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Abstract

Utilizing the properties of the smallest singular value of a matrix, we propose a
new, efficient and reliable algorithm for solving nonsymmetric matrix inverse eigen-
value problems, and compare it with a known method. We also present numerical
experiments which illustrate our results.

1. Introduction

Consider the following inverse eigenvalue problem:
Problem G. Let A(x) ∈ Rn×n be a real analytic matrix-valued function of x ∈

Rn. Find a point x∗ ∈ Rn such that the matrix A(x∗) has a given spectral set L =
{λ1, · · · , λn}. Here λ1, · · · , λn are given complex numbers and closed under complex
conjugation.

This kind of problem arises often in various areas of applications (see Freidland
et al.(1987) and references contained therein). The two special cases of Problem G,
which are frequently encountered, are the following problems proposed by Downing
and Householder(1956):

Problem A. Let A be a given n × n real symmetric matrix, and λ1, · · ·λn be n
given real numbers. Find an x∗ = (x∗1, · · · , x∗n)T ∈ Rn such that the matrix A + D(x∗)
has eigenvalue λ1, · · ·λn. Here D(x∗) = diag(x∗1, · · · , x∗n).

Problem M. Let A be a given n× n real symmetric positive definite matrix, and
λ1, · · ·λn be n given positive numbers. Find an x∗ = (x∗1, · · · , x∗n)T ∈ Rn with x∗i > 0
such that the matrix AD(x∗) has eigenvalue λ1, · · ·λn.

Problem A and M are known as the additive inverse eigenvalue problem and the
multiplicative inverse eigenvalue problem, respectively.

There are large literature on conditions for existence and uniqueness of solutions
to Problem G in many special cases (see Xu(1989) and references contained therein).
Here, we will assume that Problem G has a solution and concentrate on how to compute
it numerically.
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Although many numerical methods for solving various special cases of Problem
G have been proposed, only one, which is proposed by Biegler-König(1981), can be
applied to the nonsymmetric case of A(x). In this paper we propose a new, efficient
and reliable algorithm for solving Problem G, which is based on the properties of the
smallest singular value of a matrix, therefore, called a smallest singular value method.
This algorithm also has no restriction of symmetry, and is more efficient and reliable
than Biegler-König’s algorithm.

Notation. Throughout this paper we use the following notation. Rm×n is the
set of all m × n real matrices, and Cm×n the set of all m × n complex matrices.
Rn = Rn×1 and Cn = Cn×1. I is the n× n identity matrix. The superscript T and H
are for transpose and conjugate transpose, respectively. det(A) and tr(A) denote the
determinant and the trace of a matrix A, respectively. σmin(A) denotes the smallest
singular value of a matrix A. The norm ‖x‖ stands for the usual Euclidean norm of
vector x, and ‖x‖∞ for the max-norm of vector x.

2. Formulation of the Numerical Methods

We will now describe two methods for solving Problem G in the case where the
given eigenvalues are distinct. Assume there exists a solution x∗ to Problem G. In
some neighborhood of x∗ we will first consider the following formulation of Problem G:

Formulation I. Solve the nonlinear system

f(x) = (f1(x), · · · , fn(x))T = 0, (2.1)

where
fi(x) = σmin(A(x)− λiI) (2.2)

for i = 1, 2, · · · , n.
In order to apply Newton’s method to (2.1), we need the partial derivatives of f(x)

with respect to the x1, · · · , xn. To calculate these derivatives we apply Sun’s Theorem
[9]:

Theorem. Let x ∈ Rl and B(x) ∈ Cm×n. Suppose that Re(B(x)) and Im(B(x))
are real analytic matrix-valued function of x. If σ is a simple non-zero singular value of
B(x(0)), v ∈ Cn and u ∈ Cm are associated unit right and left singular vectors, respec-
tively, then there exists a simple singular value σ(x) of B(x) which is a real analytic
function of x in some neighborhood of x(0), and

σ(x(0)) = σ,
∂σ(x(0))

∂xj
= Re

(
uH ∂B(x(0))

∂xj
v

)
.

Utilizing the above theorem, if fi(x) 6= 0, we get

∂fi(x)
∂xj

= Re
(

ui(x)H ∂A(x)
∂xj

vi(x)
)

, (2.3)
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where vi(x), ui(x) ∈ Cn are the unit right and left singular vectors associated with the
smallest singular value σmin(A(x)−λiI) of A(x)−λiI, respectively. Thus the Jacobian
of f is

J(x) =
[
∂fi(x)
∂xj

]
,

where ∂fi(x)
∂xj

are defined by (2.3), and one step of Newton’s method is defined by

J(x(m))(x(m+1) − x(m)) = −f(x(m)). (2.4)

To apply this method, 2n singular vectors have to be computed per step, which is
very time consuming. Therefore, instead of computing these singular vectors at each
step we may consider approximating them. One possibility is to use inverse iteration
with a zero shift (see[3], [4], [5], and [10]). Let

B = A(x)− λiI, σ = σmin(A(x)− λiI),

v = vi(x), u = ui(x).

