstract

A shock interaction problem is solved with finite difference methods for a hy-
personic flow of air with chemical reactions. If a body has two concave corners, a
secondary shock is formed in the shock layer and it meets the main shock later.
As the two shocks meet, the flow becomes singular at the interaction point, and a
new main shock, a contact discontinuity and an expansion wave appear as a result
of interaction between the two shocks. Therefore, the problem is very complicated.
Using proper combinations of implicit and explicit finite difference schemes accord-
ing to the property of the equations and the boundary conditions, we compute the
flow behind the interaction point successfully.

1. Introduction

In a flow field around a space shuttle, there is more than one shock and there ex-
ist interactions between shocks. Noticing this fact, the second author has developed
accurate numerical methods for such types of shock interaction problems in three di-
mensional steady flow [6, 7]. There the gas is assumed to be perfect gas [6] or in
equilibrium state [7]. However, in many cases, the nonequilibrium effect has to be con-
sidered. Therefore, we would like to generalize our method to nonequilibrium flow. To
start with, we consider shock interaction problems in two dimensional nonequilibrium
flow.

Suppose a wedge is placed in a hypersonic flow. In this case a shock starting from
the edge of the wedge appears if the angle of the wedge is not very large. If the body
expands at a later point, a secondary shock forms in the reacting flow region. The slope
of the secondary shock is larger and it meets the main shock later. As such two shocks
meet, a new shock, a contact discontinuity and an expansion wave generate. Therefore,
the flow field is very complicated.

In order to get accurate numerical results, we take all the strong discontinuities
(shocks and contact discontinuities) and the weak discontinuities (boundaries of ex-
pansion waves) as boundaries. In this case the problem we are going to solve, from the
mathematical point of view, is an initial-boundary value problem with several different

* Received May 29, 1995.
1) This work was partially supported by the North Carolina Supercomputing Center.
2) This work is part of this author’s Ph.D. Dissertation and partially supported by TGRC-KOSEF.



346 TAEHOON PARK AND Y.L. ZHU

types of moving boundaries. Since the flow is nonequilibrium, the system of equations
possesses stiff source terms. Therefore, in order to solve such a problem, we have to
have a method which can be used to different types of initial-boundary value problems
with stiff source terms. In this paper, we present such a method. An important feature
of the method is to use proper combination of implicit and explicit schemes. Another
essential ingredient of our method is an efficient implicit treatment of the right-hand
side terms of equations to avoid numerical difficulties arising from stiffness. As has
been shown in [2, 3|, smooth transformations of domains are successful in overcoming
difficulties caused by great gradients of solutions. In this paper, we still keep the coor-
dinate transformation we have used in [3], which has two parameters determining the
ratios of physical and computational mesh sizes near the upper and lower boundaries
of a domain respectively.

At the beginning, there is only one shock, the numerical method is the same as in
[3]. When the body expands at a later point, we need to determine the initial slope
of the secondary shock using the jump conditions on shocks and the slope of the body
after expansion. In this case there are two shocks in the flow field and a new numerical
method is needed. When the secondary shock meets the main shock, we have to solve a
Riemann problem to determine the new flow field [5], including the structure of the flow
field, the initial slopes of the new shock, the contact discontinuity and the boundaries
of the expansion wave and all the physical quantities in the new flow field. In this case,
there are five boundaries, including the body surface.

Since our method is suitable to quite general cases, the two types of initial-boundary
value problems before and after the meeting of two shocks can be solved by using our
method. A computer code based on our method has been written in Fortran for numer-
ical experiments. In the code the mesh size in the marching direction is self-adjusted
according to a given error level for an accurate and efficient computation. Using the
code, we have obtained accurate details of such a complicated shock interaction problem
in two dimensional hypersonic steady reacting flows.

2. System of Equations

The problem we consider is hypersonic flow around bodies with chemical reactions.
In our chemical model of air only dissociation-recombination reactions, atom exchange
reactions, and bimolecular reactions are considered. Ionization is neglected. Therefore,
there are 5 species and 18 reactions. The species are O, N, NO, O, N3, which we call
the first, - - -, the fifth species respectively in what follows. 18 reactions considered in
the computations are tabulated in Table 1. Also the vibrational excitation of biatomic
molecules is assumed half-excited so that its energy content is RT/2 [1]. The Euler
and chemical equations are strongly coupled. We consider the Euler equations for the
steady-state configuration:

