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Abstract

We investigate a class of a posterior parameter choice for iterated Tikhonov reg-
ularization with perturbed operators and noisy data by using modified Arcangeli’s
method. The rate of convergence of regularization approximation is achieved.

1. Introduction

Let X,Y be real Hilbert spaces, T : X — Y a bounded linear operator with
nonclosed range R(T),y € D(T%) = R(T)+R(T)*, where T+ is the Moore-Penrose
inverse of T!1. For each 6 > 0, let y5 € Y be such that

ly —ysl <. (1)
As we know, the problem of solving the operator equation of the first kind
Tr =y (2)

is, in generality, ill-posed?. Also we can not ensure that Ttys is a reasonable approx-
imation of Ty since T is a unbounded operator. In practice, one tries to construct
a stable approximate solution to the equation (2) by regularization methods. A well-
known regularization method for approximating Ty is the Tikhonov regularization
method®. For each § > 0 and a > 0, we denote by Zq,s the Tikhonov regularization
approximation for 77y. A crucial problem is the choice of regularization parameter o
in dependence of the noisy level § leading to optimal convergence rates.

The earliest methods of this type are Morozov’s discrepancy principles, where « is
chosen such that

T 205 — ysll* = 6%,

and Arcangeli’s method, where « is chosen as the root ofl?l

52
| T%as —ysl* = — -
e}
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However, it is shown that neither Morozov nor Arcangeli’s method yields the optimal

[45] In order to improve the convergence rates, J.T. King probes the

convergence rates
iterated Tikhonov regularization[ﬁ]. In [7], HW. Engl proposes the Modified Arcan-
geli’s method of choosing the regularization parameter that leads to higher rates of
convergence.

All the methods and results above-mentioned are only applicable if T is exactly
known. However, in practice, not only the right-hand member of equations but opera-
tors is approximately given. Z.Y. Hou and H.N. Li have shown two ways of choosing
regularization parameter for Tikhonov regularization with perturbed operators and
noisy data, and obtained the results concerning the rates of convergencel®9. For more
information in this area, we refer the reader to [10,11].

The aim of this paper is to provide a posteriori parameter choice and higher asymp-
totic convergence rate for iterated Tikhonov regularization with not only noisy data
but perturbed operators by using modified Arcangeli’s method. The result described
in the paper has much more practical value.

2. Modified Arcangeli’s Principles
For real number A > 0, let T}, : X — Y be a bounded linear operator such that
|T = Th|| < h. (3)
To exclude trivialitive, from now on, we assume that
yeR(T), Try#0, Try; #0, (4)

where T™* is the adjoint of T'. For all j € N, let a:ga; 5, be the result of iterated Tikhonov
regularization of order j , i.e,

20, =0, 2% = (TiTy + o)™ (Tiys + axly ) (5)

where N denotes the set of natural number, « is a positive and real number and I is
the identity operator. It follows by induction that for any j € NV,

2%, =Y o Y TET, + o) T ys. (6)
i=1
For simplicity of notation we replace T;T},, Ty Ty, T*T and TT™ by Th,fh,f and T,

respectively, below. It is easy to see that the equality

holds if the function g(¢) is continuous on [0, +00).
Lemma 1. Let

pite) = [Ty, — Tiws| ()
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(1)  For each j € N, lima—gadpj(e) =0 and lima— o0 apj(a) = +00 hold. Con-
sequently, adpj(c) : [0, 400) — R is continuous and strictly increasing with
respected to a.

(2) Forallje N,j>2and a>0,pj(a) < pj—1(a) holds.

Proof. Let {Ey} be the spectral family generated by Tj,. It follows from (6) that
for any j € N

Thad} ), — Trys = —o? (T + o) I T5ys (8)
thus,
00 o N\ . 5
pit) = [T (55) B
holds.

(1) It is trivial that lim,—oa?p;j(e) = 0. By the Dominated Theorem and (8), it
follows that for all j € N, limq— o0 pj(a) = HT,;‘y5||2. Thus lima— 400 apj(a) =
+00 holds. Since the integrand in the representation of p;(«) is continuous and
strictly increasing in «, so does a?p;(a).

(2) It also follows immediately from (6) that for j > 2,

Tyay ) — Tiys = oy + al) N (Thal5)) — Thiys).

[0}

Together with the following inequality
(T + a7 <1,
this implies that p;(a) < pj—1(a) holds.

According to Lemma 1, for each p,q,s > 0, there exists a unique positive root of
the equation

alpj(a) =67 + h° (9)
which we will denote by «;(6, h) later. Let

vy=V02+h?%  m=min{p,s}.

