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Abstract

In his series of three papers we study singularly perturbed (SP) boundary value

problems for equations of elliptic and parabolic type. For small values of the pertur-

bation parameter parabolic boundary and interior layers appear in these problems.

If classical discretisation methods are used, the solution of the finite difference

scheme and the approximation of the diffusive flux do not converge uniformly with

respect to this parameter. Using the method of special, adapted grids, we can

construct difference schemes that allow approximation of the solution and the nor-

malised diffusive flux uniformly with respect to the small parameter.

We also consider singularly perturbed boundary value problems for convection-

diffusion equations. Also for these problems we construct special finite difference

schemes, the solution of which converges ε-uniformly. We study what problems ap-

pear, when classical schemes are used for the approximation of the spatial deriva-

tives. We compare the results with those obtained by the adapted approach. Re-

sults of numerical experiments are discussed.

In the three papers we first give an introduction on the general problem, and

then we consider respectively (i) Problems for SP parabolic equations, for which

the solution and the normalised diffusive fluxes are required; (ii) Problems for SP

elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;

(iii) Problems for SP parabolic equation with discontinuous boundary conditions.
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Part II

BOUNDARY VALUE PROBLEM FOR ELLIPTIC EQUATION WITH

MIXED BOUNDARY CONDITION

1. Introduction

In this part we sketch a variety of special methods which are used for constructing

ε-uniformly convergent schemes. We shall demonstrate a method which achieves im-

proved accuracy for solving singularly perturbed boundary value problem for elliptic

equations with parabolic boundary layers.

In Section 4 we shall introduce a natural class, B, of finite difference schemes, in

which (by the above mentioned approaches (a) and (b)) we can construct (formally) the

special finite difference schemes with approximate solutions which converge parameter-

uniformly to the solution of our initial boundary value problem.

In this chapter we consider a class of singularly perturbed boundary value prob-

lems which arise when diffusion processes in a moving medium are modeled. For such

boundary value problems which describe transfer with diffusion, we construct a special

scheme that converges parameter-uniformly. We shall show that for the construction

of such schemes from class B, the use of a special condensing grid (or an adaptive

mesh) is necessary. It means that the choice (to construct special parameter-uniformly

convergent schemes for our class of convection diffusion problems) is quite restricted.

By condensing (or adaptive) grids we can construct finite difference schemes which

converge parameter-uniformly. We shall present and discuss the results of numerical

computations using both the classical and the new special finite difference schemes.

2. The Class of Boundary Value Problems

2.1. The physical problem

The diffusion of a substance in a convective flow of an incompressible fluid in a

two-dimension domain gives rise to an equation of the form

−ε∆u(x) + ~v(x) · ~∇u(x) = F (x), x ∈ Ω, (2.1a)

where ~v(x) and F (x) are the velocity and source, respectively; 1/ε is the Peclet number

(Reynolds number), if the substance is heat (diffusive matter or momentum)[?]. When

the substance is heat (diffusive matter or momentum) then u(x) is the temperature

(density or velocity) at the point x. On the boundary of domain considered (that is the

wall of the container holding the fluid) we have a boundary condition that describes

the exchange of the substance with the surrounding environment

−α(u(x) − U(x)) −
∂

∂n
u(x) = 0, x ∈ ∂0Ω. (2.1b)
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Here ∂0Ω is the boundary of the domain (the wall of the container), ∂
∂n is the outward

normal derivative at the boundary, α characterises intensity of exchange of the sub-

stance between the medium and the wall, where the value is given by U(x). When α

tends to infinity the condition (??) becomes the Dirichlet condition

u(x) = U(x), x ∈ ∂0Ω.

The inflow boundary, that is the part of the boundary ∂Ω\∂0Ω where the stream enters

the domain, we denote by ∂+Ω, and the outflow boundary by ∂−Ω

~n(x) · ~v(x) < 0, x ∈ ∂+Ω; ~n(x) · ~v(x) > 0, x ∈ ∂−Ω.

Here ~n(x) is a unit vector in the direction of the external normal. On the boundary

∂0Ω we have condition

~n(x) · ~v(x) = 0, x ∈ ∂0Ω.

