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Abstract

In this paper, we study the point vortex method for 2-D Euler equation of
incompressible flow on the half plane, and the explicit Euler’s scheme is considered
with the reflection method handling the boundary condition. Optimal error bounds
for this fully discrete scheme are obtained.

1. Introduction

The vortex methods are efficient numerical method of simulating incompressible
flow at high Reynold’s number. The convergence of the vortex methods for the initial
value problems of Euler equation was first obtained by Hald[4], then the results were
improved by several authors[1,2,3,5]. But in fact, many practical problems are considered
in a bounded domain or an exterior domain, and the numerical boundary condition has
an important effect on numerical result. The particle trajectories of exact solution will
not go out from the domain, but it is not the case in pratical computation. There are
three kinds of method handling the boundary condition:

(a) reflection method, in which we regard the boundary as a wall, the particles will
bounce back when they hit against.

(b) absorb method, in which the particles will be thrown away while they cross the
boundary of the domain.

(c)extrapolation method, in which we extend the domain Ω to Ω′ ⊃ Ω; when the
particles go out from the domain Ω′, they will be thrown away. But the velocity of
the particles which belong to the domain Ω′\Ω will expressed through extrapolation
method.

Ying Lung-an[6] proved the convergence problem of the vortex methods with extrap-
olation boundary treatment (c) for two dimensional bounded domains. Ying Lung-
an and the author of this paper[7] got the error estimates for fully discretized two-
dimensional vortex methods for initial boundary value problems of Euler equations.

To the author’s knowlege, there is no convergence analysis about the other two
methods. we think that the method (b) may not converge, but the method (a) may do.

For a long time, it has been widely thought the point vortex method would not con-
verge in any finite Sobolev space. Recently, however Goodman, Hou and Lowengrub[9]

have been able to prove the stability and convergence of the point vortex method for 2-D
incompressible Euler equations with smooth solutions, Hou and Lowengrub[10] proved
that it was also right for 3-D Euler equations.
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The convergence of the point vortex methods for initial boundary value problems of
Euler equations is not available to the author’s knowlege, In this paper, we will prove
the convergence of the point vortex method for Euler equations on half plane handling
the boundary condition with reflection method, and in consequence we can get the
convergence of the vortex blob methods with the blob parameter ε which is equivalent
to the grid parameter h.

Remark. The convergence of point vortex method for Euler equations on half
plane cannot directly get from Goodman, Hou and Lowengrub’s paper[9]. Although
the problem on half plane may be considered as an initial value problem, the vorticity
is not continuous, in other word, there is a vortex sheet in the solution of initial value
problem, and it is important to suppose the vorticity is smooth in the convergence of
point vortex method[9].

The rest of the paper is organized as follows. In section 2, we describle the point
vortex method and state our major consistency, stability and convergence results for the
semi-discrete point vortex method on half plane. Moreover, we prove the convergence
theorem under the assumption that the consistency and stability Lemmas are valid.
The consistency and stability Lemmas are proved in section 3. Finally, we consider a
time discrete point vortex method in section 4.

2. Convergence of the Semi-Discrete

The 2-D incompressible inviscid Euler equations on half plane are given by

∂u

∂t
+ (u · ∇)u +

1
ρ
∇π = 0, in R2

+, (2.1)

∇ · u = 0, (2.2)
u2 |x2=0= 0, (2.3)
u |t=0= u0(x), (2.4)
lim

x→∞u(x, t) = u∞,

where u = (u1, u2) stands for velocity, π stands for pressure, the density ρ is a positive
constant, R2

+ = {x ∈ R2, x2 > 0}, we suppose u∞ = 0. x = (x1, x2) are points in R2,
the initial data u0 satisfies

∇ · u0 = 0, u0 · n |∂Ω= 0,

and u0 are sufficiently smooth, then the solutions u and π are also sufficiently smooth
on the domain R2

+ × [0, T ], where T is an arbitrary positive constant.
Let ω = −∇ ∧ u, ω0 = −∇ ∧ u0 and ψ be the stream function corresponding to u,

then (2.1)-(2.4) is equivalent to

∂ω

∂t
+ u · ∇ω = 0, in R2

+, (2.5)

−∆ψ = ω, u = ∇∧ ψ, (2.6)
ψ |x2=0= 0, (2.7)
ω |t=0= ω0, (2.8)
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where ∇∧ = (− ∂
∂x2

, ∂
∂x1

), then we have

u(x, t) =
∫

R2
+

(K(x− x′)−K(x− x′))ω(x′, t)dx′,

where x denotes the symmetric point of x about the line x2 = 0. and

K(x) =
1
2π

(−x2, x1)
|x|2 .