V. .Vp+pV-V =0, (1)

(V-V)V+zp£=0, (2)
_Vpy _

V- (vh p) 0. (3)
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Here V, p, p and h denote the velocity vector, density, pressure and enthalpy re-
spectively. We neglect the diffusion of the species and we write the equations of the
production of the species along streamlines:

V- -V¢g=w;, 1=1,2,3. (4)

Here, ¢; denotes the concentration in unit g-mole - g~! and the source term w; gives

the rate of production for the i-th species. The free stream air is considered to be a
mixture of 21% oxygen and 79% nitrogen. The mass conservation law provides the
concentrations g4 and gs of the fourth species Os and the fifth species Na, respectively:

021 q1+gs
o= —— — =
u 2
079 gt
=g

s Table 1 Reactions considered

1 reaction

1 0:24+4X=0+0+X

21 N2+ X=N+N+X

3| NO+X=N+0+X
where p is the average molecular weight of air that ‘; NO+O=0;+N

6

X

(5)

qs

is 28.8 -mole. The reaction rates w; in unit of ¢- N2+ O=NO+N
9/19 i g N, + Oz = NO + NO

means any of the 5 species

mole-g~1-s~! and all the formulae and coefficients
needed for calculating w; can be found in Rakich et

al, 4
With the present assumption, the state equation can be written as [4]

p=pRTZ (6)
and the expression for A is ,
hz%%—?——l—;hg% (7)
where the compressibility factor Z is
=1+ u%ﬂ (8)

and h? are the formation energies of the species O, N and NO.
From the expression (7) we know h is a function of p, p, ¢1, ¢2,g3. Noticing this fact
and using the chemical equations (4), the energy equation (3) can be rewritten as

V~\"7p:a1§V-Vp—\Il. (9)

Here, a is the frozen speed of sound:

2_  Oh/Op

= 1/ - on/op (1)

and the term ¥ depends on the rates of production w; of species:

\I':?_:w"ah/ap' (11)
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We now derive the equations we will use in our computation. Introduce a {z,7}-
Descartes coordinate system and let

o= and V = vu? 42, (12)
u

where u and v are the velocity components in the z and » directions respectively.
Using equation (9) and taking p, h, o, q1, g2, g3 as dependent variables, we can have
the following form of the Euler and the chemical equations under the {z,r}-Descartes
coordinate system:

0,2 a/2
(1 - ﬁ)pz +opr + PazUr = -;‘I’, (13)
o, + oo, + 1_31:;'_2& =0, (14)
pu
hz—e'z_"'a'(r—&)':oa (15)
p p
%% .
(Qi)z + U(qi)'r = ;1, 1= 192’37 (16)

and this system is completed by the integrated form of the energy equation

V2
H=h+ - = constant. (17)

We assume that the equation for the body is » = b(z) and the equation for the
main shock is 7 = s(z) in the {z,7}-coordinate system and the computational domain
is b(z) <r < s(z) and 75 < z < nf. We now introduce a computational frame {n,&}:

z=n (nog<n<n); r=G(n,§).

Here G(n,£) always satisfies the conditions b(n) = G(n,0) and s(n) = G(n,1) so that
& = 0 at the body and £ = 1 at the shock and the computational domain under the
{n, &}-coordinate system is rectangular. If a curve r = f(z) wants to be considered as
an internal boundary, we will choose such a function G(n, §) that f(n) = G(n,£*) for a
constant £*. In this way, every boundary will be a straight line in the {7, {}-coordinate
system, which makes treatment of boundaries easy. In Section 6, some details about
G(n,€) are given. When G(n,£) is given, we can get the system we need under the
{n, €}-coordinate system!3]. We assume the flow to be supersonic, i.e., the system to
be hyperbolic. In this case, the equations under the {7, £}-coordinate system can be
rewritten in the following characteristic form:

GiUy +A\GiUe=f;, j=1,---,6. (18)
Here, U = (p, h,0,q1,42,43)* and G7 is the j-th line of the matrix

1 0 —pu?/3 0 0 O
~1/p1 0 0

1 0 pu?/B O

0 0 0 1

0 0 0 0

0 0 0 0

(19)

O = O OO
_o o O O
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where

8= \/(u2 +v2)/a? — 1. (20)

The slopes A; of the characteristic curves, along which the signals are convected and
which are referred as eigenvalues in the next few sections, are defined as

A1 & + 5?(“20' - ‘12/6)/(7‘2 - ‘12)

>\2 fz + 67‘0"

M| _ | & +E(uPo +a?B)/(u? —a?) (21)
>\4 N €z + 67‘0-

As &+ &0

A6 €z + Era

The source term f;, related to the chemical kinetics, is the j-th component of the vector

/¥a?u(B — U)O/[ﬁ(u2 —a?)]
o | weuB+ 2%(”2 —a’)] | (22)
WQ/’U,
wg/'ll,

If each line 7 = constant is a space-like curve, we can obtain solutions to this system
using the marching-technique along the n-direction!®.

