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Abstract

In this paper we consider the nonoverlapping domain decomposition method

based on mixed element approximation for elliptic problems in two dimentional

space. We give a kind of discrete domain decomposition iterative algorithm using

mixed finite element, the subdomain problems of which can be implemented par-

allelly. We also give the existence, uniqueness and convergence of the approximate

solution.

1. Introduction

Domain decomposition as a new method of computational mathematics, was devel-

oped since the development of parallel computers and multiprocessor supercomputers.

Using domain decomposition we can decrease the scale of the problem and implement

the sub-problems on parallel computer. From a technical point of view most of do-

main decomposition methods considered so far have been dealing with finite element

methods. In [1, 2] Zhang and Huang have given a kind of nonoverlapping domain

decomposition procedure with piecewise linear finite element approximation.

Since the advantage of mixed element method in dealing with some engineering

problems when accurate approximates to the first derivatives of the solution of the

elliptic problem is required, such as numerical simulation in oil recovery, as early as

1988, Glowinski and Wheeler[3] have given a domain decomposition conjugate gradient

algorithm with mixed element.

In this paper we give a kind of nonoverlapping domain decomposition algorithm

with mixed finite element, which can be implemented in parallel computer. We also

give the existence, uniqueness and convergence analysis. Finally we give the numerical

examples.
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2. Domain Decomposition Algorithm

Without loss of generality we consider the following problem:





−△ u = f, inΩ,
∂u

∂n
= 0, on∂Ω.

(1)

where Ω⊂R2 is a bounded domain and can be decomposed into two polygonal domains,

n is the unit vector in outer normal direction, f ∈ L2(Ω) satisfying
∫

Ω
fdx = 0. (2)

We decomposition Ω into nonoverlapping subdomains Ω1,Ω2 such that Ω̄ = Ω̄1 ∪ Ω̄2

and Ω1,Ω2 are two polygonal domains, ∂Ω1 ∩ ∂Ω2 is a striaight line. Let

Γ = ∂Ω1 ∩ ∂Ω2 ∩ Ω;Γi = ∂Ω ∩ ∂Ωi(i = 1, 2).

then ∂Ωi = Γ ∪ Γi(i = 1, 2).

Let (·, ·) denote the innerproduct on L2(Ω) or (L2(Ω))2, (·, ·)i denote the innerprod-

uct on L2(Ωi) or (L2(Ωi))
2, σ = − ▽ u, then we can derive the mixed formulation of

(1): Find (σ, u) ∈ H0(div;Ω) × L2(Ω) such that




(σ, q) − (divq, u) = 0, ∀q ∈ H0(div,Ω),

(divσ,w) = (f,w), ∀w ∈ L2(Ω),
(3)

where

H(div;Ω) = {v : v ∈ (L2(Ω))2,divv ∈ L2(Ω)},

H0(div;Ω) = {v : v ∈ H0(div,Ω), v · n|∂Ω = 0}.

Under the condition of ∫

Ω1

udx = 0, (4)

the problem (3), or (1), has a unique solution.

Let Ωh = {k} denote the quasi-uniform trianglation of Ω based on the discretization

of Ω1,Ω2, with elements of size h. We choose Qh ×Mh ⊂ H0(div,Ω) × L2(Ω) as the

lowest order Raviart-Thomas mixed element space. Then the mixed element solution

of problem (3), (σh, uh) ∈ Qh ×Mh, satisfying




(σh, q) − (divq, uh) = 0, ∀q ∈ Qh,

(divσh, v) = (f, v), ∀v ∈Mh.
(5)

∫

Ωh

u1dx = 0. (6)
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The solution of (5)-(6) is unique and we have[5]

‖σh − σ‖ + ‖uh − u‖ ≤ Ch, (7)

where C denotes a generic constant independent of h.