If we follow the partical trajectories which are at α when t = 0, then the position at
time t > 0 is given by the solution to

dX(α, t)
dt

= u(X(α, t), t), (2.9)

X(α, 0) = α,

with α fixed. we can then write (2.1) as

d

dt
ω(X(α, t), t) = 0

then we have
ω(X(α, t), t) = ω(α, 0). (2.10)

We assume that ω0 is smooth and has compact support in R2
+, a smooth solution

is known to exist[11].
Define ∧h to be the portion of the grid containing nonzero vorticity

∧h = {αi = h · (i +
1
2
), ω0(αi) 6= 0, i = (i1, i2) ∈ Z2}.

Then ω(X(α, t), t) = 0 for α /∈ ∧h from (2.10), we consider the following version of the
2-D point vortex method

dx̃i(t)
dt

=
( ∑

j 6=i,jh∈∧h

K(x̃i(t)− x̃j(t))−
∑

jh∈∧h

K(x̃i(t)− x̃j(t))
)
ωjh

2

= ũh(x̃i(t), t), (2.11)
x̃i(0) = αi.

where ωj = ω0(αj) = ω(xj(t), t).
Define a discrete Lp norm lp to be

‖f‖lp =
( ∑

jh∈∧h

|fj |ph2
) 1

p .

It is easy to see that
‖f‖l∞ = max

i
|fi| ≤ h

− 2
p ‖f‖lp . (2.12)

The main result of this section is the following theorem.
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Theorem 2.1. Suppose that the initial vorticity ω0(x) is smooth and has compact
support, 1 < p < ∞, then we have

‖x̃(t)− x(t)‖lp ≤ C(T )h2|logh|, (2.13)
‖ũh(x̃(t), t)− u(x(t), t)‖lp ≤ C(T )h2|logh|. (2.14)

We need the following Lemmas to prove Theroem 2.1.
Consistency Lemma. Under the assumptions of Theorem 2.1, we have

∣∣∣
∫

(K(xi(t)−X(α, t))−K(xi(t)−X(α, t)))ω(X(α, t), t)dα

− (
∑

j 6=i,jh∈∧h

K(xi(t)− xj(t))−
∑

jh∈∧h

K(xi(t)− xj(t)))ωjh
2
∣∣∣

≤ C(T )h2|logh|. (2.15)

Stability Lemma. Suppose that

‖x̃(t)− x(t)‖l∞ ≤ h1+s,

for 0 ≤ t ≤ T ∗ for some 0 < s < 1, then for 1 < p < ∞, we have
( ∑

ih∈∧h

∣∣∣
( ∑

j 6=i,jh∈∧h

K(xi(t)− xj(t))−
∑

jh∈∧h

K(xi(t)− xj(t))
)
ωjh

2

−
( ∑

j 6=i,jh∈∧h

K(x̃i(t)− x̃j(t))−
∑

jh∈∧h

K(x̃i(t)− x̃j(t))
)
ωjh

2
∣∣∣
p
h2

) 1
p

≤ C(T, p)‖x̃(t)− x(t)‖lp , (2.16)

where C(T, p) is indepent of T ∗.
Proof of Theorem 2.1: We assume the validity of the consistency and stability

Lemmas, the proofs will be given in section 3. Define T ∗ by

T ∗ = sup{t : 0 ≤ t ≤ T, ‖x̃(t)− x(t)‖l∞ ≤ h1+s},
for some 0 < s < 1, we write

d

dt
(x̃i(t)− xi(t)) = I + II,

where

I =
∫

R2
+

(
K(xi(t)−X(α, t))−K(xi(t)−X(α, t))

