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Abstract

We investigate a class of a posterior parameter choice for iterated Tikhonov reg-
ularization with perturbed operators and noisy data by using modified Arcangeli’s
method. The rate of convergence of regularization approximation is achieved.

1. Introduction

Let X, Y be real Hilbert spaces, T : X → Y a bounded linear operator with
nonclosed range R(T ), y ∈ D(T+) = R(T )+̇R(T )⊥, where T+ is the Moore-Penrose
inverse of T [1]. For each δ > 0, let yδ ∈ Y be such that

‖y − yδ‖ ≤ δ. (1)

As we know, the problem of solving the operator equation of the first kind

Tx = y (2)

is, in generality, ill-posed[2]. Also we can not ensure that T+yδ is a reasonable approx-
imation of T+y since T+ is a unbounded operator. In practice, one tries to construct
a stable approximate solution to the equation (2) by regularization methods. A well-
known regularization method for approximating T+y is the Tikhonov regularization
method[3]. For each δ > 0 and α > 0, we denote by xα,δ the Tikhonov regularization
approximation for T+y. A crucial problem is the choice of regularization parameter α

in dependence of the noisy level δ leading to optimal convergence rates.
The earliest methods of this type are Morozov’s discrepancy principles, where α is

chosen such that
‖Txα,δ − yδ‖2 = δ2,

and Arcangeli’s method, where α is chosen as the root of[3]

‖Txα,δ − yδ‖2 =
δ2

α
.
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However, it is shown that neither Morozov nor Arcangeli’s method yields the optimal
convergence rates[4,5]. In order to improve the convergence rates, J.T. King probes the
iterated Tikhonov regularization[6]. In [7], H.W. Engl proposes the Modified Arcan-
geli’s method of choosing the regularization parameter that leads to higher rates of
convergence.

All the methods and results above-mentioned are only applicable if T is exactly
known. However, in practice, not only the right-hand member of equations but opera-
tors is approximately given. Z.Y. Hou and H.N. Li have shown two ways of choosing
regularization parameter for Tikhonov regularization with perturbed operators and
noisy data, and obtained the results concerning the rates of convergence[8,9]. For more
information in this area, we refer the reader to [10,11].

The aim of this paper is to provide a posteriori parameter choice and higher asymp-
totic convergence rate for iterated Tikhonov regularization with not only noisy data
but perturbed operators by using modified Arcangeli’s method. The result described
in the paper has much more practical value.

2. Modified Arcangeli’s Principles

For real number h > 0, let Th : X → Y be a bounded linear operator such that

‖T − Th‖ ≤ h. (3)

To exclude trivialitive, from now on, we assume that

y ∈ R(T ), T ∗y 6= 0, T ∗yδ 6= 0, (4)

where T ∗ is the adjoint of T . For all j ∈ N , let x
(j)
α,δ,h be the result of iterated Tikhonov

regularization of order j , i.e,

x
(0)
α,δ,h = 0 , x

(j)
α,δ,h = (T ∗hTh + αI)−1(T ∗hyδ + αx

(j−1)
α,δ,h ) , (5)

where N denotes the set of natural number, α is a positive and real number and I is
the identity operator. It follows by induction that for any j ∈ N ,

x
(j)
α,δ,h =

j∑

i=1

αi−1(T ∗hTh + αI)−iT ∗hyδ. (6)

For simplicity of notation we replace T ∗hTh, ThT ∗h , T ∗T and TT ∗ by T̃h, T̂h, T̃ and T̂ ,
respectively, below. It is easy to see that the equality

T ∗g(T̂ ) = g(T̃ )T ∗

holds if the function g(t) is continuous on [0,+∞).
Lemma 1. Let

ρj(α) =
∥∥∥T̃hx

(j)
α,δ,h − T ∗hyδ

∥∥∥
2

(7)
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(1) For each j ∈ N, limα→0 αqρj(α) = 0 and limα→+∞ αqρj(α) = +∞ hold. Con-
sequently, αqρj(α) : [0, +∞) → R is continuous and strictly increasing with
respected to α.

(2) For all j ∈ N, j ≥ 2 and α > 0, ρj(α) ≤ ρj−1(α) holds.

