HIGH ACCURACY FOR MIXES FINITE ELEMENT METHODS IN RAVIART-THOMAS ELEMENT*

Q. Lin

(Institute of Systems Science, Chinese Academy of Sciences, Beijing, China)

J.H. Pan

(Department of Basic Sciences, University of Petroleum, Beijing, China)

Abstract

This paper deals with Raviart-Thomas element $(Q_{2,1} \times Q_{1,2} - Q_1)$ element. Apart from its global superconvergence property of fourth order, we prove that a postprocessed extrapolation can globally increased the accuracy by fifth order.

1. Introduction

We consider the mixed methods of the Neumann boundary value problem

$$\mathbf{p} + \nabla u = 0 \quad \text{in } \Omega,$$

$$\operatorname{div} \mathbf{p} = f \quad \text{in } \Omega,$$

$$\mathbf{p} \cdot \mathbf{n} = 0 \quad \text{on } \partial \Omega,$$
(1)

where $\Omega \subset \mathbb{R}^2$ is a bounded domain with boundaries parallel to axes, **n** is the outer unit normal to $\partial\Omega$. Denote

$$\mathbf{H}_0(\mathrm{div}) = {\mathbf{q} \in \mathbf{H}(\mathrm{div}), \ \mathbf{q} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega},$$

then we can write the weak formulation of (1) as follows: Find $(u, \mathbf{p}) \in L^2(\Omega) \times \mathbf{H}_0(\text{div})$ such that

$$(\mathbf{p}, \mathbf{q}) - (u, \operatorname{div}\mathbf{q}) + (v, \operatorname{div}\mathbf{p}) = (f, v), \quad \forall (v, \mathbf{q}) \in L^2(\Omega) \times \mathbf{H}_0(\operatorname{div}).$$
 (2)

Let $V_h \times \mathbf{P}_h \subset L^2(\Omega) \times \mathbf{H}_0(\text{div})$ be a pair of finite element spaces with respect to T_h , a uniform rectangular mesh with the size 2h. Then the mixed finite element approximation for (2) seeks $(u_h, \mathbf{p}_h) \in V_h \times \mathbf{P}_h$ such that

$$(\mathbf{p}_h, \mathbf{q}) - (u_h, \operatorname{div}\mathbf{q}) + (v, \operatorname{div}\mathbf{p}_h) = (f, v), \quad \forall (v, \mathbf{q}) \in V_h \times \mathbf{P}_h.$$
 (3)

^{*} Received November 9, 1994.

176 Q. LIN AND J.H. PAN

Here we choose $V_h \times P_h$ as one of RT elements, i.e. $Q_{2,1} \times Q_{1,2} - Q_1$ element^[3], which satisfies the BB-condition and is described as

$$\begin{cases}
\mathbf{P}_h = {\mathbf{q} \in \mathbf{H}_0(\text{div}), \ \mathbf{q}|_e \in Q_{2,1}(e) \times Q_{1,2}(e), \quad \forall e \in T_h}, \\
V_h = {v \in L^2(\Omega), \ v|_e \in Q_1(e), \quad \forall e \in T_h},
\end{cases}$$
(4)

where

$$Q_{m,n} = \text{span}\{x^i y^j, \ 0 \le i \le m, \ 0 \le j \le n\}; \qquad Q_{m,m} = Q_m.$$

Some superconvergence results for RT element have been derived by Nakata, Weiser, Wheeler, Douglas, Milner, Wang, Ewing and Lazarov([?]-[?], [?]). The asymptotic expansion was also obtained for the lowest order RT element or $Q_{1,0} \times Q_{0,1} - Q_0$ element by Wang([?]). The aim of this paper is to obtain the global superconvergence of $O(h^4)$ and the postprocessed extrapolation result of $O(h^5)$ for $Q_{2,1} \times Q_{1,2} - Q_1$ element by using integral identity, which was created by Lin $et\ al([?],[?])$.