We have that 6P + h® = O(7™) holds as v — 0, and that v tends to zero if and only if
d, h tend to zero independently on each other.

Lemma 2. For each j € N,lim,_a;(0,h) = 0 while for each j > 2 and § > 0,
a;(8,h) > aj_1(6, h) holds.

Proof. Assume that there is a sequence 7, = /02 + h? — 0 such that a;(dy, hn) —
+00 as n — +o0o. Let aj, = a;(dn, hy). Without loss of generality, we assume that
ajn > ||T||. Since the relation

H(Thn +Ozj,nf)_1H < !

Qjn — HThn
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holds, we have

<1 ].
o

This implies that lim, 4 2V = 0. Hence it follows from (3), (4) and the

Qjom, Onshn

|29 5 n 175 s, |+ i 225,

continuity of T" and 7}, that
: . . _ * 112
Tim pj(ajn) = [[T7y[I” >0,

which contradicts that, by the equation (9) and the assumption at the beginning of
this proof, we have
lim pj(ajn) = hm (5p + hy)a;, = 0.

n—oo

Thus,
lin% sup o (0, h) < +00.
y—

Now assume that there is a sequence v, — 0 with o, = a;(dy,hn) — C > 0 as
n — 00. On the one hand, we have

lim pj(ajn) = hm (5” + hy)ag, = 0.

n—oo

On the other hand, we have

n—oo

lim pj(ajn) = ”Cj(T—FCI)_jT*y

‘2
because (T + ;1) ™! converges (in the operator norm ) to (T + CI)~! and (8) holds.
Therefore

|c3(@ + ety =0,

which contradicts (4). Hence we have that

lim a;(0p, hn) =0

n—oo

holds if there exists v, — 0 (as n — o0) such that the limit lim, oo @;j(dy, hy) exists.

Finally, assume that lim,_.g (6, h) # 0. By the definition of limits and the relation
lim,_sup oj(6,h) < 400 above-mentioned, we know that there exist g > 0 and
Yn = /02 + h2 — 0 (as n — o0o) such that both

Ozj((sn, hn) > £

holds and the limit
lim o (0n, hn)

n—oo

exists. In view of the discussion of the second step above, we have

lim o (0p, hn) = 0,

n—oo
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which contradicts
aj(én, hn) > e > 0.

Therefore lim_.g (0, h) = 0.
Now we turn to the proof of the remaining statement of Lemma 2. It follows from
Lemma 1 and the definition of (4, h), respectively, that for j > 2,

af 1pj(aj-1) <af_ipj-1(aj-1)
holds and that for j > 2,
afpj(ay) = 6" + h* = of_ypj-1(aj-1)
holds. Together with the monotonicity of the function afp;(ca) , this implies that
aj(é, h) > aj_l(é, h)

holds for j > 2.

Lemma 3. Let p,q and s be real and positive, a; = (9, h) the root of (9). For
each j € N, if ¢ > max{m,2}j — 2, then lim,_ wa;j =

Proof. Let E) denote the spectral family generated by T, (+,+) the inner product
operation in each of the spaces X and Y, it follows immediately that for positive o and

any y €Y,
| @+ an) T3] = (T3 + aD) o, T3 (T + ad) )
= ((T)* (D +al) 'y, (13)2 (T + al)~'y)
+o0 b N 2
o ey 2y
< Iyl

and hence

H(Th +al) 'y < ol (10)
By the way, we have that

H(Th—l-af)_lThH < Oé_%, H(Th—FaI)_lth <1. (11)

For each given y € D(T™) satisfying (4), y = TT "y holds. Since

a1 = ot o) T

holds, it follows from (10) that

V(@) < Vad + (Vah + o) | Ty|
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and hence there is a positive constant A independent of «, d, and h such that

p1(a) < A(ya+a), (12)

thus,
_4g
(" + h*)% oy * < A(yy/ar +an) < Ay +an)

where a1 = a1 (9, h) is the solution of the equation (9). Therefore there exists a positive
constant, which we denote still by A without loss of the generality, such that

-9 2
vat < Ay +an)m,
provided - is sufficiently small. This implies that

(q—2j+2)

3w

_ 1 . R
yay ™ < A(ya] "+ od)m. (13)

If L(g—2j+2) > j, it follows from (13) and Lemma 2 that lim,_o ”yal_j = 0. Now let
(g—25+ 2)% < j. Note that the assumptions of Lemma 3 implies that

q—27+2>0 (14)
and that for m > 2,

1
— (q—2j+2)> ] 1
5@ —=2j+2) > (15)

For all n € N, let
—2j 42\ R /2
weo e (22
m i—0 m

Together with (14), we have that with w; < j, the sequence wy,, is non-negtive and
strictly increasing. Also, we have by induction that

2
’yafw"“ SA(,Ya{—l—w,L_i_a{—wn)m

holds and that if w, < j,
lim Yoy " =0 (16)
’Y*)

holds. It follows from (15) that there exists a unique n € N such that
Wy, < J < Wpt

holds. Together with (16), this implies that lim,_.o fyal_j = 0. Thus, the assertion of
the Lemma 3 follows from Lemma 2.