Proof. Let {Ẽλ} be the spectral family generated by T̃h. It follows from (6) that
for any j ∈ N

T̃hx
(j)
α,δ,h − T ∗hyδ = −αj(T̃h + αI)−jT ∗hyδ , (8)

thus,

ρj(α) =
∫ ∞

0

(
α

α + λ

)2j

d
∥∥∥ẼλT ∗hyδ

∥∥∥
2

holds.

(1) It is trivial that limα→0 αqρj(α) = 0. By the Dominated Theorem and (8), it
follows that for all j ∈ N, limα→+∞ ρj(α) = ‖T ∗hyδ‖2 . Thus limα→+∞ αqρj(α) =
+∞ holds. Since the integrand in the representation of ρj(α) is continuous and
strictly increasing in α, so does αqρj(α).

(2) It also follows immediately from (6) that for j ≥ 2,

T̃hx
(j)
α,δ,h − T ∗hyδ = α(T̃h + αI)−1(T̃hx

(j−1)
α,δ,h − T ∗hyδ).

Together with the following inequality
∥∥∥α(T̃h + αI)−1

∥∥∥ ≤ 1,

this implies that ρj(α) ≤ ρj−1(α) holds.

According to Lemma 1, for each p, q, s > 0, there exists a unique positive root of
the equation

αqρj(α) = δp + hs (9)

which we will denote by αj(δ, h) later. Let

γ =
√

δ2 + h2, m = min{p, s}.
We have that δp + hs = O(γm) holds as γ → 0, and that γ tends to zero if and only if
δ, h tend to zero independently on each other.

Lemma 2. For each j ∈ N, limγ→0 αj(δ, h) = 0 while for each j ≥ 2 and δ > 0,

αj(δ, h) ≥ αj−1(δ, h) holds.
Proof. Assume that there is a sequence γn =

√
δ2
n + h2

n → 0 such that αj(δn, hn) →
+∞ as n → +∞. Let αj,n = αj(δn, hn). Without loss of generality, we assume that
αj,n > ‖T̃‖. Since the relation

∥∥∥(T̃hn + αj,nI)−1
∥∥∥ ≤ 1

αj,n −
∥∥∥T̃hn

∥∥∥
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holds, we have
∥∥∥x

(j)
αj,n,δn,hn

∥∥∥ ≤ 1

αj,n −
∥∥∥T̃hn

∥∥∥

[∥∥T ∗hn
yδn

∥∥ + αj,n

∥∥∥x
(j−1)
αj,n,δn,hn

∥∥∥
]
.

This implies that limn→+∞ x
(j)
αj,n,δn,hn

= 0. Hence it follows from (3), (4) and the
continuity of T and Th that

lim
n→∞ ρj(αj,n) = ‖T ∗y‖2 > 0 ,

which contradicts that, by the equation (9) and the assumption at the beginning of
this proof, we have

lim
n→∞ ρj(αj,n) = lim

n→∞(δp
n + hs

n)α−q
j,n = 0.

Thus,
lim
γ→0

supαj(δ, h) < +∞ .

Now assume that there is a sequence γn → 0 with αj,n = αj(δn,hn) → C > 0 as
n →∞. On the one hand, we have

lim
n→∞ ρj(αj,n) = lim

n→∞(δp
n + hs

n)α−q
j,n = 0.

On the other hand, we have

lim
n→∞ ρj(αj,n) =

∥∥∥Cj(T̃ + CI)−jT ∗y
∥∥∥
2

because (T̃ + αj,nI)−1 converges (in the operator norm ) to (T̃ + CI)−1 and (8) holds.
Therefore ∥∥∥Cj(T̃ + CI)−jT ∗y

∥∥∥
2

= 0,

which contradicts (4). Hence we have that

lim
n→∞αj(δn, hn) = 0

holds if there exists γn → 0 (as n →∞) such that the limit limn→∞ αj(δn, hn) exists.
Finally, assume that limγ→0 αj(δ, h) 6= 0. By the definition of limits and the relation

limγ→0 supαj(δ, h) < +∞ above-mentioned, we know that there exist ε0 > 0 and
γn =

√
δ2
n + h2

n → 0 (as n →∞) such that both

αj(δn, hn) > ε0

holds and the limit
lim

n→∞αj(δn, hn)

exists. In view of the discussion of the second step above, we have

lim
n→∞αj(δn, hn) = 0,
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which contradicts
αj(δn, hn) > ε0 > 0.