Let Mi ⊂ L2(Ωi), Qi ⊂ H(div;Ω) be the following spaces:

Mi = {v|Ωi
: v ∈Mh}, i = 1, 2, (8)

Qi = {q|Ωi
: q ∈ Qh}, Q

0
i = {q ∈ Qi : q · n|∂Ωi

= 0}, i = 1, 2, (9)

P0h = {q ∈ Qh : q · n|∂ki
= 0, if ki ∩ Γ = ∅, i = 1, 2, 3, k ∈ Ωh}, (10)

where ∂ki, i = 1, 2, 3, denotes the three sides of k. It is clear that for any q ∈ Qi, we

have q · n|∂Ωi∩∂Ω = 0 and

Qh = Q0
1 ⊕Q0

2 ⊕ P0h. (11)

Let T1 = {τ} denote the partition of Γ which is the restriction of Ωh on Γ, S(Γ) =

{v ∈ L2(Γ) : v|τ = constant,∀τ ∈ T1}, n1, n2 denotes the outer normal directions of

Ω1,Ω2 on Γandπ ∈ P0h be a function such that

∫

Γ
π · n1dΓ 6= 0, d0 ∈ S(Γ) such that

∫

Γ
d0dΓ −

∫

Ω1

fdx = 0, we give the following domain decomposition mixed element

procedure:

For n=0, 1, 2, ...

1) Define σ2n
i ∈ Qi, u

2n
i ∈Mi(i = 1, 2) such that

(σ2n
i , q)i − (divq, u2n

i )i = 0,∀q ∈ Q0
i , i = 1, 2, (12)

(divσ2n
i , v)i = (f, v)i,∀v ∈Mi, i = 1, 2, (13)

σ2n
i · n1|Γ = dn, i = 1, 2, (14)∫

Ω1

u2n
1 dx = 0, (15)

2∑

i=1

((σ2n
i , π)i − (divπ, u2n

i )i) = 0. (16)

2) For q ∈ P0h define

gn(q) = θ1[(σ
2n
1 , q)1 − (divq, u2n

1 )1] − (1 − θ1)[(σ
2n
2 , q)2 − (divq, u2n

2 )2]. (17)

3) Define σ2n+1
i ∈ Qi, u

2n+1
i ∈Mi(i = 1, 2) such that

(σ2n+1
i , q)i − (divq, u2n+1

i )i = 0,∀q ∈ Q0
i , i = 1, 2, (18)

(divσ2n+1
i , v)i = (f, v)i,∀v ∈Mi, i = 1, 2, (19)

(σ2n+1
1 , q)1 − (divq, u2n+1

1 )1 = gn(q),∀q ∈ P0h, (20)

(σ2n+1
2 , q)2 − (divq, u2n+1

2 )2 = −gn(q),∀q ∈ P0h. (21)
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4) Define

dn+1 = (θ2σ
2n+1
1 · n1 + (1 − θ2)σ

2n+1
2 · n1)|Γ (22)

where θ1, θ2 ∈ (0, 1) are two parameters.

3. Existence and Uniqueness of Approximation Solution

Lemma 3.1. If (σi, ui) ∈ Qi ×Mi satisfies





(σi, q)i − (divq, ui)i = 0, ∀q ∈ Qi

(divσi, v)i = 0, ∀v ∈Mi.
(23)

then σi = 0, ui = 0, i = 1, 2.

Proof. It is clear that σi = 0, ui = 0 is the solution of (23). Suppose (σi, ui) ∈

Qi×Mi is anyone of the solution of (23). Let q = σi , v = ui , then we have (σi, σi) = 0,

that is σi = 0, from (23) we have that

(divq, ui)i = 0,∀q ∈ Qi. (24)

Let q ∈ Q0
i we derive that

(divq, ui) = 0,∀q ∈ Q0
i . (25)

Using the theory of mixed element we have that

‖ui‖L2(Ωi)/R ≤ sup
q∈Q0

i

(divq, ui)i
‖q‖H(div;Ωi)

= 0, (26)

that is ui=constant on Ωi. From (24) we have that

(divq, ui)i = ui

∫

Ωi

divqdx = ui

∫

Γ
q · nidΓ = 0,∀q ∈ Qi. (27)

Selecting q ∈ Qi such that

∫

Γ
q · nidΓ 6= 0 , from (27) we have ui = 0.

Theorem 1. If d0 ∈ S(Γ),

∫

Γ
d0dΓ −

∫

Ω1

fdx = 0, then the system (12)-(22) has a

unique solution (σni , u
n
i ) for i = 1, 2 and n = 0, 1, 2, · · ·.