Lemma 4. For eachi € N and a,h € (0, ||T||), there exists a constant C; , which
is independent of a, h, such that

|7+ aD) = (1, + al)

< Cih
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holds.
Proof. This can be proved by induction.

Remark 1. If we replace T and T}, by T (or T) and T}, (or T}, ), respectively, the
assertion of Lemma 4 is valid.

Lemma 5. For each j € N and any a,d,h € (0, ||T]),
-] < e

holds, where A , a constant, is independent of «,d,h and a:((szs is the result of iter-
ated Tikhonov regularization of order j as described by (5), but with an exactly known

operator T . Moreover, if TTy € R(T7), we have that

1
2

s = 2] < Ave

holds.
Proof. By the definition of l‘gzsvh and mgg , we have

G _
Tosh ~ Tas =

J
1=

i1 {(Th + aI)_i Ty — (T+ aI)_i T*] (w —y)
1
i

-I-ZaiflT;{ {(Th +0J)_i - (T—Fa[)_z} Yy

i=1
i . —i
+ Zo/fl (Ty —T7) [(T + aI) y} .
i=1
For the sake of convenience, now let

Gri = ||o' T (T + ad)

, Ggﬂ' = H(TJrOtI)i — (Th +Ozf)i

Gy = H(T+ OJ)_iTH 1Tyl -
In view of (10) and Remark 1, it follows that for each j € N,
J

Zai_l [(Th +0J)_i Ty — (T%—aI)_i T*] (5 —v)
i=1

N

< Aya~

I

J

<> ] G,

gywﬂ@ﬁﬂy_@ﬂ@ﬂy 11

< A’ya_% ZJ: H(T + aI)_iTH [T+ y||
i=1

J
< Aya”7 | THy| Y a7 < Aya™d
=1
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and ‘
> et (1 ) (T+a1) "y

=1

<j | T"y|l ha™2 < Aya~2

hold where A is a constant. Therefore, we have

‘ x((lj’z;,h — "ng;H < Aya~l.

If Tty € R(T7) , let Tty = T7w . Noting

oo i
| +an- s = [ [A 2 ar d|[Exta < |7 2]
0

we re-estimate ng)(m — :L‘E%H (‘also in view of (10) and Remark 1 ) as follows

=t 2t (S0 s
i=1 -

This implies the assertion of Lemma 5. Therefore Lemma 5 is proved.
We now establish the regularity of the modified Arcangeli’ s method, which is the
first crucial result in this paper. '
Theorem 1. For each § > 0,h > 0 and ys € Y fulfilling (1), let 9582511 be the
result of the iterated Tikhonov regularization of order j > 1 as described by (E;), where
aj; = a;(9, h) is the unique solution of (9) for some p,q,s > 0. Assume that (3) and (4)
hold. If ¢ > max{m,2}j — 2, then

lim l'g)
’y—>0 VAl

4,h = T+y7

where m = min{p, s} and v = V62 + h?.
Proof. For each j € N | let ng ) be the result of the iterated Tikhonov regularization
of order j > 1 as described by (5), but with the operator 7" and the exactly known data

Yy, 1.e,

j .
a0 = Zai_l (T—{—a[) ZT"‘y :
i=1

Similarly to the calculations that lead to the results of Lemma 5 we can conclude that
- 9] <
with a suitable costant B. Together with (6) and Lemma 5 it follows that
i =27l i~ 40+ 2 - -

il

<(A+ B)yya™ + Hoﬂ(f + aI)‘jTer’
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in particular,

‘ x%{@h - T+yH < (A+ B)’yozj_j I ‘ ag (T n Oz]-I) —j Ty

/+oo ( o >2j
d
0 aj+ A

where oj = (6, h) is the unique solution of (9) and FE, is the spectral family generated
by T'. This implies by the Dominated Convergence Theorem and Lemma 3 that

< (A+ B)ya;7 +

B

g ledlss 4] =0

3. Convergence Rates

Now we turn to the estimation of convergence rate.