3. Boundary Conditions

When the discontinuities are taken as internal boundaries, the solution of flow
parameters in the supersonic region is reduced to the solution of initial-boundary-value
problems of first order quasi-linear hyperbolic systems with several moving internal
boundaries. In this section, we will describe concrete expressions of the boundary and
internal boundary conditions which we need for our computation.

We have a natural boundary condition at the body :

V, =0, (23)

where V,, = V - n, n being the unit normal vector to the body.

Since the rate of chemical reactions is finite, the shock conditions are similar to
those for perfect gas flow. The quantities of flow parameters should satisfy the R-H
(Rankine-Hugoniot) conditions

p2Vn2 = p1Va i,

P2+ p2Viie =p1+ mViy, (24)
ho + K’i% = h{1 + Yﬂ%l
2Ty 1T

and gi2=aq1 1=1,2,3, (25)
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where m is the unit normal vector to the shock and V,, = V - n. A quantity with index
1 denotes a quantity in front of the shock and index 2 means behind the shock. On the
main shock the enthalpy h can be expressed as

P

h=—1r
(y—1p

(26)
In our model, the molecular vibrations are assumed to be half excited [1] behind the
main shock and not excited in front of the main shock. Hence, the ratio of specific
heats v changes across the shock. In front of the main shock v; = 7/5 and behind the
main shock v = 4/3. From the R-H conditions, we know that the shock pressure ratio
at the main shock in this case should be

D2 1 2 2 2 2 -
= = 1 M M M=, -2 27
3 (1 T 72) {( +" n,l) + \J72 +7 n,l1 4! n,l1 7 -1 ) ( )

where Mfu = V3,1/(71P1/P1)-

The conditions (24) and (25) also hold for the secondary shock. However, the
enthalpy h is given by (7) which is different from the formula (26). Since chemical
reactions are frozen across the shock, Z and 33, hYq; are the same on both sides of
the shock. Therefore, the third equation of (24) becomes

3+Zp V,§2_3+ZE+V,;{1
Z  p2 2 Z p 2
Let v = (3 + 2)/3, then (3 + Z)/Z = /(v — 1). Therefore, the formula for py/p; in

this case is as usual, i.e.,

(28)

2v(M2, -1
@:1+ ’Y( TL,I ). (29)
y41 v+1

From the first two equations in (24) we can have

pr _ 1+vMZ, —pa/py
P2 7M3,1

(30)

and V=V -Vu1 (1 - &) n. (31)
P2
The two relations are true for both cases since the expression of A is not used during

the derivation.

A contact discontinuity is an internal boundary which the flow does not pass
through. The pressures on both sides should be the same although other quantities
may be different. The jump conditions at contact discontinuities are as follows:

b2 = P,
Va1 =0, (32)
Vn,Z = Oa

where V,, = V - n, n being the unit normal vector to the contact discontinuity and p;,
Vi1 denote p, V;, on one side of the contact discontinuity and ps, Va2 denote p, V;, on
the other side.
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By definition of a wave-characteristic surface, the speed normal to the wave-characteristic
surface is equal to the speed of sound:

-
‘/n

= a. (33)

The condition can be used to determine the slopes of the boundaries of the expansion
wave.

3. Numerical Schemes

We will formulate implicit and explicit finite difference schemes in this section. The
system of equations under consideration is integrated according to the space-marching
technique along the coordinate nl®l. Here we give some two-step second-order schemes
which can be used in the space-marching procedure. Since we are dealing with the Euler
equations and chemical equations fully coupled, there exist possible numerical difficul-
ties associated with the stiffness. To overcome the difficulty caused by the stiffness,
we deal with the right-hand side terms implicitly. We have two basic finite difference
schemes, one is explicit and the other implicit. They will be combined in some way
depending on the values of these eigenvalues A; in a subdomain, especially their values
at the two boundaries of a subdomain.