On ∂+Ω the value of u(x) is given, and on outflow boundary ∂−Ω we assume the flux

to be known

u(x) = U+(x), x ∈ ∂+Ω, (2.1c)

∂

∂n
u(x) = Ψ(x), x ∈ ∂−Ω. (2.1d)

Problem (??) describes a general diffusion process into moving medium. For sufficiently

large Peclet number (Reynolds number), ε can be very small. As ε tends to zero a

boundary layer appears in the neighbourhood of the boundary ∂0Ω.

2.2. The class of boundary value problems

Now we describe the class of two-dimensional convection-diffusion problems with

mixed boundary conditions, for which we shall study the convergence behaviour. No-

tice that we consider here mixed boundary conditions, where usually only Dirichlet

boundary conditions are studied.

On the rectangular domain D = {x : 0 < xi < di, i = 1, 2} we consider the elliptic

boundary value problem

L(??)u(x) ≡




ε
2

∑

s=1,2

as(x)
∂2

∂x2
s

− b(x)
∂

∂x1
− c(x)




 u(x) = f(x), x ∈ D, (2.2a)

u(x) = ϕ(x), x ∈ Γ+, (2.2b)

l(??)u(x) ≡ −εα
∂

∂n
u(x) − (1 − α)u(x) = ψ(x), x ∈ Γ0, (2.2c)

∂

∂n
u(x) = η(x), x ∈ Γ−. (2.2d)

Here as, b, c, f, ϕ, ψ, and η are sufficiently smooth functions, α ∈ [0, 1], ε ∈ (0, 1],

a0 ≤ a1(x), a2(x) ≤ a0; b(x) ≥ b0; c(x) ≥ 0; x ∈ D; a0, b0 > 0, and

Γ+ = Γ ∩ {x |x1 = 0} ,

Γ− = Γ ∩ {x |x1 = d1} ,

Γ0 = Γ ∩ {x | 0 < x1 < d1} .
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This class of problems includes, for example, the following boundary value problem

for a regular differential equation

L(??)U(y) ≡

{ ∑

s=1,2

As(y)
∂2

∂y2
s

−B(y)
∂

∂y1

}
U(y) = F (y), (2.3a)

y ∈ D̃, with regular boundary conditions

U(y) = Φ(y), y ∈ Γ̃+,

l(??)U(y) ≡ −α
∂

∂n
U(y) − (1 − α)U(y) = Ψ(y), y ∈ Γ̃0,

∂

∂n
U(y) = 0, y ∈ Γ̃−,

(2.3b)

on the rectangular domain D̃ = {y : 0 < yi < d̃i, i = 1, 2}, d̃i = ε−1 di, if the size of

domain D̃ is sufficiently large.

2.3. The construction of ε-uniformly convergent schemes

When ε tends to zero in the neighbourhood of Γ0, boundary layers appear which are

described by parabolic equations. Hence these layers are known as parabolic boundary

layers.

Although classical difference approximations (see, for example, [?, ?] ] ) converge

for (??) to the solution of the boundary value problem for each fixed value of ε (see

Theorem ??), the accuracy of the numerical solution depends on the value of ε and

decreases, sometimes to complete loss of accuracy, when ε is less or comparable with

the step-size of the uniform grid. This means that classical finite difference schemes do

not converge uniformly with respect to the parameter ε, (see theorem ??). Therefore,

for the boundary value problem (??) it is of interest to construct special schemes the

solution of which does converge ε-uniformly.

For the case of the Dirichlet problem (??), an ε-uniformly convergent finite differ-

ence scheme is found in [?, ?].

3. Classical Difference Scheme

To solve the problem (??) we first use a classical finite difference method. On the

set D we introduce the rectangular grid

Dh = ω1 × ω2, (3.4)

where ωs is a , in general non-uniform, grid on the interval [0, ds] and Ns is the number

of nodes of the grid ωs, s = 1, 2. Define hi
s = xi+1

s − xi
s, hs = maxi h

i
s, h ≤ M N−1,

where h = maxs hs, N = minsNs, s = 1, 2; Dh = D ∩Dh, Γh = Γ ∩Dh. For problem

(??) we use the difference scheme

Λ(??)z(x) = f(x), x ∈ Dh, (3.5a)

z(x) = ϕ(x), x ∈ Γ+
h , (3.5b)
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λ(??)z(x) = ψ(x), x ∈ Γ0
h, (3.5c)