Proof. We use the induction method to prove the theorem. We prove that
∫

Γ
dndΓ −

∫

Ω1

fdx = 0, n = 0, 1, 2, · · · . (28)

It is clear that (28) holds for n=0. Suppose (28) holds for n, from (12)-(14) we know

that (σ2n
1 , u2n

1 ) is the mixed element solution of the following problem:

−△ u = f, x ∈ Ω1,
∂u

∂n
|∂Ω∩∂Ω1 = 0,

∂u

∂n1
|Γ = dn, (29)
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(28) is the compatibility condition for (29). By (15) we know that (σ2n
1 , u2n

1 ) is the

unique solution of (12)-(14) for i=1. Since n2 = −n1, using (2) we have that

∫

Γ
−dndΓ −

∫

Ω2

fdx = −
∫

Γ
dndΓ − (

∫

Ω
fdx−

∫

Ω1

fdx) = 0, (30)

which is the compatibility condition of the problem

−△ u = f, x ∈ Ω2,
∂u

∂n
|∂Ω∩∂Ω2 = 0,

∂u

∂n2
|Γ = −dn, (31)

(σ2n
2 , u2n

2 ) is the mixed element solution of (31). From (16) we know that (σ2n
2 , u2n

2 )

exists and is unique .

Using (11) and Lemma 3.1 we can get that the system (18)-(21) has only one

solution. It is clear that dn+1 defined by (22) belongs to S(Γ), from (19) we can get

that
∫

Γ
dn+1dΓ = θ2

∫

Γ
σ2n+1

1 · n1dΓ + (1 − θ2)

∫

Γ
σ2n+1

2 · (−n2)dΓ

= θ2

∫

Ω1

divσ2n+1
1 dx− (1 − θ2)

∫

Ω2

divσ2n+1
2 dx

= θ2

∫

Ω1

fdx− (1 − θ2)

∫

Ω2

fdx =

∫

Ω1

fdx.

That is (28) holds for (n+ 1). The proof is completed.

4. Some Lemmas

Let π ∈ P0h be the same as in (16). For v1 ∈ L2(Ω1), v2 ∈ L2(Ω2) , define

v = [v1, v2] ∈ L2(Ω) such that v|Ω1 = v1, v|Ω2 = v2. We give the following notation:

Wi = {(q, v) ∈ Qi ×Mi : divq = 0, (q, q̃)i − (divq̃, v)i = 0,∀q̃ ∈ Q0
i }, i = 1, 2, (32)

N = {(q, v) = ([q1, q2], [v1, v2]) : (qi, vi) ∈Wi; (q, q̃) − (divq̃, v) = 0,∀q̃ ∈ P0h}, (33)

V = {(q, v) = ([q1, q2], [v1, v2]) : (qi, vi) ∈Wi, i = 1, 2; (q1 − q2) · n1|Γ = 0;

∫

Ω1

v1dx = 0;
2∑

i=1

((qi, π)i − (divπ, vi)i) = 0}, (34)

For q ∈ H(div;Ωi), let

‖q‖2
i = (q, q)i, i = 1, 2 (35)

it is clear that

Lemma 4.1. For (q, v) ∈Wi we have that

‖q‖i = ‖q‖H(div;Ωi), i = 1, 2. (36)



296 H.X. RUI

Lemma 4.2. For (q, v) = ([q1, q2], [v1, v2]) ∈ N, (q̃, ṽ) = ([q̃1, q̃2], [ṽ1, ṽ2]) ∈ V we

have that

(q, q̃) = (q1, q̃1)1 + (q2, q̃2)2 = 0 (37)

Proof. From (q̃, ṽ) ∈ V we have that (q̃1 − q̃2) · n1|Γ = 0, q̃ ∈ Qh. Using (11) we

know that there exist q̃11 ∈ Q0
1, q̃22 ∈ Q0

2, g = [g1, g2] ∈ P0h such that

q̃ = [q̃1, q̃2] = [q̃11, 0] + [0, q̃22] + [g1, g2]. (38)

From the definition of N and Wi we have that

(q1, g1)1 + (q2, g2)2 − (divg1, v1)1 − (divg2, v2)2 = 0, (39)

divq̃i = div(q̃ii + gi) = 0, i = 1, 2, (40)

(qi, q̃ii)i − (divq̃ii, vi)i = 0, i = 1, 2. (41)

Summing (39) and (41), by (40) we know that (37) holds.

Let Sh(Ω) ∈ H1
0 (Ω) denote the space of continuous, piecewise linear functions,

Xh = {q ∈ Qh : divq = 0}. We have[4]

Lemma 4.3. If q ∈ Xh then there exists a scaler function ψ ∈ Sh(Ω) such that

q = curlψ = (
∂ψ

∂x2
,−

∂ψ

∂x1
).

Conversely, if ψ ∈ Sh(Ω), then curlψ ∈ Xh.