We shall use the following symbols in describing the finite difference schemes:

A+-Um = Um+1 - Um,-

A—[Jrn. =Up — Urn~1a

AU, =U, 1 -U, i,
2

2

AU, forA<O0

AU, =
AU, ford>0,

1

fm = 5(f7n+% + fm_-%)-

If we omit the subscript j in (18), each equation there is of the form:

oU dU
G — + \G — 34
where U = (p) h’ 0,4q1,92, q3)*'
At the first step, (34) is approximated by

1 A k
GHULT? = gyt 5/\5,1AZG*’€A Uk 4 - A nfirE, (35)
The right-hand side of equation (34) is approximated implicitly to overcome the diffi-
culties arising from stiffness. The implicit term is then approximated by

k+2

oY~ gk 4 DRk UETE _ Uk, (36)

where Df is the gradient of f and our scheme becomes
1An

GrUkE - —A nDF(USYUST? —g*U*, - 3 A mGm AU,
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1 1
+ 5 AN fp = SANDFUL)Ur.  (37)
For the second step, (34) is written as
U  AEdU A¢ ouU
¢ (5 7 —*-T) (rt)e e =7 38
on  An 0¢ An o€ =1 (38)

Here, if A > 0, then the upper signs are chosen; if A < 0, then the lower signs are taken.
Noticing
Ukt —uk ., (8U A 6U>’°+‘

2 2
- oy T Ay 0E) L, PO TOE), ()

m:i:—

we then can have the following second order approximation to (38):

k+ 1
sl URHL Uk Ag\ ey AU mlzg 1/ e
,qui% __A"l—— <ll)\mi1 = An) 'U’Gmi% T = 5 ( + fm:l:l) 3 (40)

which could be written as

An
Ag

o an (A ). (41)

*k+1 g sk+1 B+l xk+ 1 k41
quig Ukt =,LLG 2 Um:tl ( /,1,)\m:i:"’1 * 1) GmifAd:U 2

With the approximation
k41
fErla gk 4+ D (UES — U, (42)
the scheme becomes
(nGier} - SanDr U ) UL =Gl Uk

m+l
A” /\k+2 +1 G*’ch IAL U

+ Anufh,, - -iAan(U,'iff)Ufn.
- (43)

The above scheme cannot be applied at the boundary points because it requires
data from the points outside the local computational region. At the boundary points,
we need one-sided schemes. If at the second step, the following approximation is used:

*k+% k+1 _ *k+2
NGm?%U"‘ —qu Um:Fl

A k+1 xk+1 k+3
(AZ A 1:;1)qu 2A:Um

Foan (4 b))
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where the upper signs are chosen in the case A > 0 and the lower signs are taken in the
case A < 0, then it is one-sided scheme. Using the approximation (42), we can further
modify it into

*k+

* 1 1
(uG - 5Aan(Uf,i”)) UL =uG), UL

An k+1 xk+1 k+
( NI Ay F 1) uG. 2A¢ 2
+ Anpfl oy - EAan(Um HUE,.

’ (44)

Using one of these two versions, each equation in (18) can be discretized at every
grid point.
It is clear that each equation of (18) can also be written as

ou 8U
A"— + B*— 45
where A = G; and B = A\;G;. In what follows, we write down an implicit scheme for
this equation. At the first step, the equation is discretized by

xk k+2 léﬁ *k *k } k+%
HAL U S A Bm+zAU WAL UL S Amuf, (R, (46)

1
and using the approximation (36) at m + 5 we obtain

k+1 lA *k k+1 1 k k+1
U+ SR B AU - o DA UL

xk 1
= pA! 1;4Uk+1+ Anuf:L ~§Anu[Df:l+%Ufn+;

uA

(47)

or when grouped in m,

. An 1 k+1

( Arrf—*—l + A_é B1n+1 - _AanYl:L+l)Um+2l
1 . _An 1 k+1
+—2-(,uAn’f act Bm+1——§Aan,’;)Um2

1
*k k k k
For the second step, the equation is first approximated by

1A xk
k+1 an +3 k+1
”’Am nu +1 +3 AE Bm+l AUm+1

1 1A
=“Am 2/J,l]'k o

_1an *k+2 k 1 k k+1
1P mis = 3 agt B 1 AUm %+2A"[”fm+%+"fm+ll’
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1 .
and using the approximation (42) at m + 21 e then obtain our scheme

k1 k+1 1An xk+3 k41 1 +3 prk+1
/.LA"H_%/.LU +‘2—ZE B AUm+1—§A77/L Df Um+
1 A’I] *k+%
m+% 2 Aé‘ Bm+~1~

1 k
+Amufhy — s [ DR UYL, (50)

AU*

When grouped in m the scheme becomes,
_1_ An
(ﬂA Af B - "A nD fr, +1)U1knt31
1 ( A*k+% AT] *k+%

1 k+% k41
+§ HA L —A—SuBer% ‘—AﬂDfm )Um

1 A'n xk+1

k k

= uwB_ z

;I,A Um+_ 3 £ AUm+2

+ A f,’j&% - —2—Amu D fm_f%Ufn ) (51)

*k+—

This scheme can be used at each mesh. Therefore for each equation in (18), M
difference equations can be obtained in a subdomain, M being the number of meshes
in the £ direction in the subdomain.

