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Abstract

This paper deals with Raviart-Thomas element (Q2,1 X Q1,2 — Q1 element).
Apart from its global superconvergence property of fourth order, we prove that a
postprocessed extrapolation can globally increased the accuracy by fifth order.

1. Introduction

We consider the mixed methods of the Neumann boundary value problem

p+Vu = 0 in
divp = f inQ, (1)
p-n = 0 on 09,

where Q C R? is a bounded domain with boundaries parallel to axes, n is the outer
unit normal to 9€2. Denote

Hy(div) = {q € H(div), q-n =0 on 09},

then we can write the weak formulation of (1) as follows: Find (u, p) € L?(2) x Hy(div)
such that

(p.q) — (u,divq) + (v,divp) = (f,v), V(v,q) € L*(2) x Ho(div). (2)

Let Vi, x Py, C L2(Q)) x Hp(div) be a pair of finite element spaces with respect
to Tj, a uniform rectangular mesh with the size 2h. Then the mixed finite element
approximation for (2) seeks (up,pr) € Vi x Py, such that

(Ph,q) — (up,divq) + (v,divpy) = (f,v), V(v,q) € V}, x Py, (3)
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Here we choose Vj, x P, as one of RT elements, i.e. Q21 X Q12 — Q1 element /3!,
which satisfies the BB-condition and is described as

Ph = {q S Ho(div), q|e S Qg,l(e) X QLQ(G), Ve € Th}, (4)
Vi ={v e L3Q), v|l. € Qi(e), Veec Ty},

where
Qmqn =span{z'y!, 0<i<m, 0<ji<n};  Qumm = Qm.

Some superconvergence results for RT element have been derived by Nakata, Weiser,
Wheeler, Douglas, Milner, Wang, Ewing and Lazarov([?]-[?], [?]). The asymptotic
expansion was also obtained for the lowest order RT element or Q1,0 X Qo,1 —Qo element
by Wang([?]). The aim of this paper is to obtain the global superconvergence of O(h?)
and the postprocessed extrapolation result of O(h®) for Q2,1 X Q12 — Q1 element by
using integral identity, which was created by Lin et al([?],[?]).

2. Global Superconvergence

For e € Tj,, we assume that (x.,y.) is the center of gravity, s; and s3 of the width
2k are the edges along y-direction, so and s4 of the width 2h are the edges along
z-direction. Then we can define interpolation operators j, and i by

JnPle € Q21(e) x Q12(e),
fsi (p - jhp)(,DIldS =0 VQD € Pl (82) 1= 17 27 3747 (5)
L.(p—Jwp)a=0 Vqe Pi(y) x Pi(x),

/e(u v =0 YueQile). (6)

We immediately find from integration by parts that
(v,div(p — jpp)) =0 Yv e V.

In fact, the projection jj, satisfying term above is Fortin’s operator (see [?]) and in this
paper it is locally defined. This definition can be also seen in [?] and [?]. 4}, is the local
L?-projection operator. Since divq € V},, we can see that

(u —ipu,divq) =0, Vq € Py,
Lemma 1. If p € [W5"(Q)]?, then we have

(P — Jnp,q) — (un — ipu, divg) + (div(pr, — jrp),v)
2 2
= Eh4‘/52(pl)xxxe1 + £k4/§2(p2)yyny2 + hsrh(p7q) V(q,v) eP, xV,
with :

1 /
(Pl < clplsllallar, -+ =1 1< < oo
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where || - ||div,r = || - llor + [|div - [lo7. In the following, we denote || - ||m = || - [|m,2 and

I Mldiv,rr = 1+ er(aiy for v = 2.
Remark 1: From the proof of Lemma 1 in Section 5, it is easy to see that, for

p € W ()P,
(0 = jnp, @) < [Pl lallo- (7)
It follows from the stability result of Brezzi(][?]) that the following Theorem is true.
Theorem 1. If p € [H*(Q)]?, then
IPr — JnPll g divy + lun — inullo < ch*(|p|la.
Let us turn to L® superconvergence. For this purpose we first introduce two pairs
of regularized Green’s functions at z € 2 by
Gi+VA& = 0 inQ,
divG; = 67 inQ, (8)
A = 0 onof
and
Gy+Vi = & inQ,
divG, = 0 in Q, (9)
X = 0 on 09,

where 6} and 6% are the regularized Dirac functions at z € Q satisfying
(v,01) = wv(z) YveV,
(a,0) = a(z) YqePy.