)
ω(X(α, t), t)dα

−
( ∑

j 6=i,jh∈∧h

K(xi(t)− xj(t))−
∑

jh∈∧h

K(xi(t)− xj(t))
)
ωjh

2,

and

II =
( ∑

j 6=i,jh∈∧h

K(xi(t)− xj(t))−
∑

jh∈∧h

K(xi(t)− xj(t))
)
ωjh

2

−
( ∑

j 6=i,jh∈∧h

K(x̃i(t)− x̃j(t))−
∑

jh∈∧h

K(x̃i(t)− x̃j(t))
)
ωjh

2.
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By the consistency Lemma, we have for 0 ≤ t ≤ T ,

|I| ≤ C(T )h2|logh|.
And by the stability Lemma

‖II‖lp ≤ C(T )‖x̃(t)− x(t)‖lp ,

for 0 ≤ t ≤ T ∗. Therefore we obtain

‖ d

dt
(x̃i(t)− xi(t))‖lp ≤ C(T )(‖x̃(t)− x(t)‖lp + h2|logh|),

for 0 ≤ t ≤ T ∗, but ( d
dt)‖V ‖ ≤ ‖ d

dtV ‖, by Gronwall’s inequality we obtain

‖x̃(t)− x(t)‖lp ≤ C̃(T )h2|logh|,
for 0 ≤ t ≤ T ∗, then (2.12) imply that

‖x̃(t)− x(t)‖l∞ ≤ C̃(T )h2− 2
p |logh|.

Since C̃(T ) is independent of T ∗, we obtain by taking h sufficiently small and p > 2
1−s

that
‖x̃(t)− x(t)‖l∞ ≤ 1

2
h1+s,

for 0 ≤ t ≤ T ∗. This implies that T = T ∗ and therefore we conclude that

‖x̃(t)− x(t)‖lp ≤ C̃(T )h2|logh|, (2.17)

for 0 < t < T . Clearly we have as a cosequence of (2.17) that

‖ũh(x̃(t), t)− u(x(t, t))‖lp ≤ C̃(T )h2|logh|,
for 0 < t < T , which proves Theorem 2.1.

3. Consistency and Stability

First we note that the flow map and the inverse flow map are smooth functions,
since the flow is incompressible. Thus there exist positive constants C1(T ) and C2(T )
depending on ω0 and T only, such that

C1(T )|α− β| ≤ |X(α, t)−X(β, t)| ≤ C2(T )|α− β|. (3.1)

Proof of the consistency Lemma: Suppose that the support of the initial vorticity Ω0

is contained in B(0, R
4 )∩R2

+, where B(αi, r) = {α, |α− αi| ≤ r}, we define E(αi, R) =
B(αi, R) ∩R2

+, E∗(αi, R) = B(αi, R) ∩R2−, where E = {x, x ∈ E}. Then we have

E(αi, R) ⊃ B(0,
R

4
) ∩R2

+, ∀αi ∈ B(0,
R

4
) ∩R2

+,

E∗(αi, R) ⊃ B(0,
R

4
) ∩R2

+, ∀αi ∈ B(0,
R

4
) ∩R2

+,

E(αi, R) ∪ E∗(αi, R) = B(αi, R).
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Thus we can decompose the consistency error into two parts as follows
∫

R2
+

(
K(xi(t)−X(α, t))−K(xi(t)−X(α, t))

)
ω(X(α, t), t)dα

−
( ∑

j 6=i,jh∈∧h

K(xi(t)− xj(t))−
∑

jh∈∧h

K(xi(t)− xj(t))
)
ωjh

2

= I + II, (3.2)

where

I =
∫

E(αi,R)
K(xi(t)−X(α, t))(ω(X(α, t), t)− ω(xi(t), t))dα

−
∫

E∗(αi,R)
K(xi(t)−X(α, t))(ω(X(α, t), t)− ω(xi(t), t))dα

− (
∑

j 6=i,jh∈E(αi,R)

K(xi(t)− xj(t))

−
∑

jh∈E∗(αi,R)

K(xi(t)− xj(t)))

(ω(xj(t), t)− ω(xi(t), t))h2,

and

II =ω(xi(t), t)(
∫

E(αi,R)
K(xi(t)−X(α, t))dα

−
∫

E∗(αi,R)
K(xi(t)−X(α, t))dα

− (
∑

j 6=i,jh∈E(αi,R)

K(xi(t)− xj(t))

−
∑

jh∈E∗(αi,R)

K(xi(t)− xj(t)))h2).