5. Flow Patterns at the Interaction Point and Expansion Waves

In this section, we will observe flow patterns after interaction of the shocks. Let
= Fi(z) and r = Fy(z) denote the equations of main shock and secondary shock
respectively and they meet at the point

{ r = Fi(z),

r= Fz(z). (52)

After the interaction point, the flow pattern is shown in Figure 1, i.e., there are a shock
on the top, a contact discontinuity in the middle and an expansion wave at the bottom.
In order to determine the initial slopes of the shock, the contact discontinuity, the
trailing and leading boundaries of the expansion wave, and the flow properties between
them, a Riemann problem has to be solved using the flow properties in the single valued
Regions 2 and 5. In order to solve a Riemann problem, we have to have jump conditions
on shocks and contact discontinuities, and the relations between the flow properties in
expansion waves. The jump conditions on shocks and contact discontinuities for our
problem can be found in Section 3.

In what follows, we derive the relations on expansion waves for the problem here.
Let {z0,70} be the coordinates of the interaction point in the {z,7}-coordinate system
and introduce a new polar coordinate system {7, 68} centered at that point by

(53)
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Single valued (Region 3)

Single valued

(Region 2) Contact discontinuity

Single valued (Region 4)

Xpansion wave

Single valued (Region 5)

Secondary shock

Fig. 1. Flow patterns at the singular point where two shocks interact
From (53) we can easily get the following partial derivatives

or 00 —sin@
— — cos 6 —
9z 0z | — T (54)
L Bl W
or Or r
Since h = h(p, p, q1,42,93), (55)
we have oh oh oh oh oh
h=—V .-Vp+—V  -Vp+ — — —
V.V = +a ”+al‘"1+822+83“’3 (56)
and (3) becomes
3
ah oh 1
-dVv . i (- - —) = 0.
V.Vp—a Vp+Zwa b 0 (57)

Therefore, the system (1)—(4) is equivalent to the system which consists of equations

(1), (2), (4) and

Op Op 2, Op 2, Op _
92 +v8r a uaz g = d, : (58)
1
where d= (— - —). 59
,z; 6‘11 P ( )

According to (54), the last system can be rewritten into the following system under the
{7, 8}-coordinate system:

OW Ay OW
Ao T T a0 D (60)
where
|4 0 cos@/p 0 0 0 0)
0 Vi sinb/p 0 0 0 o0
0 0 i —a?®V; 0 0 0
Ar =] pcos@ psind 0 i 0 0 0|, (61)
0 0 0 0 Vi 0 0
0 0 0 0- Vi O
\ 0 0 0 o 0 0 W)
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Va 0 —sinf/p 0 0 0 0

0 Vs cosf/p 0 0 0 0

0 0 Vy —a?V, 0 0 0
Ag=| —psin® pcosb 0 Vs 0 0 0}, (62)

0 0 0 0 Vo O 0

0 0 0 0 o V, 0

0 0 0 0 0O 0 VWV

and

D= (0’ 07 —d’ 0,&)1,002,0.13)* > W = (’U,, v, P, P41, 92, QB)* . (63)

Here Vi = ucosf + vsinf, Vo = —usinf + vcosf. In order to let (60) be true at the
interaction point, we require

ow
Ag—— =0 64
e (64

at that point. When Vo = Fa, the determinant of Ay is equal to zero and there is a
nontrivial solution to (64), which satisfies the following equations

Ou sinf Op
V; — =0
00 p 90
Ov  cosf3p
V- = =
256t 5 50 ="
Op ,0p
I P . 5
a6 “a6 =" (65)
% _o ;=123
80 — Ay ey
V2 = Fa.
Noticing
Ou ov  OV;
COSO% +s1n96‘9 =55 ~ Va,
ou ov OV,
—sm0% +C089% W+Vl, (66)

we can rewrite (65) as

=0, (67)

From (10) and (7), we know a? = ((3 + Z)/3) p/p or let v = (3 + Z)/3, we have a?
= vp/p. From (67), we know that g; dose not depend on 6. Thus « is independent of
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0. In this case, the system has the following analytic solution
1
= VHsin (6,1 +9
y+1
11, 5>

V2=H ’Y_I_lcos(ﬂ

p= (Vz Po /'YPO) )

p="po(p/po)”,
¢ = qip, t=1,2,3

Q-Q
_|..
= | =

and

u = Vicosf — Vysinf,
v=V;sinf + V,cosb.