Choosing right point z respectively can yield (see [?])

lolloo < 2|(v,67)] (10)

lalle < 2/(a.83)] (11)
Wang proved in [?] that

IGHlo < cllogh|z, (12)

IG5llo1 < clloghl. (13)

Theorem 2. If p € [W4>®(Q)]?, then
. 1 .
Ipn = Gnpllo,co + [logh| 2 [|up — inullo,ce < ch[logh|[[p4,c0-
Proof. From (8) and (10) we have

lun, = inullope < 2[(un — inu, divGY)|

= 2|(u—ipu,divG}) — (p — jup, GT) — (div(jup — pn), A})|
= 2|(p — jnp, G})|
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which, combining with (7) and (12), yields

. 1
lun = inullo,c0 < ch*[loghl2 [[p]la.

Similarly, we have

IN

2(pr, — jup, G) + (N3, div(py, — jup))|
2/(p — jnp. G5) — (u — ipu, divGh) — (ipu — up, divGh)|
< 2/(p — jup, GH)|

lPr — JnPll0,00

IN

which implies that
Ipn = jnPllo.co < ch*loghl||plla,c0-

Theorem 2 is proved.

Assume that T}, has been obtained from T3, by subdividing each element 7 of Ty,
into four congruent rectangles eq, es, eg, and e4. Then we can define two postprocessing
operators Joj, and Isy, by

Jonplr € P3(7) x P3(7),
fli(P — Jopp)pnds =0 Ve € Pi(l;), i=1,2,---,6,
J.(p—Jonp) =0 i=1,2,34,

IQhU’T c Pg(T),
Jo,(u—Iopu)p =0 Ve € Pi(e;), i=1,2,3,
Jo,(u — Ippu) =0,

where [; (i =1,---,6) are four edges and two central lines of 7. It is easy to see that
Jonjn = Jan, Lonin = Ion,
[f2nallor < cllalloy,  Va€Pr, { [L2nvllor < cllullor, Yo € Vi,
172np = Pllo.r < ch*[[pllar, Hon = ullor < ch?lulla,-

Therefore, under the assumption of Theorem 1, we have the global L? superconvergence

| JanPr — Pllo + || T2nun — ulo
<N Jen(Pr — JuP)llo + |2 — Pllo + [ Z2n(un — inu)llo + || T2nw — ullo
< ch*(|Iplla + llulla),

and under the assumption of Theorem 2, we have the global L superconvergence
1
120 Pn = Pllo,co + [logh| || Tanup — ullo,co < ch*[logh|([pll4,00 + [[ula,00)-

Remark 2: From the proof of Lemma 1 in Section 4, it is not difficult to see that
all superconvergence results above lost one half order for the Dirichilet boundary value
problem.
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3. Postprocessed Extrapolation
Let us first establish the asymptotic error expansion.
Theorem 3. Under the assumption of Lemma 1, we have the error expansion
pr—jnp = h'wi+kiwa+h°pp,,
up, —ipu = hixa + ke + hppa,
with
lonpllo + lpnullo < c

Proof. Considering auxaliary problems

—Vx1 = wj in €,
. 2 .
leWl = E(pl)mmmm m Qy
x1 = 0 on 092,
_VX2 = Wy in Q,
. 2 .
divwy = E(pg)yyyy in Q,
x2 = 0 on 09,

from Lemma 1, we have

(Pn — Jnp— h4w? + k4w§, q) + (up —ipu — h4x? — k4xg, divq)
+ (div(pn — jup — h4w:}f — k‘4wi2‘), v)
= h57‘h(p, q)7

which, in view of stability result in [?], yields

Ipn — jnp — Wi — k' whilo + [Jun — inu — KX = k*xBllo < ch®|plls.
Using regularity property and optimal error estimate we obtain

Ipn — jnp — h*wi — k*wallo + [lun — inu — h*x1 — k*xallo < cb°|plls.