We first estimate the II term. Define a new kernel Kd by

Kd(xi(t)−X(α, t)) = (K(xi(t)−X(α, t))−DS1(α, αi))
− (K(xi(t)−X(α, t))−DS2(α, αi)), (3.3)

where

DS1(α, αi) =
1
2π

∇X(αi, t) · (α− αi)
|∇X(αi, t) · (α− αi)|2 , α 6= αi,

DS2(α, αi) =
1
2π

∇X(αi, t) · (α− αi)
|∇X(αi, t) · (α− αi)|2 ,

for |α− αi| small, we can expand X(α, t) around α = αi and get

X(α, t)− xi(t) = ∇X(αi, t) · (α− αi) + O(|α− αi|2). (3.4)
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Thus

|X(α, t)− xi(t)| = |∇X(αi, t) · (α− αi) + O(|α− αi|2)|
≥ C1(T )|α− αi|

then

|∇X(αi, t) · (α− αi)| ≥ C1(T )|α− αi| − C3(T )|α− αi|2

≥ 1
2
C1(T )|α− αi|, (3.5)

for |α− αi| > 0 small. Therefore DS1 is well defined.
Similar to (3.1), we have

C ′
1(T )|α− β| ≤ |X(α, t)−X(β, t)| ≤ C ′

2(T )|α− β|.
And so DS2 is well defined for |α−αi| small. Clearly DS1(α, αi) is an odd function in
(α− αi). DS2(α, αi) is an odd function in (α− αi). In virtue of symmetry, we have

∫

E(αi,R)
DS1(α, αi)dα−

∫

E∗(αi,R)
DS2(α, αi)dα

=
∑

j 6=i,jh∈E(αi,R)

DS1(αj , αi)h2 −
∑

jh∈E∗(αi,R)

DS2(αj , αi)h2

= 0. (3.6)

From (3.4), (3.5) and (3.6)

|Kd(xi(t)−X(α, t))| ≤ C(T ). (3.7)

By differentiating Kd(xi(t) −X(α, t)) with respect to α and arguing in the same way
as in proving (3.7), we can show that for α 6= αi, we have

|Dγ
αKd(xi(t)−X(α, t))| ≤ C(T )

|α− αi||γ|
. (3.8)

Define Sj by

Sj =
{
α = (α1, α2) : (jk − 1

2
)h ≤ αk ≤ (jk +

1
2
)h, 1 ≤ k ≤ 2} ∩R2

+

}
. (3.9)

Then from (3.7) we obtain

|
∫

Sj

Kd(xi(t)−X(α, t))| ≤ C̃(T )h2. (3.10)

Now it follows from the error estimate for composite midpoint rule approximation
[5] that

|II| =|ω(xi(t), t)
( ∫

Kd(xi(t)−X(α, t))dα

−
∑

Kd(xj(t)− xi(t))h2
)
|

≤ C(T )h2
∑ ∑

|γ|=2

max
α∈Sj

|Dγ
α(Kd(xj(t)− xi(t)))|, (3.11)
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where we have used (3.6) and (3.10), by (3.1) we have for α ∈ Sj , with j 6= i

|xi(t)−X(α, t)| ≥ C1(T )|αi − α| ≥ (1− 3
1
2

2
)C1(T )|αi − αj |, (3.13)

therefore we have

|II| ≤ C(T )h2
( ∑

j 6=i,jh∈E(αi,R)

1
|αi − αj |2 +

∑

jh∈E∗(αi,R)

1
|αi − αj |2

)

≤ C(T )h2
∫

C1h≤|α−αi|<R

1
|αi − α|2 dα

≤ C̃(T )h2|logh|. (3.14)

Similarly, we can show that

|I| ≤ C(T )h2|logh|. (3.15)

This completes the proof of consistency Lemma.
Similar to [10], the stability Lemma can be proved easily by using the known sta-

bility result for the corresponding vortex blob method, by noting that

|x̃− x| = |x̃− x|.

4. Time Discrete Method

We now consider the time discrete version of the point vortex method, the forward
Euler scheme is applied to the ordinary differential equations (2.11), and we use the
reflection method handling the boundary condition. Let x̃n

i be an approximation to
X(αi, tn) with tn = n∆t, we define the time discrete point vortex method by

x̃n+1
i =

{
x̃n

i + ∆tũh(x̃n
i , tn), if x̃n

i + ∆tũh(x̃n
i , tn) ∈ R2

+,

x̃n
i + ∆tũh(x̃n

i , tn), if x̃n
i + ∆tũh(x̃n

i , tn) /∈ R2
+,

x̃0
i = αi, (4.1)

where ũh(x̃n
i , tn) is defined as in (2.11).