357

(68)

(69)

Here the parameters H, 6, po, po, 41,0, 92,0, 93,0 and v can be determined by the flow
properties in front of the expansion wave, in our case, by the data in Region 5. pg, po,
41,0, 92,0, 93,0 denote p, p, q1, g2, g3 at the point {zp,7¢} in Region 5. H, § and ~ can

be calculated by the following formulae

Yy—1p0
-1 -
§ =sin"!(s) — T tan~! (____u02110 2a) )
v+1 ug — ag
34+ 2y

where

2 2 2
Vo = 'UIO+'U0,

oo (V& _a=1)v+1
- H ~+1) 2°

a=/a} (u} + v —a?)

2 3+ Zopo
ag=——7——"—,
3
+
20:1+HQ1,0 2(12,0_

(71)

Here ug, vg are u, v at the interaction point in Region 5. Therefore, the flow properties
in the expansion wave can be determined by the flow properties in Region 5 and the

angle 6.

The Riemann problem can be solved in the following way. First we guess the slope
of the contact discontinuity. Then using the relations (24) and (25), we find such a
slope of the shock that the flow in Region 3 is parallel to the contact discontinuity. Also
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we determine such a 8 in the expansion wave that the flow in Region 4 is parallel to the
contact discontinuity. Finally we compare the pressure in Region 3 and the pressure in
Region 4. If they are equal, we find the solution. If not, we have to adjust the slope
of the contact discontinuity. We can use any known method for solving a nonlinear
equation to adjust the slope of the contact discontinuity since it actually is'a process
of solving the equation

pa(F;) = p3(Fy), (72)

where F} is the slope of the contact discontinuity and ps and p, are pressures in Regions
3 and 4 respectively.

6. Numerical Computation of Shock Interaction

We have computed the following shock interaction problem. The free stream condi-
tions are given in Table 2 First, we obtain a main shock by placing a 25 degree wedge
in front of the free stream at z = Om. Later at z = 10m, the body expands by 5
degrees. That is, the angle between the body and free streamline changes suddenly
from 25 degrees to 30 degrees. At this point a secondary shock is formed. The slope
of this shock is much larger and it meets the main shock at z ~ 13m. As a result of
interaction between the two shocks, a new main shock, a contact discontinuity and an
expansion wave generate. Therefore, at the beginning there is only one shock. Later
there are two shocks. Finally the flow field contains one shock, one contact discontinu-
ity and one expansion wave. In Figure 2 the flow field structure before and after shock
interaction is given.

Before z = 10m, the numerical method given in [3] can be used. At z = 10m, the
jump conditions on shocks (24)—(25) and the boundary condition on bodies (23) are
used to determine the initial slope of the secondary shock and all the physical quantities
behind it. Now we have two shocks in our computational region and a new method is
needed. In this case we take the two shocks and the body as boundaries and G(7,¢) is
chosen in such a way that r = G(#,0.5) is the equation for the secondary shock (the
details are omitted here). In what follows, the subdomain between the secondary shock
and the body is called Zone 1 and the subdomain between the two shocks is referred as

Table 2. Free Stream Conditions o T
Speed 6.77 Km/s . e asseney
Altitude 65 Km .

Pressure 10.85 N/m?

Density 1.56 x 10~* Kg/m®

Temperature 2408 °K
Mach Number | 21.7

Zone 2. In Zone 2, A3 is greater than
zero at the main shock and it is less than
zero at the secondary shock. For any )\ ‘ _ _ ,
with such a feature, it is reasonable for " Fig. "2 Flow field structure before

the equation (18) corresponding to this A and after shock interaction
to be discretized M,+1 times, M being the number of meshes in the ¢é-direction in Zone