Lemma 4.4. There exist two constant σ, τ , independent of h such that

sup
(q,v)∈V

‖q2‖
2
2

‖q1‖2
1

≤ σ, sup
(q,v)∈V

‖q1‖
2
1

‖q2‖2
2

≤ τ. (42)

Proof. From (q, v) ∈ V and the definition of V,Wi, i = 1, 2 we have that q ∈ Qh,

divq = 0, q ∈ Xh. Using Lemma 4.3 we have that there exists ψ0 ∈ Sh(Ω) such that

q = [q1, q2] = curlψ0,

‖q1‖
2
1 =

∫

Ω1

q1 · q1dx =

∫

Ω1

(curlψ0, curlψ0)dx =

∫

Ω1

| ▽ ψ0|
2dx. (43)

Similarly ‖q2‖
2
2 =

∫

Ω2

| ▽ ψ0|
2dx.

Let S0
h(Ωi) ⊂ H1

0 (Ωi) denote the restriction of Sh(Ω) on Ωi, i = 1, 2, when ω ∈

S0
h(Ωi), it is clear that





divcurlω = 0,

curlω · n|∂Ωi
= −

∂ω

∂τ
|∂Ωi

= 0.
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where
∂

∂τ
denotes the tangential derivative, therefore curlω ∈ Q0

i . Since (q, v) ∈ V ,

q = curlψ0, using the definition of Wi and V , we have that

(∇ψ0,∇ω)i = (curlψ0, curlω)i = (q, curlω)i

= (q, curlω)i − (divcurlω, v)i

= 0,∀ω ∈ S0
h(Ωi), i = 1, 2.

That means ψ0 satisfies the condition of Theorem 1.2 of [2], from which we know that

there exists a constant σ, independent of h such that

sup
ψ∈Sh

∫

Ω2

| ▽ ψ|2dx
∫

Ω1

| ▽ ψ|2dx
≤ σ, (44)

therefore

sup
(q,v)∈V

‖q2‖
2
2

‖q1‖2
1

≤ sup
ψ∈Sh

∫

Ω2

| ▽ ψ0|
2dx

∫

Ω1

| ▽ ψ0|
2dx

≤ σ. (45)

Similarly we can prove the second inequality.

Lemma 4.5. For function (q, v) = ([q1, q2], [v1, v2]) we have that

sup
(q,v)∈N

‖q2‖
2
2

‖q1‖2
1

≤ τ, sup
(q,v)∈N

‖q1‖
2
1

‖q2‖2
2

≤ σ, (46)

where σ, τ are the same as those in Lemma 4.4.

Proof. For(q, v) ∈ N define (q
′

2, v
′

2) ∈ Q2 ×M2 such that q
′

2 · n1|Γ = q1 · n1|Γ and

(q1, π)1 + (q
′

2, π)2 − (divπ, v1 − |Ω1|
−1

∫

Ω1

v1dx)1 − (divπ, v
′

2)2 = 0, (47)

(q
′

2, q̃)2 − (divq̃, v
′

2)2 = 0, ∀q̃ ∈ Q0
2, (48)

(divq
′

2, ṽ)2 = 0, ∀ṽ ∈M2. (49)

then([q1, q
′

2], [v1 − |Ω1|
−1

∫

Ω1

v1dx, v
′

2]) ∈ V . Using Lemma 4.2 we have

‖q1‖
2
1 = (q1, q1) = −(q2, q

′

2)2 ≤ ‖q2‖2‖q
′

2‖2,

‖q1‖
2
1

‖q2‖2
2

=
‖q1‖

4
1

‖q1‖2
1 · ‖q2‖

2
2

=
‖q2‖

2
2 · ‖q

′

2‖
2
2

‖q1‖2
1 · ‖q2‖

2
2

=
‖q

′

2‖
2
2

‖q1‖2
1

≤ σ. (50)

Then the second inequality in (46) holds. Similarly we can prove the first one.
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5. Convergence Analyses

For the solution (σh, uh) of (5)-(6) it is easy to see that

(σh, q)i − (divq, uh)i = 0,∀q ∈ Q0
i , i = 1, 2, (51)

(divσh, v)i = (f, v)i,∀q ∈Mi, i = 1, 2, (52)

(σh, q)1 − (divq, uh)1 + (σh, q)2 − (divq, uh)2 = 0,∀q ∈ Poh, (53)

