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ANTIPERIODIC WAVELETS*V

H.L. Chen
(Institute of Mathematics, Academia Sinica, Beijing)

Abstract

In this paper, we construct the orthogonal wavelet basis in the space of an-
tiperiodic functions by appealing the spline methods. Differing from other results
in papers!1:23:68] here we derive the 3-scale equation, by using this equation we
construct some basic functions, those functions can be used to construct different
orthonormal basis in some spline function spaces.

1. Preliminary

As we know, many authors have made great efforts in constructing the orthonormal
or biorthonormal basis on the whole real line JR! or on the whole n-dimensional space
R™*7 but in many practical problems one needs to construct orthonormal basis on
some finite interval with some boundary conditions.

Here we present a method of constructing the antiperiodic orthonormal wavelets
basis on the interval I = [0, 27].

Main difficulty in the above problem is the construction of the orthonormal basis
of W,,,—1—the orthogonal complement of V,,,_1 in V;,—the key step is that we have to
construct o.n. periodic wavelets {A,;5"} which satisfy 2-scale equations, therefore, we
shall adopt some new strategy to construct the o.n. basis of W,,,_; which differs from
(1].

Let n, K be integers, N > 1, n odd, n = 2ng + 1,2n = Kh, K > 2n + 2, h a real
number. The point set {y;} are defined as follows

(n+1)

Yo = — 9 h’ y]:y0+]h7 jzlazv”' (11)

The B-spline function is defined by

B™(z) = (—=1)" " (ynt14i — ¥i) Wi, s Vit ly(@ — )% (1.2)

Definition 1.1. S™™ := {S|S is a polynomial of degree n on each interval
[ihm, (G + Dhn),j € Z,S € C"(IR")}, where hy, = h/3™,m > 0, m is an inte-
ger.

Set g:"™(z) = B(3™z), then {g"" }icz is a basis of S™™.
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Definition 1.2. gn’K(m):z {S|S is a polynomial of degree m on each interval
[hms (G4 1)hm), 4 = 0,---, K(m) —1; S € C*1(I),SW(0) = SU)(27),5 = 0,1,---,n—
1}. where K(m) = 3™K. ‘

§n K(m) 18 the family of periodic spline functions of degree n and with K(m)
knots {jhm};=o Klm)=1 4 [0,27). Set E’"(m) Bl(z) + B} g(x), the system of func-

tions {BP}K™0=1 constitutes a basis in Sn K , where B'(z) and B}, ;(x) are defined

1=-n0

asin (1.2), and K(0) = K. If we define

B"™ () = B"™ (&) + Bl () = BP(3™x) + B, () (3™) (1.3)
then, the system {E?’m(x)}fi@z;no_l forms a basis of gn’K(m) .

Definition 1.3. Given any integer l, there exists unique integer k satisfying

l=k+jK(m), j€Z and —nogkg—no—i%—K(m) (1.4)
define
B, (z)=B'"(z), ze€l0,2q]. (1.5)

Note here we use the same symbol B™ B,  as in [C1], but different in meaning
since here K(m) := 3™K and h,, := h/3m

From (1.5), we conclude that {Bl o (@)} (m) !is a basis in Sn K(m) The function
on,m
B, (z) can be extended to the whole real axis by periodicity.

2w

We define the inner product of two function f and g on [0, 27] by (f, g = 5o /
y(z)dz.

Definition 1.4. Define

K(m)-1 n,m

Apg(z) = O l}: exp(2milk/K(m)) Bl (z) (1.6)
=0

cr = {K(‘Z“)_l oo (3225)] B (0)}% (L7)

v=0

where

Lemma 1.1. AY"(z) is defined as in (1.6), then

(AR5 (), AT () = bkj, 0<k,j<K(m)-1. (1.8)

Let Vi, —Sn K (m)> {Aks K (0 ™)1 is an o.n. basis in Vin. Where by ; is the kronecker
delta.
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Remark. The proof of Lemma 1.1 is analog to that in [C;1]. Where the powerful
tool is the Fourier expansion of the B-spline function:
. v n+1
sin ——
~nm ~nm n K(m 2nvi
B™(&) = By (o= lhm) = K"(m) 3 —E e (B — thn)) (19

AP O can be presented as
k3 ' “k3 p

_(uK(m)+k) ntl
sm{ ——————| T

A = g K(m) 2ri(vK(m) + k)x
k,3 (z) k ( )uez:z (vK(m) + k)x P ( T )
(1.10)
and
i ( kn ) 2n+2 _%
Cn,m — K—n—l . —_—i(iﬁl_)_ 1.11
k3 (m) VGZZ (k+ vK(m))r (L11)
respectively.