Therefore limγ→0 αj(δ, h) = 0.
Now we turn to the proof of the remaining statement of Lemma 2. It follows from

Lemma 1 and the definition of αj(δ, h), respectively, that for j ≥ 2,

αq
j−1ρj(αj−1) ≤ αq

j−1ρj−1(αj−1)

holds and that for j ≥ 2,

αq
jρj(αj) = δp + hs = αq

j−1ρj−1(αj−1)

holds. Together with the monotonicity of the function αqρj(α) , this implies that

αj(δ, h) ≥ αj−1(δ, h)

holds for j ≥ 2.
Lemma 3. Let p, q and s be real and positive, αj = αj(δ, h) the root of (9). For

each j ∈ N , if q > max{m, 2}j − 2, then limγ→0 γα−j
j = 0.

Proof. Let Êλ denote the spectral family generated by T̂ , 〈·, ·〉 the inner product
operation in each of the spaces X and Y , it follows immediately that for positive α and
any y ∈ Y ,

∥∥∥(T̃h + αI)−1T ∗hy
∥∥∥
2

=
〈
T ∗h (T̂h + αI)−1y, T ∗h (T̂h + αI)−1y

〉

=
〈
(T̂h)

1
2 (T̂h + αI)−1y, (T̂h)

1
2 (T̂h + αI)−1y

〉

=
∫ +∞

0

λ

(λ + α)2
d

∥∥∥Êλy
∥∥∥
2

≤ 1
α
‖y‖2

and hence ∥∥∥(T̃h + αI)−1T ∗h
∥∥∥ ≤ α−

1
2 . (10)

By the way, we have that
∥∥∥(T̃h + αI)−1Th

∥∥∥ ≤ α−
1
2 ,

∥∥∥(T̃h + αI)−1T̃h

∥∥∥ ≤ 1. (11)

For each given y ∈ D(T+) satisfying (4), y = TT+y holds. Since
√

ρ1(α) =
∥∥∥α(T̃h + αI)−1T ∗hyδ

∥∥∥

holds, it follows from (10) that
√

ρ1(α) ≤ √
αδ + (

√
αh + α)

∥∥T+y
∥∥



Modified Discrepancy Principles with Perturbed Operators and Noisy Data 113

and hence there is a positive constant A independent of α, δ, and h such that
√

ρ1(α) ≤ A(γ
√

α + α), (12)

thus,
(δp + hs)

1
2 α

− q
2

1 ≤ A(γ
√

α1 + α1) ≤ A(γ + α1)

where α1 = α1(δ, h) is the solution of the equation (9). Therefore there exists a positive
constant, which we denote still by A without loss of the generality, such that

γα
−q
m
1 ≤ A(γ + α1)

2
m ,

provided γ is sufficiently small. This implies that

γα
− 1

m
(q−2j+2)

1 ≤ A(γαj−1
1 + αj

1)
2
m . (13)

If 1
m(q− 2j + 2) ≥ j, it follows from (13) and Lemma 2 that limγ→0 γα−j

1 = 0. Now let
(q − 2j + 2) 1

m < j. Note that the assumptions of Lemma 3 implies that

q − 2j + 2 > 0 (14)

and that for m > 2,
1

m− 2
(q − 2j + 2) > j. (15)

For all n ∈ N , let

w0 = 0, wn =
(

q − 2j + 2
m

) n−1∑

i=0

(
2
m

)i

.

Together with (14), we have that with w1 < j, the sequence wn is non-negtive and
strictly increasing. Also, we have by induction that

γα
−wn+1

1 ≤ A
(
γαj−1−wn

1 + αj−wn
1

) 2
m

holds and that if wn < j,

lim
γ→0

γα
−wn+1

1 = 0 (16)

holds. It follows from (15) that there exists a unique n ∈ N such that

wn < j ≤ wn+1

holds. Together with (16), this implies that limγ→0 γα−j
1 = 0. Thus, the assertion of

the Lemma 3 follows from Lemma 2.
Lemma 4. For each i ∈ N and α, h ∈ (0, ‖T‖), there exists a constant Ci , which

is independent of α, h, such that
∥∥∥(T + αI)i − (Th + αI)i

∥∥∥ ≤ Cih
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holds.
Proof. This can be proved by induction.
Remark 1. If we replace T and Th by T̂ (or T̃ ) and T̂h (or T̃h ), respectively, the

assertion of Lemma 4 is valid.
Lemma 5. For each j ∈ N and any α, δ, h ∈ (0, ‖T‖),