2. Global Superconvergence

For $e \in T_h$, we assume that (x_e, y_e) is the center of gravity, s_1 and s_3 of the width 2k are the edges along y-direction, s_2 and s_4 of the width 2h are the edges along x-direction. Then we can define interpolation operators j_h and i_h by

$$\begin{cases}
j_{h}\mathbf{p}|_{e} \in Q_{2,1}(e) \times Q_{1,2}(e), \\
\int_{s_{i}} (\mathbf{p} - j_{h}\mathbf{p})\varphi \mathbf{n} ds = 0 \quad \forall \varphi \in P_{1}(s_{i}) \quad i = 1, 2, 3, 4, \\
\int_{e} (\mathbf{p} - j_{h}\mathbf{p})\mathbf{q} = 0 \quad \forall \mathbf{q} \in P_{1}(y) \times P_{1}(x),
\end{cases} (5)$$

$$\int_{e} (u - i_h u)v = 0 \quad \forall v \in Q_1(e). \tag{6}$$

We immediately find from integration by parts that

$$(v, \operatorname{div}(\mathbf{p} - j_h \mathbf{p})) = 0 \quad \forall v \in V_h.$$

In fact, the projection j_h satisfying term above is Fortin's operator (see [?]) and in this paper it is locally defined. This definition can be also seen in [?] and [?]. i_h is the local L^2 -projection operator. Since $\operatorname{div} \mathbf{q} \in V_h$, we can see that

$$(u - i_h u, \operatorname{div} \mathbf{q}) = 0, \quad \forall \mathbf{q} \in \mathbf{P}_h.$$

Lemma 1. If $\mathbf{p} \in [W^{5,r}(\Omega)]^2$, then we have

$$(\mathbf{p}_h - j_h \mathbf{p}, \mathbf{q}) - (u_h - i_h u, \operatorname{div}\mathbf{q}) + (\operatorname{div}(\mathbf{p}_h - j_h \mathbf{p}), v)$$

$$= \frac{2}{45} h^4 \int_{\Omega} (p_1)_{xxxx} q_1 + \frac{2}{45} k^4 \int_{\Omega} (p_2)_{yyyy} q_2 + h^5 r_h(\mathbf{p}, \mathbf{q}) \quad \forall (\mathbf{q}, v) \in \mathbf{P}_h \times V_h$$

with

$$|r_h(\mathbf{p}, \mathbf{q})| \le c \|\mathbf{p}\|_{5,r} \|\mathbf{q}\|_{\text{div},r'}, \quad \frac{1}{r} + \frac{1}{r'} = 1, \ 1 \le r, r' \le \infty.$$

where $\|\cdot\|_{\text{div},r'} = \|\cdot\|_{0,r'} + \|\text{div}\cdot\|_{0,r'}$. In the following, we denote $\|\cdot\|_m = \|\cdot\|_{m,2}$ and $\|\cdot\|_{\text{div},r'} = \|\cdot\|_{H(\text{div})}$ for r' = 2.

Remark 1: From the proof of Lemma 1 in Section 5, it is easy to see that, for $\mathbf{p} \in [W^{4,r}(\Omega)]^2$,

$$|(\mathbf{p} - j_h \mathbf{p}, \mathbf{q})| \le ch^4 ||\mathbf{p}||_{4,r} ||\mathbf{q}||_{0,r'}.$$
 (7)

It follows from the stability result of Brezzi([?]) that the following Theorem is true. **Theorem 1.** If $\mathbf{p} \in [H^4(\Omega)]^2$, then

$$\|\mathbf{p}_h - j_h \mathbf{p}\|_{H(div)} + \|u_h - i_h u\|_0 \le ch^4 \|\mathbf{p}\|_4.$$

Let us turn to L^{∞} superconvergence. For this purpose we first introduce two pairs of regularized Green's functions at $z \in \Omega$ by

$$\mathbf{G}_{1} + \nabla \lambda_{1} = 0 \quad \text{in } \Omega,$$

$$\operatorname{div} \mathbf{G}_{1} = \delta_{1}^{h} \quad \text{in } \Omega,$$

$$\lambda_{1} = 0 \quad \text{on } \partial \Omega$$
(8)

and

$$\mathbf{G}_{2} + \nabla \lambda_{2} = \delta_{2}^{h} \text{ in } \Omega,$$

$$\operatorname{div} \mathbf{G}_{2} = 0 \text{ in } \Omega,$$

$$\lambda_{2} = 0 \text{ on } \partial \Omega,$$

$$(9)$$

where δ_1^h and δ_2^h are the regularized Dirac functions at $z \in \Omega$ satisfying

$$\begin{array}{lcl} (v,\delta_1^h) & = & v(z) & \forall v \in V_h, \\ (\mathbf{q},\delta_2^h) & = & \mathbf{q}(z) & \forall \mathbf{q} \in \mathbf{P}_h. \end{array}$$