The following 2-scale equation differs from that in [1].
Lemma 1.2. Since A;:’;"(.r) € Vin C Viny1, we have the following 2-scale equation

2
A:::;n(x) = Z Ay 4 AK(m) * AZi’j\_}—{l(m),g(x)a v =0, 1,---, K(m) -1 (112)
A=0

where
Ay y 4+ AK(m) = (A:,’:T’ A:ﬂ-i}_{l(m),g)v A= 0,1,2. (113)
Remark. The coefficient a,,,, 4 xg(m) in (1.13) can be easily calculated if we appeal
the formulas (1.6) and (1.7), we also notice that in the formula (1.12), the right side
includes only 3 terms. In deriving (1.12) we have used the following formula

n+l1
BP™@) = Y. pnsBila (x) (1.14)
k=-n-1
where B} (z) is defined in (1.3) and
(=574 X
Pop =143 " 3 (n—i—l) (n+1— —V) ., k=—(m+1),--,n+1
' v=0 v v
0, otherwise

formula (1.14) can be obtained by the Fourier transform of E?’m(x)
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Define
— oy oanamAl 1 n,m+1 —
- re,m - o o
D@:m(x) — Wy g zlx(m,)(Jj *‘l_,' ;2;\'(”,.),3(:7')-, 0<j<K(m) -
7.3 : FRURITE S

=K (). K m) Qe 1600 Y Uy 3 (8) + T -
nm+l e
Qi K(m AT iy 5(®), K (m) <j <2K(m) - 1.
: 1 1
where a; 5 = (A}3", A75"), Qr = [1/(1 = |ag gk (m)| )] 2-
Lemma 1.3. Denote W, the orthogonal complementary space of Vi, in Vg1, Vi,
=V @ W, Vi L Wi, {D;Lygn(x)}?i‘ém)wl is an o.n. basis of Wy, i.e.

<D717T'5L’D]n2’,n;> = 6j1,j2> 0<71,52 < 2K(m) -1 (1.16)
and
(D™ AREY =0, 0<j<2K(m)—1,0<k< K(m) - 1. (1.17)

Proof. By applying the orthonormal property of the systems {A;i’;nﬂ }fi(_(';7'+ Dl e

) +1 3 +1 ] a — 2
(A?ISL ,A;‘z:’; ) = 81,3, and (A%n’A;Lsm> = la;;” + Wj,jJrIx’(m)l2 + la]'a]"FZK(m)l, =1,

we can prove the following equalities

(A7, DIy = Q445 j4 k(m —lajil* = lajj42m(m)l*| 61 = 08, =0

1
for 0 < 4,1 < K(m) — 1.
for 0 < 7,l < K(m)—1
<D;:’3m, Dln—f’-qr;;(m);i) = (aj,jQ?aj,j+K(m)aj7j+2K(nL) - Qj; Q(]Z'aj,j+K(m)aj,j+2K(m))6]‘71
=0
for 0 < j,l < K(m) — 1.
<D,;l,:;n’ DZ:?) = (1alj,j+K(m)|2 + 1 - [aj,j+K(m)|2)6]-,k P 6jk
for 0 < j,k < K(m) — 1.
m ™, — 2\ 2 B
(D3 ks Pt iemya) = (1= 105,54k6m)P) Q585 = 85k

for 0 < 7,k < K(m) —1.
thus we have all the conclusions in lemma 1.3.
. n,m-+t1 n,m+1 n,m+1 n,m T [
Remark. Since {Ag5"" A -+ s AR(mr)—1,38 and {Ags", - ARl DL
---,D;}’?zm)_m} are o.n. bases in V,, 1, there is an unitary matrix which trausfons
the former to the latter, this transform is presented in the formulas (1.12) and (1.i5)
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2. Antiperiodic Wavelets

A function f(z) is called antiperiod = if f(z + 7) = —f(z), Vz € R If f(z)is
differentiable up to order S and satisfies f)(z +7) = —f¥)(z), z € R j=0,1,---,5,
then f is called antiperiod 7 of order S.