Theorem 3 is proved.
By the extrapolation we obtain

H1—15[(16p% —Pn) — (16j%p - jhp)]”o

1
. _ _ . o < 5
| 5 [(6uy, —w) — (16ixu — ipu)]| | < h®llpls.
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For getting the global high accuracy we define other pair of operators by

JopPlr € Pu(T) x Py(7),
fi, (P = Jyp)ends =0 Vo € P(l}), i=1,2,---,12,
J,p—Jyp)=0 i=1,23,

Lyulr € Py(7)
o, (u— ILu)p=0 VoeQi(eg), i=1,2,3,
Jo,(u=Iyu)e =0 Vo € Pi(ea),

where I} (i =1,---,12) are all edges of ey, ea, e3 and e5. We can check that
Jondn = T, anin = Jo, Lopin = Iy, Ipin = Iy,
[J5ndllor < cllalloy,  Va€Pr, § [[Lpvllor < cllvllop, Vo€ Vi,
17352 = Pllos < ch®[[plls.q- 11550 = ullos < ch®lull5,-

Hence we obtain the postprocessed extrapolation results

060, 1) o], + |ttty ), < ol

Using pointwise extrapolation technique (cf [?]), we have

5_2
H15th 16p5 —pn) =P < cle(r) + [logh)h™ 7 [plls,r, 2 <7 < o0,
,00

and

H 15I2h 16Uh —up) — uHopo < R’ (|IPl5.00 + [[©ll5.00)-

4. Proof of Lemma 1
Since

(Pr — jnP, 4) — (up, — ipu, divq) + (div(ps — jup),v)
= (p—jnp,q) — (u — ipu,divq) + (div(p — jup),v)
= (Pp—Jnp,q),

we only need to prove
- 2.4 5
(pr = Jnp1sq1) = G517 | (P1)ewwaty + R7ra(P, @)-
In the following, we assume

7h,e(Ps Q)| < c|Pll5,rellalldiv,r e)-
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Define the error function E = 3[(z — z.)* — h?], then

1 1 1
T — Te = E(Ez)xmm (l‘ - $e)2 = _(E3)mmmm + ghza

1
420
Hence the Taylor expansion shows that

2
E? = (EYeee — —=h2(E?)pe + —h2.

/e(pl —Jp)an = /(p - jhp){ql(:ce,y) + %(E2)xxx(Q1)x(x67y)

+ [90 (Eg)mcmc + _h } (QI)mm}
= T4II4+]1IL (14)

Using definition (5), integration by parts and the property of E = 0 on s; and s3, we
have

I = 0,
m o= - /( )ezee B2 (q1)
- 90 epl TTTT q1)zx

- % / (P1)aae B [(diva), — (‘D)w]

= 90 / pl xwxw leq / / pl xwxw Q2) dx

+% /(pl)mmmmyE (q2)m

- h The p,q 90 / / pl xxxx Q2) d

IIT = ; (pl):c:c:cE (q1):c(xeay)
1 1 2 2,
= 3 (pl)mmm[420 (E )mcmc - ﬁh (E )mc + 1_5h H(QI)x - Em(Ql)mm]
= ; (pl)xxxxx[4;0( 4) 3h2E2”(Q1)x - E:(:(Ql):cx]

__h4/ / pl mmeIdy+_h /pl zaxxxqdl

_“ 4
45h L(pl)xxxxE(QI)xx

2
= hsrh,e(p7q) - _h4(/ / )(pl)xxeIdy + 4_5h4 /(pl)xxqu1
s3 s1

+ / 9(2) (P1) e (61 (15)

where 5
4
=——hFE
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ie.
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‘/eg(x)(pl)xxxx(qux
‘/eg(x)(pl)xxxx[(diVQ)x - (q2):cy]
‘/eg(x)(pl)xxxx(divq)x + (~/54 - /Sz)g(x)(pl)xxxx(q2)xdx + /eg(x)(pl)x:cx:cy(q2)x-

= b [ n)eenan + ([ = )9O a2}z + 1o (. )

2 4
_Eh (LS _Ll)(pl)mmm(hdy-

The fact the line integrals above terms will disappear during the summation of each

element e € Ty, can completes the proof of Lemma 1.
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