2. Therefore for this equation the explicit scheme is used at all grid points. Since \; < 0
at the two boundaries of Zone 2, i = 1, 2,4, 5, 6, the corresponding equation (18) should
be discretized M, times. Also the value of these \; might be very large. Noticing these
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facts, we adopt the implicit scheme in all the meshes for other equations. Therefore we
can get 6M 4 1 equations. Using these difference equations and the jump conditions
on the main shock (24)—(25), we can get the solution in Zone 2, including the new slope
of the main shock. The pattern of flow field in Zone 1 is similar to that before the
secondary shock appears. Therefore, in Zone 1, for all the equations (18) the implicit
scheme is used and 6M; equations can be obtained, M, being the number of meshes
in the &-direction in Zone 1. As soon as the solution in front of the secondary shock is
obtained, the flow properties in Zone 1, including the slope of the secondary shock, can
be gotten by using the 67 equations and the boundary condition on the body (23) and
the jump conditions on the secondary shock (24)-(25). Since the chemical reactions are
frozen across the secondary shock, the concentration of species are continuous. Other
properties have sudden jumps. None of the flow quantities changes so much within
each zone. Therefore, the computation is relatively easy.

When two shocks meet, we take the free stream conditions and the final data behind
the secondary shock in Zone 1 as the data for the Riemann problem. After we obtain
the solution of the Riemann problem, we can do further computation. We divide our
computational region into four zones numbered 1 to 4 from the body to the shock. Zone
1 is between the body and the leading boundary of the expansion wave, Zone 2 is the
expansion wave, Zone 3 is between the trailing boundary of the expansion wave and
the contact discontinuity, and the region between the new main shock and the contact
discontinuity is called Zone 4. In this case, G(n,&) is so chosen that r = G(»,0.75),
r = G(1n,0.5) and r = G(n,0.25) are the equations for the contact discontinuity, the
trailing boundary and the leading boundary of the expansion wave respectively. In
our computation, the function r = G(n,£) is implicitly defined as follows. Suppose
r = s(n) = ca(n), r = es(n), 7 = c2(n), r = c1(n), = b(n) = co(n) are the equations
for the main shock, the contact discontinuity, the trailing boundary and the leading
boundary of the expansion wave and the body respectively. Let & = 1, {3 = 0.75,
£ = 0.5, & = 0.25 and & = 0. For r € [¢;—1(n), ci(n)], let,

f7H) = f7H )

§="6&-1+ (51 - £i~1) f_l(TZ,i) — f—l(Tl,i) ;o t=1,--1,4, (73)
where
2t
ft)= 711 (74)
t= - Ci—l("?) (TQ’i — 7'1,1') + Ty - (75)

— ai(n) —cim1(n)
T1,; and 7y ; are the parameters which determine how small mesh sizes will be used near
the boundariest® Their values for our computation are

71,1 = —0.9, 79,1 = 0.9,

11,2 = —0.7, To,2 = 0.7,

T3 =—07, 73=07, (76)
’7'1,4 = —-0.8, T2,4 = 0.8.

In Zone 1, A3 > 0 at the two boundaries, so the equation (18) corresponding to Az
should be discretized M; times and the implicit scheme is used; In this zone A\; = 0 and
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A2 = Mg = A5 = Ag > 0 at the leading boundary of the expansion wave and A\; < 0 and
A2 = Ay = As = A¢ = 0 at the body, so the equations (18) with j = 1,2,4,5,6 should
be discretized M; + 1 times, which can be fulfilled by using the explicit scheme at all
the grid points. In this way we can have 6M; + 5 difference equations. Using these
equations and the boundary condition on the body (23), we can have the flow properties
in this zone. After that, the new slope of the leading boundary of the expansion wave
can be obtained by (33). In Zone 2, Az, A3, Ag, A5, A6 < O at the two boundaries of
this zone, so the corresponding equations (18) need to be discretized M, times and
the implicit scheme can be used. A; = 0 at the upper and lower boundaries of this
zone and the corresponding equation should be discretized at the trailing boundary of
the expansion wave and at all the interior points by the explicit scheme (the equation
at the leading boundary of the expansion wave has been used in Zone 1). Therefore
6M; difference equations can be obtained. As soon as the flow properties at the leading
boundary of the expansion wave are obtained, the other flow properties in Zone 2 can be
determined by using these difference equations. After that, the new slope of the trailing
boundary of the expansion wave can be calculated by using (33). In Zone 3, A\; < 0 at
the contact discontinuity and the equation (18) with j = 1 has been discretized at the
trailing boundary of the expansion wave in Zone 2, so the equation should be discretized
M3 —1 times, M3 being the number of meshes in the £-direction in this zone. The value
of A\; might be very large. Therefore the M3 — 1 times discretization should be done
by using the implicit scheme in all the meshes except the mesh next to the trailing
boundary of the expansion wave. Az, Az, Ag, A5, ¢ > 0 at the trailing boundary of the
expansion wave and they are greater than or equal to zero at the contact discontinuity.
Thus the corresponding equations should be discretized M3 times and the implicit
scheme should be used because the values of these eigenvalues might be very large. In
Zone 4 the situation is similar to the case with only one shock. For each and every
Ai, My difference equations should be obtained, M, being the number of meshes in
the {-direction in this zone, which can be fulfilled by using the implicit scheme. In
this way, 6 M3 — 1 and 6M, difference equations are obtained in Zone 3 and Zone 4
respectively. As long as the solution is given at the trailing boundary of the expansion
wave, these difference equations and the jump conditions on the main shock (24)-(25)
and the jump conditions on the contact discontinuity (32) provide all the equations
needed to determine the other flow properties in Zones 3 and 4, including the new
slopes of the main shock and the contact discontinuity. When determining these flow
properties, a system consisting of many linear equations and a few nonlinear equations
is needed to be solved. This type of system can be efﬁ(:lently solved by a method called
the double-sweeping method(®.