In order to construct the bases of the class of anti-periodic functions, we use the
spline method.

In this section we use the same symbol of the B-spline function as defined in (1.2),
but here we stipulate that 7' = 2, and the intervals J = [0, ]; I = [0, 27].

Let L be a positive integer such that m = Lh;

L>n+1, K=2L, Kh=2n. (2.1)

on,m onm
Definition 2.1. E"™(z) =B; (2)— Byiym) (z), i€ Z. |
Theorem 2.1. E"™(z) is an antiperiodic function of order n — 1, with antiperiod

onm

Proof. for 0 < j < n — 1, by 27 periodicity of the function B; (z), we have
. . omnm on,m
DIEM (z+m)=D'{B;, (z+m)— By L(m) (z+m)}
_ omm on,m
= DJ{Bi (ZII—W)- Bi+L(m) (.’15+7T)}
on,m on,m

= Di{B; (z— L(m)h)— B, pm) (z + L(m)h)}

on

. om,m ,m R,
= D]{BH—L(m) (x)- B; (2)}=-DE ().

Theorem 2.2. The system {E;"™(X)| i = —ng,--,L(m) — ng — 1} is linearly
independent on J, where n is odd, n = 2ng + 1.

Proof. Assume there are constants {c,-}:ﬁg‘l“(’") , 8.t
CongEZn (@) + 4+ Cong14nem)E e 1y (my(®) =0, z€J (2.2)
Set
‘_{Ci, 1= —ng, -+,—ng— 1+ L(m) 2.3)
%= Cimgmyy 6= o+ L(m), -, —mg — 1+ K(m) 2
then from (2.2) and the antiperiodicity of "™ (x) for all j € {-ng, - - -, —no—1+L(m)},

(2.2) is valid on [0, 27], from Definition 2.1 (2.2) and (2.3) we have the following equality

—ng—14+K(m)
a; B, (z)=0, ze€]l0,2n],
i=—ng

on,m
therefore a; = 0 for all ¢ since {B; }i—:_O;OHK(m) is a linearly independent system in
[e]

Sn,k(m) ([0, 27]).
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In Definition 2.1, we have defined a class of functions of antiperiodicity on J, these
are splines which constitute a class of functions, we give a name in the following

Definition 2.2. V2 = 8¢, = lin{E]"™|i = —ng,---,—no — 1+ L(m)} The dimen-
sion of V2 is L(m)(= 3™L), each element in V% is an antiperiodic spline function of
degree n with knots in the set {jhm|j € Z,hm = h/3™}.

By using the method provided by [5], we can easily construct the antiperiodic spline
interpolation function.

Theorem 2.3. Let L(z) be the fundamental periodic spline interpolation function

K(m)-1 K(m)~1 o n,m
La)= 3 G 3 exprivu/K(m) B, (2), (2.4)
v=0 n=0

where C3 = (Cp3™)*/K(m), n=2n9+1, K(m)=3"K, K(m)hp = 2m;Cp3™

and B, (x) are defined in Part 1, then L(z) is in gn’K(m) ([0,27]), and satisfies
L(khm) = 80, k=0,1,--,K(m) -1 (2.5)

Define
Lzym(w) = L(z) — L(z — ) (2.6)

then L, ,(z) € Sy ,,, satisfies
L} o (khm) = bro, 0<k < L(m)-1. (2.7)
Proof. The function L(z) in ‘%n, K(m) ([0,27]) is obvious and (2.5) can be easily

checked.
By 27-periodicity of function L(z), we have

Ly m(z +7) = Lz +7) — L(z) = —[L(z) - L(z — 7)] = =L m(2)

thus L;‘i’m(a:) € S%
We apply the 27-periodicity of L(x) again and property (2.5)