Choosing right point z respectively can yield (see [?])

$$||v||_{\infty} \leq 2|(v, \delta_1^h)| \tag{10}$$

$$\|\mathbf{q}\|_{\infty} \le 2|(\mathbf{q}, \delta_2^h)|$$
 (11)

Wang proved in [?] that

$$\|\mathbf{G}_{1}^{h}\|_{0} \leq c|\log h|^{\frac{1}{2}},\tag{12}$$

$$\|\mathbf{G}_2^h\|_{0,1} \le c|\log h|. \tag{13}$$

Theorem 2. If $\mathbf{p} \in [W^{4,\infty}(\Omega)]^2$, then

$$\|\mathbf{p}_h - j_h \mathbf{p}\|_{0,\infty} + |\log h|^{\frac{1}{2}} \|u_h - i_h u\|_{0,\infty} \le ch^4 |\log h| \|\mathbf{p}\|_{4,\infty}.$$

Proof. From (8) and (10) we have

$$||u_h - i_h u||_{0,\infty} \leq 2|(u_h - i_h u, \operatorname{div} \mathbf{G}_1^h)|$$

$$= 2|(u - i_h u, \operatorname{div} \mathbf{G}_1^h) - (\mathbf{p} - j_h \mathbf{p}, \mathbf{G}_1^h) - (\operatorname{div}(j_h \mathbf{p} - \mathbf{p}_h), \lambda_1^h)|$$

$$= 2|(\mathbf{p} - j_h \mathbf{p}, \mathbf{G}_1^h)|$$

178 Q. LIN AND J.H. PAN

which, combining with (7) and (12), yields

$$||u_h - i_h u||_{0,\infty} \le ch^4 |\log h|^{\frac{1}{2}} ||\mathbf{p}||_4.$$

Similarly, we have

$$\|\mathbf{p}_{h} - j_{h}\mathbf{p}\|_{0,\infty} \leq 2|(\mathbf{p}_{h} - j_{h}\mathbf{p}, \mathbf{G}_{2}^{h}) + (\lambda_{2}^{h}, \operatorname{div}(\mathbf{p}_{h} - j_{h}\mathbf{p}))|$$

$$\leq 2|(\mathbf{p} - j_{h}\mathbf{p}, \mathbf{G}_{2}^{h}) - (u - i_{h}u, \operatorname{div}\mathbf{G}_{2}^{h}) - (i_{h}u - u_{h}, \operatorname{div}\mathbf{G}_{2}^{h})|$$

$$\leq 2|(\mathbf{p} - j_{h}\mathbf{p}, \mathbf{G}_{2}^{h})|$$

which implies that

$$\|\mathbf{p}_h - j_h \mathbf{p}\|_{0,\infty} \le ch^4 |\log h| \|\mathbf{p}\|_{4,\infty}.$$

Theorem 2 is proved.

Assume that T_h has been obtained from T_{2h} by subdividing each element τ of T_{2h} into four congruent rectangles e_1, e_2, e_3 , and e_4 . Then we can define two postprocessing operators J_{2h} and I_{2h} by

$$\begin{cases}
J_{2h}\mathbf{p}|_{\tau} \in P_{3}(\tau) \times P_{3}(\tau), \\
\int_{l_{i}}(\mathbf{p} - J_{2h}\mathbf{p})\varphi\mathbf{n}ds = 0 \quad \forall \varphi \in P_{1}(l_{i}), \quad i = 1, 2, \cdots, 6, \\
\int_{e_{i}}(\mathbf{p} - J_{2h}\mathbf{p}) = 0 \quad i = 1, 2, 3, 4,
\end{cases}$$