A computer code based on the method described above has been written in For-
tran for numerical experiments. In the code the mesh size in the marching direction
is self-adjusted according to a given error level for an accurate and efficient computa-
tion. Using the code, we have obtained accurate details of such a complicated shock
interaction problem. In Fig.2, the locations of all the boundaries from z = 10m to
z = 15.80m are given.

The flow field after the shock interaction is much more complicated than that before
the interaction. Therefore, in this paper we only give some figures about variations of
flow properties in the flow field after shock interaction. Variations of flow properties
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are given in Figs.3-12. Each figure has two graphs. In the first graph, the abscissa
represents £&. As we mentioned above, £ = 1, 0.75, 0.5, 0.25 and 0 correspond to the
main shock, the contact discontinuity, the trailing boundary and the leading boundary
of the expansion wave and the body. In the second picture, the abscissa represents

_ _r—bm) (77

s(n) —b(n)

Therefore at the shock and the body the abscissa is still 1 and O respectively. The
ordinate represents a physical quantity. The unit for each physical quantity can be
found in [3]. In each graph, there are four lines labeled A through D. They are the
numerical results on the lines marked A through D in Fig.2; 2 = 13.056 m at A,
z=13.63m at B, 2 = 14.35m at C and z = 15.80m at D. We stopped our computation
at D.

All the quantities in Zone 1 are quite smooth because no problems like those be-
hind the shock happen here. Although the width of the expansion wave Zone 2 is very
narrow, it is quite strong. Many flow properties change greatly. For example, pres-
sure shows a big decrease across the expansion wave. Though the flow properties are
quite smooth in the expansion wave, the weak discontinuity are quite big both on the
trailing boundary and the leading boundary of the expansion wave. In Zone 3 the flow
properties are also quite smooth. But, at the contact discontinuity the flow properties,
except the pressure, have big jumps. In Fig. 5, the jump of density is shown and there
is not any smearing. In Zone 4 the flow properties are not as smooth as in other zones.
Especially, near the shock, the flow properties vary quite rapidly compared to the flow
properties in other zones.
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Fig. 3 Pressure after Shock Interaction Fig. 4 Enthalpy after Shock Interaction
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Fig. 11 NO after Shock Interaction Fig. 12 Temperature after Shock Interaction
In our computational results, the variations of flow properties among the first few
grid points in Zone 3 near the trailing boundary of expansion wave are not monotone.
This phenomenon might be caused by the difference of numerical schemes used in Zone
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2 and in Zone 3. The peaks are not big and become smaller down stream as we can see
in Figs3 and 6. They do not cause any numerical difficulties.

7. Remark

We have quite accurately computed a shock interaction problem in nonequilibrium
flow. Since there exist one shock, one contact discontinuity and one expansion wave
after shock interaction, the structure of the flow is very complicated. In order to get
accurate results, we take the shock, the contact discontinuity and the two boundaries of
the expansion wave as computational boundaries. With the body as another boundary,
we solve an initial-boundary value problem with 5 boundaries. In each subdomain, the
features of boundaries and equations are different. Therefore, for different subdomains,
different schemes are usually needed for efficient computation. We present a numerical
method, which is suitable to a variety of initial-boundary value problems. With this
carefully designed method, we are able to get accurate results for the very complicated
shock interaction problem.
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