Proposition 1. For each d,h,a > 0,ys € Y fulfilling (1), let xgj’gh be the result
of iterated Tikhonov reqularization of order j > 1 as described by (5). Assume that (3)
and (4) hold. If Tty € R(T), then there exists A, a constant independent of a8, h,
such that

. ~ A '
Pl <a(Ze). e

Proof. Tt follows from the assumption TFy € R(T7) and Lemma 5 that
ng%’h — T+yH < Avya™2 + Hoﬂ(T +al) 3T+yH

< Aya~3 4+ o ||

holds with a suitable constant A and w € X such that T9w = Ty .
Lemma 6. Let 8, h,a,ys and TTy be as in Proposition 1. Assume that (3) and (4)

hold. For each positive p,q, s, if 2q¢ > (25 —1)m —4j , then there exist C1,Cy > 0 such
that

C1 <™a; T < O

as v — 0, where a;j = o (0, h) is the solution of (9) for some p,q,s > 0.
Proof. Whithout loss of generality, let & < 1 and Ty = T9w. Similarly to the
calculations that lead to (12), we have that for a,d,h > 0,

Vosta) < [[od (T, + a1) 5

+ [ T (B + @) 7 [(T + al) = (T + al Y| (T + o)™ 79 Tu|

o+ Haj(f + aI)_jTijH

+ o (T = T) (T + D) 79 T
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< da? +of | Tw| + Aash w] + o7k lw] |T]

holds, where A, a constant, is independent of «, d, h. Hence there is a constant, which
we denote also by A, such that

In particular, we have

_atl 1
Yy < Ay +aj #) (17)
where a; = (6, h) is the solution of (9). By (18) we can claim that
gl
lim ya 2o (18)
=0

_ial
it follows from (18) and Lemma 2 that lim_.o o %2 — ) holds. Now let % <J —% .
Note that the assumption of Lemma 6 implies that for m > 2 |

q+1 1

m—2_7773
holds. For all n € N, let

1 .
()

wo = 0, wnziz — | .
m g \m

By the same method as used in the proof of Lemma 3 we can prove that if w, < j— % ,
then

lim ya; " =0
v—0
and that there exists a unique n € N such that
o1
wn<j—§§wn+1.
Together with Lemma 2, this implies that

%ii% vozj_j—% =0.
By (18) and (19) we now have that

%ii}% supy™ a;quj < 40
In order to prove Lemma 6, it suffices to show that

lim infy" a; 7% > 0. (19)
7—0 J
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Without loss of the generality let THy = TVw %0, and let
Zy = T (T + l) 7 [(T + Iy — (T, + al )| (T + al) 7y
Zy = o (T =TT + o)y
Zs = odT*(T + al)7y.

On the one hand, we have that
Vei(e) = [|od (T + aD) 715y

Haj(Th +al) T}y

|~ [|? @+ @) 9T (55— )|

and

> 1121+ 2~ 1 5]

hold, and that
1
121 + Z2|| < Avaz
and
.~ . 1
|0 (T + ad) I T3 (ys — )| < Ara

hold with a suitable constant A. On the other hand, we have by the Dominated
Convergence Theorem that

lim |T*(T + an)Ty| = lim |7+ an)71y

= lim H(T +al)™ 17 TwH
=0
= HTU)H > 0.
Together with (19) we have finally that

%ig%infa;j\/pj(aj) > HTwH >0

holds. This implies by the definition of a; = «;(d, h) that (20) holds. We now have
proved Lemma 6.

The next theorem is the second crucial result in this paper. It shows that the
convergence rates can be improved if we choose suitable p, ¢, s in (9) and j € N.

Theorem 2. For each 0,h > 0 and ys € Y fulfilling (1), let :L‘g]_)ﬁ’h be the result
of the iterated Tikhonov regularization of order j > 1 as described by (5), where o; =
a;(0, h) is the unique solution of (9) for some p,q,s > 0. Assume that (3) and (4) hold,
and

2¢=(2j+1)m—4j.

If Tty € R(T7), then

2j

‘ x(ofj)dh - T+?JH =0 (’W“)

holds as v — 0.
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Proof. 1t follows from Proposition 1 that for j € N,
Dt =0 (e ? 4o
xaj 0.h Y| = RASY] + &

holds as v — 0. An easy calculation shows that the assumption of Theorem 2 implies
that the assumption of Lemma 6 are fulfilled and hence we have that

a; = a;(6,h) = O (y7% )

holds as v — 0. This implies that
. 2j
0 -] =0 ()

holds as v — 0.
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