$$\begin{cases}
I_{2h}u|_{\tau} \in P_{3}(\tau), \\
\int_{e_{i}}(u - I_{2h}u)\varphi = 0 \quad \forall \varphi \in P_{1}(e_{i}), \quad i = 1, 2, 3, \\
\int_{e_{i}}(u - I_{2h}u) = 0.
\end{cases}$$

where l_i $(i = 1, \dots, 6)$ are four edges and two central lines of τ . It is easy to see that

$$\begin{cases}
J_{2h}j_h = J_{2h}, \\
\|J_{2h}\mathbf{q}\|_{0,r} \le c\|\mathbf{q}\|_{0,r}, & \forall \mathbf{q} \in \mathbf{P}_h, \\
\|J_{2h}\mathbf{p} - \mathbf{p}\|_{0,r} \le ch^4\|\mathbf{p}\|_{4,r},
\end{cases}
\begin{cases}
I_{2h}i_h = I_{2h}, \\
\|I_{2h}v\|_{0,r} \le c\|u\|_{0,r}, & \forall v \in V_h, \\
\|I_{2h}u - u\|_{0,r} \le ch^4\|u\|_{4,r}.
\end{cases}$$

Therefore, under the assumption of Theorem 1, we have the global L^2 superconvergence

$$||J_{2h}\mathbf{p}_h - \mathbf{p}||_0 + ||I_{2h}u_h - u||_0$$

$$\leq ||J_{2h}(\mathbf{p}_h - j_h\mathbf{p})||_0 + ||J_{2h}\mathbf{p} - \mathbf{p}||_0 + ||I_{2h}(u_h - i_hu)||_0 + ||I_{2h}u - u||_0$$

$$\leq ch^4(||\mathbf{p}||_4 + ||u||_4),$$

and under the assumption of Theorem 2, we have the global L^{∞} superconvergence

$$||J_{2h}\mathbf{p}_h - \mathbf{p}||_{0,\infty} + |\log h|^{\frac{1}{2}} ||I_{2h}u_h - u||_{0,\infty} \le ch^4 |\log h| (||\mathbf{p}||_{4,\infty} + ||u||_{4,\infty}).$$

Remark 2: From the proof of Lemma 1 in Section 4, it is not difficult to see that all superconvergence results above lost one half order for the Dirichilet boundary value problem.

3. Postprocessed Extrapolation

Let us first establish the asymptotic error expansion.

Theorem 3. Under the assumption of Lemma 1, we have the error expansion

$$\mathbf{p}_{h} - j_{h}\mathbf{p} = h^{4}\mathbf{w}_{1} + k^{4}\mathbf{w}_{2} + h^{5}\rho_{h,p},$$

$$u_{h} - i_{h}u = h^{4}\chi_{1} + k^{4}\chi_{2} + h^{5}\rho_{h,u},$$

with

$$\|\rho_{h,p}\|_0 + \|\rho_{h,u}\|_0 \le c.$$

Proof. Considering auxaliary problems

$$-\nabla \chi_1 = \mathbf{w}_1 \quad \text{in } \Omega,$$

$$\operatorname{div} \mathbf{w}_1 = \frac{2}{45} (p_1)_{xxxx} \quad \text{in } \Omega,$$

$$\chi_1 = 0 \quad \text{on } \partial \Omega,$$

$$-\nabla \chi_2 = \mathbf{w}_2 \quad \text{in } \Omega,$$

$$\operatorname{div} \mathbf{w}_2 = \frac{2}{45} (p_2)_{yyyy} \quad \text{in } \Omega,$$

$$\chi_2 = 0 \quad \text{on } \partial \Omega$$

from Lemma 1, we have

$$(\mathbf{p}_{h} - j_{h}\mathbf{p} - h^{4}\mathbf{w}_{1}^{h} + k^{4}\mathbf{w}_{2}^{h}, \mathbf{q}) + (u_{h} - i_{h}u - h^{4}\chi_{1}^{h} - k^{4}\chi_{2}^{h}, \operatorname{div}\mathbf{q}) + (\operatorname{div}(\mathbf{p}_{h} - j_{h}\mathbf{p} - h^{4}\mathbf{w}_{1}^{h} - k^{4}\mathbf{w}_{2}^{h}), v) = h^{5}r_{h}(\mathbf{p}, \mathbf{q}),$$

which, in view of stability result in [?], yields

$$\|\mathbf{p}_h - j_h \mathbf{p} - h^4 \mathbf{w}_1^h - k^4 \mathbf{w}_2^h\|_0 + \|u_h - i_h u - h^4 \chi_1^h - k^4 \chi_2^h\|_0 \le ch^5 \|\mathbf{p}\|_5.$$