δx1z(x) = η(x), x ∈ Γ−

h , (3.5d)

where

Λ(??)z(x) ≡ ε2
∑

s=1,2

as(x)δxsx̂s
z(x) − b(x)δx1z(x) − c(x)z(x),

λ(??)z(x) ≡





εαδx2z(x) − (1 − α)z(x), x2 = 0,

−εαδx2z(x) − (1 − α)z(x), x2 = d2,

δxsx̂s
z(x) is the second divided difference on a non-uniform grid, and δxs

z(x) and δxs
z(x)

are the first forward and backward divided differences.

The difference scheme (??), (??) is monotone (that is the maximum principle

holds)[?]. By means of the maximum principle, and using the estimates of the

derivatives[?], we find that the solution of the scheme (??)-(??) converges (for a fixed

value of the parameter ε) as

|u(x) − z(x)| ≤Mε−4N−1 , x ∈ Dh . (3.6)

Theorem 3.1 Let u ∈ C 4(D). Then, for a fixed value of the parameter ε, the

solution of the scheme (??)–(??) converges to the solution of the boundary value problem

(??) with an error bound given by (??).

Clearly (??) does not imply ε-uniform convergence of the difference scheme. In

fact it can be shown that it is impossible to obtain ε-uniform convergence for the

difference scheme (??)-(??) on a fixed ε-independent mesh. The proof is found in [?].

We summarise this result in the following theorem.

Theorem 3.2 (see [?]) On an ε-independent grid of type (??), the solution of the

classical finite difference scheme (??), (??) does not converge ε-uniformly to the solu-

tion of the boundary value problem (??).

We want to make the following interesting observation. We consider problem (??).

If we take in l(??) the parameter ε = 1 (leaving ε unchanged in (??) and Λ(??), but

adapting it in λ(??) ), then no singular part will appear as a first term in the expansion

w.r.t. ε. Hence, the classical scheme will be ε-uniform convergent in this case.

4. The Fitted Difference Scheme

For parabolic problems with parabolic layers, it was shown in [?] that there does

not exist a difference scheme only based on fitting of the coefficients, for which the

solution converges ε-uniformly to the solution. Here we show a similar result for the

elliptic boundary value problem (??). Let us consider the problem

L(??)u(x) ≡ ε2∆u(x) −
∂

∂x1
u(x) = 0, x ∈ D, (4.7a)
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u(x) = 0, x ∈ Γ+, (4.7b)

l(??)u(x) = ψ(x), x ∈ Γ0, (4.7c)

∂

∂n
u(x) = 0, x ∈ Γ−, (4.7d)

where

ψ(x) =

{
ψ0(x1), x ∈ Γ0, x2 = 0,

0, x ∈ Γ0, x2 6= 0,

and the function ψ0(x1), x1 ∈ [ 0, d1 ] is sufficiently smooth. The solution of problem

(??) is the singular solution.

Let us introduce a class, called class A, of finite difference schemes for problem (??),

for the construction of which we use uniform meshes:

D
u
h = {Dh(??),where ωs = ω u

s are uniform grids, s = 1, 2}. (4.8)

and also (for the approximation of equation (??)) a standard five-point, fitted finite

difference operator

Λ(??)z(x) ≡

{ ∑

s=1,2

(Asδxsxs
+Bsδxs

− C

}
z(x) = E, x ∈ Dh. (4.9)

Here the coefficients As, Bs, C, E are functionals of the coefficients of equation (??)

and also depend on x, h1, h2, and ε. We suppose that for h2 ε
−1 → 0 and h1 → 0

these coefficients As, Bs, C, E approximate the data of equation (??), in the uniform

norm, in the neighbourhood of at least one point the boundary layer region.

Theorem 4.1 In the class A of finite difference schemes there does not exist a

difference scheme of which the solution converges ε-uniformly to the solution of the

boundary value problem (??).

The proof of this theorem is rather complex. An outline of the principle steps is

found in [?, ?].

Remark 1. A statement similar to Theorem ?? is also true in the case when the

difference schemes are constructed on a more general stencil with a finite number of

nodes.