∥∥∥x
(j)
α,δ,h − x

(j)
α,δ

∥∥∥ ≤ Aγα−j

holds, where A , a constant, is independent of α, δ, h and x
(j)
α,δ is the result of iter-

ated Tikhonov regularization of order j as described by (5), but with an exactly known
operator T . Moreover, if T+y ∈ R(T̃ j), we have that

∥∥∥x
(j)
α,δ,h − x

(j)
α,δ

∥∥∥ ≤ Aγα−
1
2

holds.
Proof. By the definition of x

(j)
α,δ,h and x

(j)
α,δ , we have

x
(j)
α,δ,h − x

(j)
α,δ =

j∑

i=1

αi−1
[(

T̃h + αI
)−i

T ∗h −
(
T̃ + αI

)−i
T ∗

]
(yδ − y)

+
j∑

i=1

αi−1T ∗h

[(
T̂h + αI

)−i −
(
T̂ + αI

)−i
]
y

+
j∑

i=1

αi−1 (T ∗h − T ∗)
[(

T̂ + αI
)−i

y

]
.

For the sake of convenience, now let

G1,i =
∥∥∥αi−1T ∗h (T̂h + αI)−i

∥∥∥ , G2,i =
∥∥∥(T̂ + αI)i − (T̂h + αI)i

∥∥∥ ,

G3,i =
∥∥∥(T̂ + αI)−iT

∥∥∥
∥∥T+y

∥∥ .

In view of (10) and Remark 1, it follows that for each j ∈ N,

∥∥∥∥∥∥

j∑

i=1

αi−1
[(

T̃h + αI
)−i

T ∗h −
(
T̃ + αI

)−i
T ∗

]
(yδ − y)

∥∥∥∥∥∥
≤ Aγα−

1
2 ,

∥∥∥∥∥∥

j∑

i=1

αi−1T ∗h

[(
T̂h + αI

)−i −
(
T̂ + αI

)−i
]
y

∥∥∥∥∥∥
≤

j∑

i=1

3∏

k=1

Gk,i

≤ Aγα−
1
2

j∑

i=1

∥∥∥(T̂ + αI)−iT
∥∥∥

∥∥T+y
∥∥

≤ Aγα−
1
2

∥∥T+y
∥∥

j∑

i=1

α−i+ 1
2 ≤ Aγα−j
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and ∥∥∥∥∥∥

j∑

i=1

αi−1 (T ∗h − T ∗)
[(

T̂ + αI
)−i

y

]∥∥∥∥∥∥
≤ j

∥∥T+y
∥∥ hα−

1
2 ≤ Aγα−

1
2

hold where A is a constant. Therefore, we have
∥∥∥x

(j)
α,δ,h − x

(j)
α,δ

∥∥∥ ≤ Aγα−j .

If T+y ∈ R(T̃ j) , let T+y = T̃ jw . Noting

∥∥∥(T̂ + αI)−iT̂ iTx
∥∥∥
2

=
+∞∫

0

[
λ

λ + α

]2i

d
∥∥∥ÊλTx

∥∥∥
2 ≤ ‖T‖2 ‖x‖2 ,

we re-estimate
∥∥∥x

(j)
α,δ,h − x

(j)
α,δ

∥∥∥ ( also in view of (10) and Remark 1 ) as follows

∥∥∥x
(j)
α,δ,h − x

(j)
α,δ

∥∥∥ ≤ 2Aγα−
1
2 + α−

1
2 h




j∑

i=1

Ci


 ‖T‖ max

1≤i≤j

∥∥∥T̃ j−iw
∥∥∥ .

This implies the assertion of Lemma 5. Therefore Lemma 5 is proved.
We now establish the regularity of the modified Arcangeli’ s method, which is the

first crucial result in this paper.
Theorem 1. For each δ > 0 , h > 0 and yδ ∈ Y fulfilling (1), let x

(j)
α,δ,h be the

result of the iterated Tikhonov regularization of order j ≥ 1 as described by (5), where
αj = αj(δ, h) is the unique solution of (9) for some p, q, s > 0. Assume that (3) and (4)
hold. If q > max{m, 2}j − 2 , then

lim
γ→0

x
(j)
αj ,δ,h = T+y,

where m = min{p, s} and γ =
√

δ2 + h2.
Proof. For each j ∈ N , let x

(j)
α be the result of the iterated Tikhonov regularization

of order j ≥ 1 as described by (5), but with the operator T and the exactly known data
y , i.e,

x(j)
α =

j∑

i=1

αi−1
(
T̃ + αI

)−i
T ∗y .