Theorem 4.1. Under the assumption of Theorem 2.1, the time discrete point vortex
method (4.1) is converge if ∆t = O(h2), more precisely, there exist a positive constant
h0(T ) such that for 2 < p < ∞ and all 0 < h < h0(T )

‖xn − x̃n‖lp ≤ C(T )(h2|logh|+ ∆t), (4.2)
‖u(xn, tn)− ũ(x̃n, tn)‖lp ≤ C(T )(h2|logh|+ ∆t) (4.3)

where xn = {xn
i }, xn

i = X(αi, tn).
Proof. Define

en
i = xn

i − x̃i
n,
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T ∗ =sup{tn, 0 ≤ t ≤ T, ‖en‖l∞ ≤ h1+s,

max
i
|ũh(x̃n

i , tn)| ≤ C, for 0 < s < 1}.

If x̃n
i + ∆tũh(x̃n

i , tn) /∈ R2
+, then

(x̃n
i )2 + ∆tũh

2(x̃n
i , tn) < 0.

Thus we get

|(x̃n
i )2| ≤ ∆t|ũh

2(x̃n
i , tn)| ≤ C∆t, for 0 < tn < T ∗,

by (4.1)

(x̃n+1
i )2 ≤ (x̃n

i )2 + ∆tũh
2(x̃n

i , tn)

+ 2|(x̃n
i )2|+ 2∆t|ũh

2(x̃n
i , tn)|

≤ (x̃n
i )2 + ∆tũh

2(x̃n
i , tn) + 4∆t|ũh

2(x̃n
i , tn)|,

and

ũh
2(x̃n

i , tn) = ũh
2(x̃n

i , tn)− u2(xn
i , tn) + u2(xn

i , tn)
u2(xn

i , tn) = u2(xn
i , tn)− u2(x̃n

i , tn) + u2(x̃n
i , tn)

≤ C|xn
i − x̃n

i |+ u2(x̃n
i , tn).

By the boundary condition and smoothness of u

u2(x̃n
i , tn) ≤ C|(x̃n

i )2| ≤ C∆t.

Then

x̃n+1
i ≤ x̃n

i + ∆tũh(x̃n
i , tn)

+ 4∆t(C|x̃n
i − xn

i |+ C∆t + |ũh(x̃n
i , tn)− u(xn

i , tn)|). (4.4)

It is well known that the Euler method is first-order accuracy. Therefore we have

en+1
i ≤ en

i + ∆t(ũh(x̃n
i , tn)− u(xn

i , tn))

+ 2∆t(|x̃n
i − xn

i |+ ∆t + |ũh(x̃n
i , tn)− u(xn

i , tn)|)
+ O(∆t2), (4.5)

we write

ũh(x̃n
i , tn)− u(xn

i , tn) = (ũh(x̃n
i , tn)− uh(xn

i , tn))
+ (uh(xn

i , tn)− u(xn
i , tn))

= Stability + Consistency, (4.6)

where uh(xn
i , tn) is the point vortex method discretization for the velocity integral

corresponding for the exact particle position {xn
i }. By the Consistency Lemma and

Stability Lemma, we have

‖en+1‖lp ≤ ‖en‖lp + C(T )∆t(‖en‖lp + Ch2|logh|+ ∆t).
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Which implies that

‖en‖lp ≤ C1(T )(h2|logh|+ ∆t), (4.7)
‖ũh(x̃n

i , tn)− u(xn
i , tn)‖lp ≤ C(T )(‖x̃n − xn‖lp + h2|logh|)

≤ C(T )(h2|logh|+ ∆t), (4.8)

where C1 depends on ω0 and T only, in particular, we obtain

‖en‖l∞ ≤ C1(T )h2− 2
p |logh| < 1

2
h1+s, (4.9)

|ũh(x̃n
i , tn)| ≤ |u(xn

i , tn)|+ C1(T )h−
2
p (h2|logh|+ ∆t) ≤ C, (4.10)

by ∆t = O(h2). for h small enough and p > 2
1−s . Therefore (4.9), (4.10) would allow

us to take one more step T ∗ + ∆t if T ∗ < T . Hence T ∗ = T , and (4.7), (4.8) holds on
the entire interval 0 ≤ tn ≤ T . This completes the proof of Theorem 4.1.

Remark: Using the proof of convergence in this paper, we can get a convergence
result for the vortex blob method while the blob parameter ε is equalent to the grid
parameter h.
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