The results of Theorem ?? and Remark 1 can be explained as follows. All solutions

of problem (??) (defined by different functions ψ(x)) are singular solutions. Those

solutions can not be represented as linear combinations of a finite number of fixed

functions of boundary layer type (boundary layer functions).

Let us introduce class B of finite difference schemes for problem (??), for the con-

struction of which we use rectangular grids Dh (??), which are generally non-uniform

and a five-point finite difference operator (in general a fitted operator) of the standard

form. The coefficients of the difference operator are, as before, functionals of the co-

efficients of the equation (??) and also depend on x, ε and on the distance between
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the nodes of the stencil used. Again, we suppose that for h→ 0 the coefficients of the

difference operator approximate (in the uniform norm) the coefficients of equation (??)

on the set Dh (??).

We remark that class B is a natural class for constructing finite difference schemes

for problem (??) as it includes both fitted methods and methods with special condensing

grids. This is in contrast to class A, which contains only schemes on uniform meshes.

Consequences of Theorem ?? include results such as:

Corollary 4.2

In the case of boundary value problems of type (??), class B of finite difference schemes

does not contain any difference scheme which, on grids with arbitrary distribution of

nodes, can achieve ε-uniform convergence of the solution to solution of boundary value

problem (??) by the use of a fitted method.

Corollary 4.3

In the case of boundary value problems of type (??), the use of special condensing

grids (or adaptive meshes) is necessary for the construction of ε -uniformly class B

finite difference schemes.

5. Difference Scheme of Method of Special Condensing Mesh

We now construct an ε-uniformly convergent scheme for the boundary value problem

(??). We use a special condensing mesh (in the neighbourhood of the boundary layers),

where the distribution of the nodes is defined by a-priori estimates of the solution and

its derivatives. This approach is similar to that in [?, ?, ?], where the Dirichlet problem

was studied.

Consider the special grid

D
∗

h = ω1 × ω ∗

2 , (5.10)

where ω ∗

2 = ω ∗

2 (σ) is a special piecewise uniform mesh, ω1 is a uniform mesh, σ is a

parameter which depends on ε and N2. The mesh ω ∗

2 (σ) is constructed as follows. The

interval [ 0, d2 ] is divided into three parts [ 0, σ ], [σ, d2 −σ ], [ d2 −σ, d2 ], 0 < σ ≤ d2/4.

Each subinterval [ 0, σ ] and [ d2 − σ, d2 ] is divided into N2/4 equal cells and the subin-

terval [σ, d2 − σ ] into N2/2 equal cells. Suppose σ = σ(ε,N2) = min[ d2/4, mε lnN2 ]

where m is arbitrary number.

The difference scheme (??), (??) belongs to class B. The scheme is constructed using

an a priori adapted mesh. Distribution of the nodes on grid D
∗

h ensures ε -uniform

approximation of the boundary value problem. This is formalised in the following

theorem (see also [?]).
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Theorem 5.1 The solution of difference scheme (??), (??) converges ε-uniformly

to the solution of boundary value problem (??). The following bound holds for the error

|u(x) − z(x)| ≤M N−1/3 , x ∈ D
∗

h . (5.11)

The proof of this theorem will appear in a future paper.

6. Numerical Results

Theoretically (see Theorem ??) it has been shown that the classical difference

scheme (??) on the uniform grid (??) does not converge ε-uniformly in the l∞-norm

to the solution of the boundary value problem (??). But it could be the case that

the error maxDh
|z(x) − u(x)| is relatively small for the classical scheme, which would

reduce the need for a special scheme.

On the other hand, Theorem ?? shows that the special scheme (??),(??) converges

ε-uniformly, but no indication is given about the value of the order constant M in (??)

and the order of convergence is rather small. It might be that the error is relatively

large for any reasonable values of N1, N2. This would reduce the practical value of the

special scheme. The following numerical experiments address these issues.

6.1. The model problem

To see the effect of the special scheme in practice, for the approximation of the model

problem we study the singularly perturbed elliptic equation with a mixed boundary

condition

L(??)u(x) ≡ ε2∆u(x) −
∂

∂x1
u(x) = −1, x∈D , (6.12)

l(??)u(x) = ψ(x), x∈Γ0 ,

u(x) = 0, x∈Γ+ ,
∂

∂x2
u(x) = 0 , x∈Γ− ,

where

l(??)u(x) ≡

{
α ε (∂ / ∂x2)u(x) − (1 − α)u(x), x2 = 0 ,

−αε (∂ / ∂x2)u(x) − (1 − α)u(x), x2 = 1 .