Similarly to the calculations that lead to the results of Lemma 5 we can conclude that
∥∥∥x

(j)
α,δ − x(j)

α

∥∥∥ ≤ Bδα−
1
2

with a suitable costant B. Together with (6) and Lemma 5 it follows that
∥∥∥x

(j)
α,δ,h − T+y

∥∥∥ ≤
∥∥∥x

(j)
α,δ,h − x

(j)
α,δ

∥∥∥ +
∥∥∥x

(j)
α,δ − x(j)

α

∥∥∥ +
∥∥∥x(j)

α − T+y
∥∥∥

≤ (A + B)γα−j +
∥∥∥αj(T̃ + αI)−jT+y

∥∥∥ ,
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in particular,

∥∥∥x
(j)
αj ,δ,h − T+y

∥∥∥ ≤ (A + B)γα−j
j +

∥∥∥∥αj
j

(
T̃ + αjI

)−j
T+y

∥∥∥∥

≤ (A + B)γα−j
j +




∫ +∞

0

(
αj

αj + λ

)2j

d
∥∥∥ẼλT+y

∥∥∥
2




where αj = αj(δ, h) is the unique solution of (9) and Ẽλ is the spectral family generated
by T̃ . This implies by the Dominated Convergence Theorem and Lemma 3 that

lim
γ→0

∥∥∥x
(j)
αj ,δ,h − T+y

∥∥∥ = 0.

3. Convergence Rates

Now we turn to the estimation of convergence rate.
Proposition 1. For each δ, h, α > 0 , yδ ∈ Y fulfilling (1), let x

(j)
α,δ,h be the result

of iterated Tikhonov regularization of order j ≥ 1 as described by (5). Assume that (3)
and (4) hold. If T+y ∈ R(T̃ ) , then there exists A , a constant independent of α, δ, h ,

such that ∥∥∥x
(j)
α,δ,h − T+y

∥∥∥ ≤ A

(
γ√
α

+ αj
)

, j ∈ N.

Proof. It follows from the assumption T+y ∈ R(T̃ j) and Lemma 5 that
∥∥∥x

(j)
α,δ,h − T+y

∥∥∥ ≤ Aγα−
1
2 +

∥∥∥αj(T̃ + αI)−jT+y
∥∥∥

≤ Aγα−
1
2 + αj ‖w‖

holds with a suitable constant A and w ∈ X such that T̃ jw = T+y .
Lemma 6. Let δ, h, α, yδ and T+y be as in Proposition 1. Assume that (3) and (4)

hold. For each positive p, q, s , if 2q > (2j− 1)m− 4j , then there exist C1 , C2 > 0 such
that

C1 ≤ γmα−q−2j
j ≤ C2

as γ → 0, where αj = αj(δ, h) is the solution of (9) for some p, q, s > 0.
Proof. Whithout loss of generality, let α < 1 and T+y = T̃ jw. Similarly to the

calculations that lead to (12) , we have that for α, δ, h > 0,

√
ρj(α) ≤

∥∥∥αj(T̃h + αI)−jT ∗h
∥∥∥ δ +

∥∥∥αj(T̃ + αI)−jT̃ j T̃w
∥∥∥

+
∥∥∥αjT ∗h (T̂h + αI)−j

[
(T̂h + αI)j − (T̂ + αI)j

]
(T̂ + αI)−j T̂ j Tw

∥∥∥

+
∥∥∥αj(T ∗h − T ∗)(T̂ + αI)−j T̂ j Tw

∥∥∥
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≤ δα
1
2 + αj

∥∥∥T̃w
∥∥∥ + Aα

1
2 h ‖w‖+ αjh ‖w‖ ‖T‖

holds, where A, a constant, is independent of α, δ, h. Hence there is a constant, which
we denote also by A, such that

γα−
q+1
m ≤ A(γ + αj− 1

2 )
2
m .