Inverse iteration for u, v and σ. Starting with an initial guess u0, iterates until
convergence:

1. Bw = ui,
2. vi+1 = w /‖w‖ ,
3. BHy = vi+1,
4. ui+1 = y /‖y‖ .
Denote the converged ui by u, compute v and σ by

Bw = u, v = w /‖w‖ , σ =
1
‖w‖ . (2.5)

By the properties of inverse iteration, generally speaking, only one iteration is typ-
ically required to reduce an adequate approximate singular value and the associated
singular vectors when x is very close to x∗

Besides, in order to reduce the amount of work per iteration, we may translate A(x)
to Hessenberg form first. Let U is the orthogonal matrix with

A(x) = UHUT , (2.6)

where H is an upper Hessenberg matrix, then

A(x)− λiI = U(H − λiI)UT . (2.7)

Thus, instead of using A(x) − λiI to perform inverse iteration we may apply inverse
iteration to H −λiI, which can reduce the amount of work per iteration from O(n5) to
O(n4).
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Now, summarizing the above discussion, we obtain the following algorithm for solv-
ing Problem G:

Algorithm 2.1.
Choose a starting point x(0) ∈ Rn and a starting matrix U0 = [u(0)

1 , · · · ,
u

(0)
n ] ∈ Cn×n.

For m = 0, 1, · · ·
(1). Compute A(x(m)) and ∂A(x(m))

∂xj
, and

A := A(x(m)), Aj :=
∂A(x(m))

∂xj
, j = 1, 2, · · · , n.

(2). Compute the factorization

A = UHUT

where U is an orthogonal matrix and H an upper Hessenberg matrix.
(3). For i = 1, 2, · · ·n,

(3.1). Compute the factorization

H − λiI = QR,

where Q is an unitary matrix and R an upper triangular matrix.
(3.2). Solve the linear system

Ry = u
(0)
i ,

and compute
v =

y

‖y‖ ;

then solve the linear system
RHw = v,

and compute
u =

w

‖w‖ .

(3.3).

fi :=
1
‖w‖ , u

(0)
i := u,

u := UQu, v := Uv.

(3.4). compute
Jij = Re(uHAjv), j = 1, 2, · · · , n.

(4). If max{|f1|, · · · , |fn|} is sufficiently small, stop.
(5). Solve the linear system

Jy = −f,
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where J = [Jij ] and f = (f1, · · · , fn)T , and compute

x(m+1) = x(m) + y.

Let us now look at a different formulation of Problem G:

Formulation II. Solve the nonlinear system

g(x) = (g1(x), · · · , gn(x))T = 0, (2.8)

where
gi(x) = det(A(x)− λiI) (2.9)

for i = 1, 2, · · · , n.

This formulation is the most natural one and has been used by Biegler-König (1981).
Applied Newton’s method to (2.8) and utilized Trace-Theorem of Davidenko, he pro-
posed the following algorithm:

Algorithm 2.2.
Choose a starting point x(0) ∈ Rn.
For m = 0, 1, · · ·
(1). Compute A(x(m)) and ∂A(x(m))

∂xj
, and

A := A(x(m)), Aj :=
∂A(x(m))

∂xj
, j = 1, 2, · · · , n.

(2). Compute the factorization

A = UHUT ,

where U is an orthogonal matrix and H an upper Hessenberg matrix, and compute

Bj = UT AjU, j = 1, · · · , n.

(3). For i = 1, 2, · · ·n,

(3.1). Compute the factorization

P (H − λiI) = LU,

where P is a permutation matrix, L = [lij ] is an unit lower triangular matrix with
|lij | ≤ 1 and U = [uij ] an upper triangular matrix; and compute

gi =
n∏

i=1

uii.

(3.2). Solve the n linear systems

LUXj = PBj , j = 1, · · · , n.
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(3.3). compute
J̃ij = gi × tr(Xj), j = 1, 2, · · · , n.

(4). If max{|g1|, · · · , |gn|} is sufficiently small, stop.
(5). Solve the linear system

J̃y = −g,

where J̃ = [J̃ij ] and g = (g1, · · · , gn)T , and compute

x(m+1) = x(m) + y.

Let us now compare computational requirements of Algorithm 2.1 and 2.2. Algo-
rithm 2.1 only differs from Algorithm 2.2 in step 3. Algorithm 2.1 requires approxi-
mately n4 multiplications to form the Jacobi matrix J in step 3, whereas Algorithm
2.2 requires approximately n5 multiplications to form the Jacobi matrix J̃ in step 3

Besides, our numerical experience indicates that Algorithm 2.1 almost always re-
quires fewer iterations and that Algorithm 2.2 suffers more often from ill-conditioning.
It therefore seems that Algorithm 2.1 is always to be preferred over Algorithm 2.2.