We compare the numerical results for the classical scheme (??), (??) and the special

scheme (??), (??). Here D = {x : 0 < x1, x2 < 1},

ψ(x) =

{
x1, x∈Γ0, x2 = 0 ,

0, x∈Γ0, x2 = 1 .

For the solution of problem (??), we have the representation

u(x) = U(x) +W (x), x∈D ,
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where U(x) = x1, x∈D, is the outer solution, and W (x) represents the parabolic

boundary layer in the neighbourhood of the edges at x2 = 0 and x2 = 1. We have the

following bounds on the solution

−1 ≤ u(x) ≤ 1, x∈D .

Due to Theorem ?? the solution of the discrete problem with the adapted mesh

converges ε-uniformly to the solution of our model problem (??). The function uh(x),

which is the solution of the special scheme (??),(??) is shown in Figure 1.

Figure 1. Solution computed with the adapted mesh, ε = 0.01, α = 0.5, N = 32 and m = 1.0.

6.2. The behaviour of the numerical solution of the classical scheme

To see the difference between the use of the uniform and the adapted grid, for the

approximation of (??) we first use the classical scheme (??), (??). We solve the problem

for different values of the mesh width h1 = h2 = N−1 and for different values of the

parameters ε and α. The results for a set of numerical experiments is given in Table 1.

From Table 1 we can see that the solution of scheme (??)-(??) does not converge

ε-uniformly. The errors, for a fixed value of N , depend on the parameters ε and α. For

ε ≥ 0.1 and α = 0.0, 0.1, 0.5, 1.0 the error behaviour is regular: when N increases, the

error decreases. For ε = 10−3 and α = 0.0, 0.1, 0.5 and for ε = 10−2 and α = 0.0, for

some values of N the error increases with increasing N . For α = 0.5, 1.0 and a fixed N

the error increases with decreasing ε. In particular, for ε = 10−3 and α = 0.5, 1.0 the

errors for N ≤ 128 are of the same order or larger than (in ℓ∞-norm) the solution of

the BVP. Thus, the numerical results illustrate that the lack of ε-uniform convergence

leads to large errors indeed.

6.3. The behaviour of the numerical solution of the special scheme

In Table 2 we show the behaviour of (??), (??), with m = m(??) = 1, ap-

plied to the model problem (??) From Table 2 we can see that the solution of the

scheme (??)-(??) does converge ε-uniformly indeed. The errors for a fixed value of
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Table 1. Table of errors E(N, ε, α) for the classical scheme

N 4 8 16 32 64 128

ε α

1 0.00 0.105 0.633(-1) 0.329(-1) 0.158(-1) 0.696(-2) 0.241(-2)

10−1 0.305 0.144 0.655(-1) 0.291(-1) 0.122(-1) 0.403(-2)

10−2 0.247 0.127 0.822(-1) 0.107 0.882(-1) 0.246(-1)

10−3 0.246 0.121 0.588(-1) 0.283(-1) 0.157(-1) 0.200(-1)

1 0.10 0.691(-1) 0.381(-1) 0.170(-1) 0.744(-2) 0.314(-2) 0.104(- 2)

10−1 0.312 0.149 0.701(-1) 0.310(-1) 0.129(-1) 0.423(-2)

10−2 0.247 0.194 0.185 0.156 0.109 0.583(-1)

10−3 0.246 0.209 0.216 0.216 0.211 0.197

1 0.5 0.852(-1) 0.401(-1) 0.183(-1) 0.842(-2) 0.359(-2) 0.119(-2 )

10−1 0.706 0.473 0.254 0.121 0.526(-1) 0.176(-1)

10−2 1.20 1.26 1.15 0.893 0.557 0.279

10−3 1.28 1.43 1.49 1.48 1.41 1.27

1 1.0 0.123 0.610(-1) 0.288(-1) 0.132(-1) 0.562(-2) 0.187(-2)

10−1 1.52 0.752 0.344 0.154 0.643(-1) 0.211(-1)

10−2 18.2 10.3 5.19 2.40 1.02 0.408

10−3 187. 109. 57.9 29.5 14.6 7.01

In this table the error E(N, ε, α) is defined by

E(N, ε, α) = max
x∈Dh

|e(x;N, ε, α)| , (6.13a)

e(x;N, ε, α) = z(x) − u⋆(x) , (6.13b)

where u⋆(x) is the piecewise interpolation of z⋆256
m

(x), m = m(??) = 1 (see

Table 2), and z(x) ≡ zN (x) is the solution of (??),(??) with h1 = h2 = N−1.