Using regularity property and optimal error estimate we obtain

$$\|\mathbf{p}_h - j_h \mathbf{p} - h^4 \mathbf{w}_1 - k^4 \mathbf{w}_2\|_0 + \|u_h - i_h u - h^4 \chi_1 - k^4 \chi_2\|_0 \le ch^5 \|\mathbf{p}\|_5.$$

Theorem 3 is proved.

By the extrapolation we obtain

$$\left\| \frac{1}{15} [(16\mathbf{p}_{\frac{h}{2}} - \mathbf{p}_{h}) - (16j_{\frac{h}{2}}\mathbf{p} - j_{h}\mathbf{p})] \right\|_{0} + \left\| \frac{1}{15} [(16u_{\frac{h}{2}} - u_{h}) - (16i_{\frac{h}{2}}u - i_{h}u)] \right\|_{0} \le ch^{5} \|\mathbf{p}\|_{5}.$$

For getting the global high accuracy we define other pair of operators by

$$\begin{cases} J'_{2h}\mathbf{p}|_{\tau} \in P_4(\tau) \times P_4(\tau), \\ \int_{l_i} (\mathbf{p} - J'_{2h}\mathbf{p})\varphi \mathbf{n} ds = 0 \quad \forall \varphi \in P_1(l'_i), \quad i = 1, 2, \dots, 12, \\ \int_{e_i} (\mathbf{p} - J'_{2h}\mathbf{p}) = 0 \quad i = 1, 2, 3, \end{cases}$$

$$\begin{cases} I'_{2h}u|_{\tau} \in P_4(\tau) \\ \int_{e_i}(u - I'_{2h}u)\varphi = 0 \quad \forall \varphi \in Q_1(e_i), \quad i = 1, 2, 3, \\ \int_{e_4}(u - I'_{2h}u)\varphi = 0 \quad \forall \varphi \in P_1(e_4), \end{cases}$$

where l_i' $(i = 1, \dots, 12)$ are all edges of e_1 , e_2 , e_3 and e_4 . We can check that

$$\left\{ \begin{array}{l} J'_{2h}j_h = J'_{2h}, \quad J'_{2h}j_{\frac{h}{2}} = J'_{2h}, \\ \|J'_{2h}\mathbf{q}\|_{0,r} \leq c\|\mathbf{q}\|_{0,r}, \quad \forall \mathbf{q} \in \mathbf{P}_h, \\ \|J'_{2h}\mathbf{p} - \mathbf{p}\|_{0,r} \leq ch^5\|\mathbf{p}\|_{5,r}, \end{array} \right. \left\{ \begin{array}{l} I'_{2h}i_h = I'_{2h}, \quad I'_{2h}i_{\frac{h}{2}} = I'_{2h}, \\ \|I'_{2h}v\|_{0,r} \leq c\|v\|_{0,r}, \quad \forall v \in V_h, \\ \|I'_{2h}u - u\|_{0,r} \leq ch^5\|u\|_{5,r}. \end{array} \right.$$

Hence we obtain the postprocessed extrapolation results

$$\left\| \frac{1}{15} J'_{2h} (16\mathbf{p}_{\frac{h}{2}} - \mathbf{p}_h) - \mathbf{p} \right\|_0 + \left\| \frac{1}{15} I'_{2h} (16u_{\frac{h}{2}} - u_h) - u \right\|_0 \le ch^5 \|\mathbf{p}\|_5.$$