Ly, m(khm) = L(khm) — L(khm + L{(m)hm) = k.0 = Okt 10m),0 = Ok0

since 0 < k + L(m) < K(m) — 1 for all k,0 < k < L(m) — 1, we obtain (2.7)
Definition 2.3. The inner product on J = [0, 7] is defined by (f,g) = %/ f(z)
0

g(z)dz.
Lemma 2.4. If f and g are antiperiod w, then

%/Oﬂ f(z)g(z)dz = 51; 0% f(z)g(z)dz (2-8)

namely

(fr9)={(f.9)
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frook 2
(f,9) = 5= / (2)g(z)dz = o / f(=

o [ f@iglerds = - [ p@)g@dn = (£.9)

iy

Definition 2.4. Define

A?L’,] (z) = [ gjml 3(z) — Angl,s(x“”)] (2.9)

Theorem 2.5. {An’m}L(m) ' is an orthonormal basis in Spm(= Vi)

Before giving the proof of theorem 2.5, we have to establish the following lemma.
Lemma 2.1.

—2mv - k
APT@ — khy) = exp (%) AT (). (2.10)

Proof. by applying the Fourier expansion of A}*(-) (see (1.10)), then (2.10) is
immediate.

Proof of theorem 2.5. By periodicity of the function A .

-1,3
have <Ag}:r:1,3() Azn 13( +7) = (Ag]:n—1,3( —), AZ]Q 1';( )
Al Jm is antiperiodic with antiperiod ,

5(+), and lemma 2.1 we
= (-1 )z]l 16]17]2’ since

]la])’

1
(A?;Z;,AZ*Z;) (Anins ARR) = {2655 — 2(-1) 7165, 5.} =

0 < jl?j2 < L("L) - 17

. L(m
since A%d e 8¢ thus {A%7) -( )71 is an o.n. bais in 8¢

n,m:-

Remark. Suppose that L(m) = 2™L, hy, = h/2™, ® = L(m)hy,; and suppose
'11”';”(‘,!?\

) = 44';'0(2’"’:1:) as in [Cq], similar to (2.9), we define

AZ’J"L(I‘) - [/1721_7"11( ) A;l]m‘l(/ - ﬂ.)] (211)

") is defined in 1], i.e. K(m)(= 3™K) is replaced by 2™ K, and L(m)(=
placed by 2™ L, then

%[Agj (2Mz) — A, (2™ - 27))]
%[ hi—1(2mr) — Ay, (2Mz)] =0 (forall m >1).

sinee Af(y) is a 2w(= T) period function, and the function E"™(z) (Def. 2.1) is
aiso identically zero. Therefore, we adopt 3-scale instead of 2-scale, and we have to
establish the important formulas for the construction of the o.n. basis {D }zfém) !
{sce (1.15)), where K(m) = 3™K.
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Since Dim V,2,; = L(m + 1)(= 3™*'L), Dim V“ L(m)(= 3™L), the comple-
mentary subspace of V& in V2, is denoted by W2, Dim Wy = 2L(m). We define a

’ ll,]
| function D37,

a,j 1 n,m
Dy (z) = §(D2j—1,3('73> - 23 13(1' ™)),
where Dy (x) is defined in Part 1, formula (1.15).

Theorem 2.6. The system of functions {D%1, (1‘)}2L(m) constitute an o.n. basis

of Wa,
(DZ%, Da’]z) =6j1g2r 1< 71,52 < 2L(m). (2.12)
and A
(Diifus Ann) =0 1< <2L(m), 0 <1< Lm)—1,
thus,

Ve =WieV: Wi1Ve. (2.13)
Proof. By the 2w periodicity of the function D3:™, 3(x), we can derive D& (x +
) = =D&, (z), from (1.15), since D}5"(z) € Vi1, therefore , D, (x) € Vi yy, for
j=1,---,2L(m).
By using (1.15) we can establish the similar formular as (2.10) for D27, (z), combine

this with (1.16) we easily obtain formula (2.12), in fact,
(D@ (), D2ia()) = F{(Dy 1 30), Dyt 1 5())
(D" 3(- = m), D3y 5 (- = ) = (Dayi-q 5(), Dyjt 1 5(- = 7))

~(DpT 1 (- = 1) Dyt 5()) = 3{2851,50 — 2A=1)2785,3,}

= 81,52
(2.13) can be easily verified by using formula (1.17) and Definition 2.3.
By using the functions A“’J and D% Jms the reconstruction and decomposition for-
mulas can be established, but ‘this will be presented in another paper.
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