Notice that u⋆(x) is an accurate approximation of u(x).

ε = 1.0, 10−1, 10−2, 10−3 and α = 0.0, 0.1, 0.5, 1.0 have all a regular behaviour and de-

crease for increasing N . For a fixed value of α and N the error stabilises for decreasing

ε: the errors for ε = 10−2 and ε = 10−3 are practically the same. For ε ≤ 10−2 and

a fixed value of N we find the largest error for α = 1.0. In particular, for ε ≤ 10−2,

α = 1.0 and N = 128 the error is less than 6%. Also here, the numerical results

illustrate the practical value of ε-convergent methods.

7. Conclusion

For the elliptic boundary value problem (??), where a small parameter multiplies

the highest derivative, we have analysed different approaches for the construction of

discrete methods. We present methods for which the accuracy of the discrete solution

does not depend on the value of the small parameter, but only on the number of points
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Table 2. Table of errors E(N, ε, α) for the special scheme

N 4 8 16 32 64 128

ε α

1 0.0 0.105 0.633(-1) 0.329(-1) 0.158(-1) 0.696(-2) 0.241(-2)

10−1 0.262 0.144 0.655(-1) 0.291(-1) 0.122(-1) 0.403(-2)

10−2 0.246 0.147 0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2)

10−3 0.246 0.147 0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2)

1 0.1 0.691(-1) 0.381(-1) 0.170(-1) 0.744(-2) 0.314(-2) 0.104(-2)

10−1 0.276 0.149 0.701(-1) 0.310(-1) 0.129(-1) 0.423(-2)

10−2 0.246 0.170 0.887(-1) 0.461(-1) 0.240(-1) 0.924(-2)

10−3 0.246 0.169 0.887(-1) 0.461(-1) 0.241(-1) 0.925(-2)

1 0.5 0.852(-1) 0.401(-1) 0.183(-1) 0.842(-2) 0.359(-2) 0.119(-2)

10−1 0.611 0.473 0.254 0.121 0.526(-1) 0.176(-1)

10−2 0.539 0.511 0.361 0.217 0.111 0.420(-1)

10−3 0.535 0.511 0.361 0.217 0.111 0.420(-1)

1 1.0 0.123 0.610(-1) 0.288(-1) 0.132(-1) 0.562(-2) 0.187(-2)

10−1 1.14 0.752 0.344 0.154 0.643(-1) 0.211(-1)

10−2 0.977 0.889 0.554 0.301 0.144 0.521(-1)

10−3 0.963 0.888 0.554 0.301 0.144 0.521(-1)

In this table the function E(N, ε, α) is defined by (??), but now z(x) = z⋆N

m
(x)

in (??) is the solution of (??),(??) with m = m(??) = 1 and N1 = N2 = N

in the discretisation.

We show that in a natural class of finite difference schemes, for the problem consid-

ered, no ε-uniform methods exist on a uniform grid (Theorem ??). As a consequence,

for the construction of ε-uniform methods the use of an adapted non-uniform mesh is

necessary. With a special, adapted, non-uniform mesh and a simple classical difference

scheme, we are able to construct an ε-uniform approximation

To illustrate the practical importance of our study, for a model problem we show by

a numerical example that, on a uniform grid, the classical difference scheme is not ε-

uniformly convergent. In our example, the error (with a Neumann boundary condition)

is not less than 700% of the solution, for N=128 and ε = 10−3. The same example shows

that we might obtain an ε-uniformly convergent solution if we use the adapted mesh.

Now the error is not larger than 6% of the solution, for any value of the parameter

ε. Thus, the numerical example illustrates that the theoretical considerations have

practical implications indeed.
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