Using pointwise extrapolation technique (cf [?]), we have

$$\left\| \frac{1}{15} J'_{2h} (16\mathbf{p}_{\frac{h}{2}} - \mathbf{p}_h) - \mathbf{p} \right\|_{0,\infty} \le c(c(r) + |\log h|) h^{5 - \frac{2}{r}} \|\mathbf{p}\|_{5,r}, \quad 2 \le r < \infty,$$

and

$$\left\| \frac{1}{15} I'_{2h} (16u_{\frac{h}{2}} - u_h) - u \right\|_{0,\infty} \le ch^5 (\|\mathbf{p}\|_{5,\infty} + \|u\|_{5,\infty}).$$

4. Proof of Lemma 1

Since

$$(\mathbf{p}_h - j_h \mathbf{p}, \mathbf{q}) - (u_h - i_h u, \operatorname{div}\mathbf{q}) + (\operatorname{div}(\mathbf{p}_h - j_h \mathbf{p}), v)$$

$$= (\mathbf{p} - j_h \mathbf{p}, \mathbf{q}) - (u - i_h u, \operatorname{div}\mathbf{q}) + (\operatorname{div}(\mathbf{p} - j_h \mathbf{p}), v)$$

$$= (\mathbf{p} - j_h \mathbf{p}, \mathbf{q}),$$

we only need to prove

$$(p_1 - j_h p_1, q_1) = \frac{2}{45} h^4 \int_{\Omega} (p_1)_{xxxx} q_1 + h^5 r_h(\mathbf{p}, \mathbf{q}).$$

In the following, we assume

$$|r_{h,e}(\mathbf{p},\mathbf{q})| \le c \|\mathbf{p}\|_{5,r,e} \|\mathbf{q}\|_{\text{div }r',e}$$
.

Define the error function $E = \frac{1}{2}[(x - x_e)^2 - h^2]$, then

$$x - x_e = \frac{1}{6}(E^2)_{xxx}, \quad (x - x_e)^2 = \frac{1}{45}(E^3)_{xxxx} + \frac{1}{5}h^2,$$
$$E^2 = \frac{1}{420}(E^4)_{xxxx} - \frac{2}{21}h^2(E^2)_{xx} + \frac{2}{15}h^4.$$

Hence the Taylor expansion shows that

$$\int_{e} (p_{1} - j_{h}p_{1})q_{1} = \int_{e} (p - j_{h}p) \Big\{ q_{1}(x_{e}, y) + \frac{1}{3} (E^{2})_{xxx} (q_{1})_{x}(x_{e}, y) \\
+ \Big[\frac{1}{90} (E^{3})_{xxxx} + \frac{1}{10} h^{2} \Big] (q_{1})_{xx} \Big\} \\
\equiv I + II + III. \tag{14}$$

Using definition (5), integration by parts and the property of E = 0 on s_1 and s_3 , we have

$$I = 0,$$

$$III = \frac{1}{90} \int_{e} (p_{1})_{xxxx} E^{3}(q_{1})_{xx}$$

$$= \frac{1}{90} \int_{e} (p_{1})_{xxxx} E^{3}[(\operatorname{div}\mathbf{q})_{x} - (q_{2})_{xy}]$$

$$= \frac{1}{90} \int_{e} (p_{1})_{xxxx} E^{3}(\operatorname{div}\mathbf{q})_{x} - \frac{1}{90} (\int_{s_{4}} - \int_{s_{2}}) (p_{1})_{xxxx} E^{3}(q_{2})_{x} dx$$

$$+ \frac{1}{90} \int_{e} (p_{1})_{xxxxy} E^{3}(q_{2})_{x}$$

$$= h^{5} r_{h,e}(\mathbf{p}, \mathbf{q}) - \frac{1}{90} (\int_{s_{4}} - \int_{s_{2}}) (p_{1})_{xxxx} E^{3}(q_{2})_{x} dx,$$

$$II = -\frac{1}{3} \int_{e} (p_{1})_{xxx} E^{2}(q_{1})_{x} (x_{e}, y)$$

$$= -\frac{1}{3} \int_{e} (p_{1})_{xxx} \left[\frac{1}{420} (E^{4})_{xxx} - \frac{2}{21} h^{2} (E^{2})_{xx} + \frac{2}{15} h^{4} \right] [(q_{1})_{x} - E_{x}(q_{1})_{xx}]$$