3. Numerical Examples

We have tested Algorithm 2.1 and 2.2 on various types of problems. In our ex-
perience, Algorithm 2.1 is more efficient and reliable, but Algorithm 2.2 encounters
difficulties more often. Here, we present four examples to illustrate the local behavior
of Algorithm 2.1. The tests were made on IBM PC/XT. Double precision arithmetic
was used throughout.

Example 1.[14] This is an additive inverse eigenvalue problem. Here n = 3,

A(x) =




x1 1 0
1 x2 1
0 1 x3


 λ = (−2, 0, 2)T .

Using Algorithm 2.1 with the starting point x(0) = (1.2, 0.01, −1.3)T , after 4 iterations
we get a computing solution

x = (1.414213562, −.7267619040× 10−14, −1.414213562)T .

comparing it with the exact solution

x∗ = (
√

2, 0, −
√

2)T ,

we know that
‖x− x∗‖∞ = .2420324074× 10−7.
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Table 3.1 displays the values of ‖f(x(m))‖∞.

Table 3.1 Table 3.2

m | ‖f(x(m))‖∞ m | ‖f(x(m))‖∞
0 | .1453866481D + 00 0 | .5956225156D + 01

1 | .7932893273D − 02 1 | .9078626305D + 00

2 | .1517640384D − 03 2 | .4975300682D − 01

3 | .3565542171D − 07 3 | .8968967906D − 03

4 | .2998220101D − 14 4 | .3157841046D − 06

5 | .3767194502D − 13

Example 2.[7] This is also an additive inverse eigenvalue problem. Here n = 8,

A(x) = A + diag(x1, · · · , x8),

λ = (10, 20, 30, 40, 50, 60, 70, 80)T ,

where

A =




0.0 4.0 −1.0 1.0 1.0 5.0 −1.0 1.0
4.0 0.0 −1.0 2.0 1.0 4.0 −1.0 2.0
−1.0 −1.0 0.0 3.0 1.0 3.0 −1.0 3.0
1.0 2.0 3.0 0.0 1.0 2.0 −1.0 4.0
1.0 1.0 1.0 1.0 0.0 1.0 −1.0 5.0
5.0 4.0 3.0 2.0 1.0 0.0 −1.0 6.0
−1.0 −1.0 −1.0 −1.0 −1.0 −1.0 0.0 7.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.0




Using Algorithm 2.1 with the starting point x(0) = λ , after 5 iterations we get a
computing solution

x =(11.90787610, 19.70552151, 30.54549819, 40.06265749,

51.58714029, 64.70213143, 70.17067582, 71.31849917)T .

The residual values are given in Table 3.2.
Example 3.[1] Here n = 5,

A(x) = A + x1A1 + x2A2 + x3A3 + x4A4 + x5A5,

λ = (0, 1, 2, 3, 4)T .

where

A =




2 −0.08 0 0 0
−0.03 2 −0.08 0 0

0 −0.03 2 −0.08 0
0 0 −0.03 2 −0.08
0 0 0 −0.03 2



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and Ai = rie
T
i , i = 1, 2, 3, 4, 5, with

R =
5∑

i=1

rie
T
i =




1 0 0.01 −0.02 0.03
−0.03 1 0 0.01 −0.02
0.02 −0.03 1 0 0.01
−0.01 0.02 −0.03 1 0

0 −0.01 0.02 −0.03 1




Table 3.3 displays the computational results of Algorithm 2.1 with the starting point
x(0) = (−2, −1, 0, 1, 2)T .

Table 3.3

m | ‖f(x(m))‖∞
0 | .4625594388D − 02

1 | .3079773599D − 06

2 | .1767177906D − 14

x = (−2.002401944, −0.9979977295,

0.002364089452, 1.002706273, 1.995329310)T

Example 4. Here n = 3,

A(x) = A + x1A1 + x2A2 + x3A3,

λ = (1, 2, 3)T .

where

A =




0.66 −0.42 −0.34
2.94 0.33 4.09
0.1 0.48 2.96


 , A1 =




1 0.1 0.02
0.1 0 0.01
0.02 0.03 1


 ,

A2 =




0 0.01 0
0 1 0

0.05 0.01 0


 , A3 =




0 0 0.01
0 1 0.01
0 0.06 1


 .

Using Algorithm 2.1 with the starting point x(0) = (−0.5, −0.05, 2.1)T , after 9
iterations we get a computing solution

x = (0.8902087281, 4.035945140, −1.883181298)T .

The residual values are given in Table 3.4.
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Table 3.4

m | ‖f(x(m))‖∞ m | ‖f(x(m))‖∞
0 | .8883111302D + 00 5 | .1599815846D − 01

1 | .3411482853D + 00 6 | .6326446527D − 03

2 | .6993713739D + 00 7 | .1314660311D − 05

3 | .2497254940D + 00 8 | .2657927133D − 10

4 | .8748208974D − 01 9 | .7655396217D − 15

These examples, and our overall numerical experience with Algorithm 2.1, indicate
that quadratic convergence indeed occurs in practice.
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