In particular, we have

γα
− q+1

m
j ≤ A(γ + α

j− 1
2

j )
2
m (17)

where αj = αj(δ, h) is the solution of (9). By (18) we can claim that

lim
γ→0

γα
−j+ 1

2
j = 0 (18)

holds under the assumptions of Lemma 6. Indeed if

q + 1
m

≥ j − 1
2

,

it follows from (18) and Lemma 2 that limγ→0 γα
−j+ 1

2
j = 0 holds. Now let q+1

m < j− 1
2 .

Note that the assumption of Lemma 6 implies that for m > 2 ,

q + 1
m− 2

> j − 1
2

holds. For all n ∈ N , let

w0 = 0, wn =
q + 1
m

n−1∑

i=0

(
2
m

)i

.

By the same method as used in the proof of Lemma 3 we can prove that if wn < j− 1
2 ,

then
lim
γ→0

γα
−wn+1

1 = 0

and that there exists a unique n ∈ N such that

wn < j − 1
2
≤ wn+1 .

Together with Lemma 2, this implies that

lim
γ→0

γα
−j+ 1

2
j = 0.

By (18) and (19) we now have that

lim
γ→0

sup γm α−q−2j
j < +∞ .

In order to prove Lemma 6, it suffices to show that

lim
γ→0

inf γm α−q−2j
j > 0 . (19)
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Without loss of the generality let T+y = T̃ jw 6= 0, and let

Z1 = αjT ∗h (T̂h + αI)−j
[
(T̂ + αI)j − (T̂h + αI)j

]
(T̂ + αI)−jy

Z2 = αj(T ∗h − T ∗)(T̂ + αI)−jy

Z3 = αjT ∗(T̂ + αI)−jy .

On the one hand, we have that
√

ρj(α) ≥
∣∣∣
∥∥∥αj(T̃h + αI)−jT ∗hy

∥∥∥−
∥∥∥αj(T̃h + αI)−jT ∗h (yδ − y)

∥∥∥
∣∣∣

and ∥∥∥αj(T̃h + αI)−jT ∗hy
∥∥∥ ≥ |‖Z1 + Z2‖ − ‖Z3‖|

hold, and that
‖Z1 + Z2‖ ≤ Aγα

1
2

and ∥∥∥αj(T̃h + αI)−jT ∗h (yδ − y)
∥∥∥ ≤ Aγα

1
2

hold with a suitable constant A. On the other hand, we have by the Dominated
Convergence Theorem that

lim
γ→0

∥∥∥T ∗(T̂ + αI)−jy
∥∥∥ = lim

γ→0

∥∥∥(T̃ + αI)−jT ∗y
∥∥∥

= lim
γ→0

∥∥∥(T̃ + αI)−j T̃ j T̃w
∥∥∥

=
∥∥∥T̃w

∥∥∥ > 0.

Together with (19) we have finally that

lim
γ→0

inf α−j
j

√
ρj(αj) ≥

∥∥∥T̃w
∥∥∥ > 0

holds. This implies by the definition of αj = αj(δ, h) that (20) holds. We now have
proved Lemma 6.

The next theorem is the second crucial result in this paper. It shows that the
convergence rates can be improved if we choose suitable p, q, s in (9) and j ∈ N .

Theorem 2. For each δ, h > 0 and yδ ∈ Y fulfilling (1), let x
(j)
αj ,δ,h be the result

of the iterated Tikhonov regularization of order j ≥ 1 as described by (5), where αj =
αj(δ, h) is the unique solution of (9) for some p, q, s > 0 . Assume that (3) and (4) hold,
and

2q = (2j + 1)m− 4j .

If T+y ∈ R(T̃ j) , then ∥∥∥x
(j)
αj ,δ,h − T+y

∥∥∥ = O

(
γ

2j
2j+1

)

holds as γ → 0 .
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Proof. It follows from Proposition 1 that for j ∈ N ,

∥∥∥x
(j)
αj ,δ,h − T+y

∥∥∥ = O

(
γα

− 1
2

j + αj
j

)

holds as γ → 0. An easy calculation shows that the assumption of Theorem 2 implies
that the assumption of Lemma 6 are fulfilled and hence we have that

αj = αj(δ, h) = O
(
γ

m
q+2j

)

holds as γ → 0 . This implies that

∥∥∥x
(j)
αj ,δ,h − T+y

∥∥∥ = O

(
γ

2j
2j+1

)

holds as γ → 0.
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