$$= -\frac{1}{3} \int_{e} (p_{1})_{xxxxx} \left[\frac{1}{420} (E^{4})_{xx} - \frac{2}{21} h^{2} E^{2} \right] [(q_{1})_{x} - E_{x}(q_{1})_{xx}]$$

$$- \frac{2}{45} h^{4} (\int_{s_{3}} - \int_{s_{1}}) (p_{1})_{xxxx} q_{1} dy + \frac{2}{45} h^{4} \int_{e} (p_{1})_{xxxx} q_{1}$$

$$- \frac{2}{45} h^{4} \int_{e} (p_{1})_{xxxx} E(q_{1})_{xx}$$

$$\equiv h^{5} r_{h,e}(\mathbf{p}, \mathbf{q}) - \frac{2}{45} h^{4} (\int_{s_{3}} - \int_{s_{1}}) (p_{1})_{xxx} q_{1} dy + \frac{2}{45} h^{4} \int_{e} (p_{1})_{xxxx} q_{1}$$

$$+ \int_{e} g(x)(p_{1})_{xxxx} (q_{1})_{xx}, \qquad (15)$$

where

$$g(x) = -\frac{2}{45}h^4E,$$

$$\int_{e} g(x)(p_{1})_{xxxx}(q_{1})_{xx}$$

$$= \int_{e} g(x)(p_{1})_{xxxx}[(\operatorname{div}\mathbf{q})_{x} - (q_{2})_{xy}]$$

$$= \int_{e} g(x)(p_{1})_{xxxx}(\operatorname{div}\mathbf{q})_{x} + (\int_{s_{4}} -\int_{s_{2}})g(x)(p_{1})_{xxxx}(q_{2})_{x}dx + \int_{e} g(x)(p_{1})_{xxxxy}(q_{2})_{x}.$$

i.e.

II =
$$\frac{2}{45}h^4 \int_e (p_1)_{xxxx}q_1 + (\int_{s_4} - \int_{s_2})g(x)(p_1)_{xxxx}(q_2)_x dx + h^5 r_{h,e}(\mathbf{p}, \mathbf{q})$$

 $-\frac{2}{45}h^4 (\int_{s_2} - \int_{s_1})(p_1)_{xxx}q_1 dy.$

The fact the line integrals above terms will disappear during the summation of each element $e \in T_h$ can complete the proof of Lemma 1.

References

- [1] F. Brezzi, on the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multiplier, *RAIRO Anal. Numer.*, 2 (1974), 129-151.
- [2] R.E. Ewing, R. Lazarov and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer., 28 (1991), 1015-1029.
- [3] J. Douglas and F. Milner, Interior and superconvergence estimates for second order elliptic equations, *RAIRO*, *Model. Math. Anal. Numer.*, 19 (1985), 297-328.
- [4] J. Douglas and J. Wang, Superconvergence for mixed finite element methods on rectangular domains, *Calcolo*, 26 (1989), 121-134.
- [5] R. Duran, Superconvergence for rectangular mixed finite elements, *Numer. Math.*, 58 (1990), 287-298.
- [6] M. Fortin, An analysis of the convergence of mixed finite element method, RAIRO, Anal. Numer., 11 (1977), 341-354.
- [7] M. Nakata, A. Weiser and M.F. Wheeler, Some superconvergence results for mixed finite element methods for elliptic problems on rectangular domains, The Mathematics of Finite Element and Applications V (J. R. Whiteman, ed), Academic Press, London, 1985, 367-489.
- [8] J. Wang, Superconvergence and extrapolation for mixed finite element methods on rectangular domains, *Math. Comp.*, 56 (1991), 477-503.
- [9] Q. Lin, A rectangle test for finite element analysis, *Proc. of Sys. Sci. & Sys. Eng.*, Great Wall (H.K.) Culture Publish Co., 1991, 213-216.
- [10] Q. Lin, N. Yan and A. Zhou, A rectangle test for interpolated finite elements, *ibid.*, 217-229.
- [11] P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the finite element method, *Lecture Notes Math.*, 606 (1977), 192-315.