Let q = π ∈ Poh in (5) we have that

((σh, π)1 − (divπ, uh)1) + ((σh, π)2 − (divπ, uh)2) = 0. (54)

Let πni = σni −σh, e
n
i = uni − uh, x ∈ Ωi;π

n = [πn1 , π
n
2 ], en = [en1 , e

n
2 ]. Using (51)-(54)

and (12)-(22) we get that

1) π2n
i ∈ Qi, e

2n
i ∈Mi, i = 1, 2

(π2n
i , q)i − (divq, e2ni )i = 0,∀q ∈ Q0

i , (55)

(divπ2n
i , v)i = 0,∀v ∈Mi, (56)

π2n
i · n1 = θ2π

2n−1
1 · n1 + (1 − θ2)π

2n−1
2 · n1, (57)∫

Ω
e2n1 dx = 0, (58)

2∑

i=1

((π2n
i , π)i − (divπ, u2n

i )i) = 0. (59)

2) π2n+1
i ∈ Qi, e

2n+1
i ∈Mi, i = 1, 2

(π2n+1
i , q)i − (divq, e2n+1

i )i = 0,∀q ∈ Q0
i , (60)

(divπ2n+1
i , v)i = 0,∀v ∈Mi, (61)

(π2n+1
1 , q)1 − (divq, e2n+1

1 )1 = −[(π2n+1
2 , q)2 − (divq, e2n+1

2 )2]

= θ1[(π
2n
1 , q)1 − (divq, e2n1 )1] − (1 − θ1)[(π

2n
2 , q)2 − (divq, e2n2 )2],∀q ∈ P0h. (62)

Let v = divπ2n
i in (56), v = divπ2n+1

i in (61) we have that

divπ2n
i = divπ2n+1

i = 0, i = 1, 2. (63)

Similarly to the proof of Theorem 3.1 of [2], we can prove that:

Theorem 2. When θ1 ∈ (1−
2(τ + 1)

σ2τ + τ + 2
, 1), θ2 ∈ (1−

2(σ + 1)

τ2σ + σ + 2
, 1), there exist

two constants k1, k2 ∈ (0, 1) such that

‖π2n+2‖2 ≤ k1k2‖π
2n‖2 ≤ (k1k2)

n+1‖π0‖2, n ≥ 0 (64)



Nonoverlapping Domain Decomposition Method with Mixed Element for Elliptic Problems 299

‖π2n+1‖2 ≤ k1k2‖π
2n−1‖2 ≤ (k1k2)

n‖π1‖2, n ≥ 0 (65)

where ‖πj‖ = ‖πj1‖1 + ‖πj2‖
2
2.

Proof. 1) From (55)-(59) we know that (π2n, e2n) ∈ V . Define (π̃2n
1 , ẽ2n1 ) ∈W1 such

that

(π̃2n
1 , q)1 − (divq, ẽ2n1 )1 = −[(π2n

2 , q)2 − (divq, e2n2 )2],∀q ∈ P0h (66)

By (33) we know that ([π̃2n
1 , π2n

2 ], [ẽ2n1 , e2n2 ]) ∈ N . Similarly we define (π̃2n
2 , ẽ2n2 ) ∈

W2 such that ([π̃2n
1 , π̃2n

2 ], [ẽ2n1 − α2n, ẽ2n2 ]) ∈ V ; define (π̃2n+1
2 , ẽ2n+1

2 ) ∈ W2 such

that ([π2n+1
1 , π̃2n+1

2 ], [e2n+1
1 − α2n+1, ẽ2n+1

2 ]) ∈ V ; define (π̃2n+1
1 , ẽ2n+1

1 ) ∈ W1 such

that ([π̃2n+1
1 , π2n+1

2 ], [e2n+1
1 , e2n+1

2 − α]) ∈ V , where the constants α2n, α2n+1, α are

determined by using the definition of V .

2) From (61)-(64) we know taht ˜̃π
2n+1

1 = π2n+1
1 − (θ1π

2n
1 + (1 − θ1)π̃

2n
1 ) ∈ Q1,

˜̃e
2n+1

1 = e2n+1
1 − (θ1e

2n
1 + (1 − θ1)ẽ

2n
1 ) ∈M1,

(˜̃π
2n+1
1 , q)1 − (divq, ˜̃e

2n+1
1 )1 = 0, ∀q ∈ Q1,

(div˜̃π
2n+1

1 , v)1 = 0, ∀v ∈M1.

By Lemma 3.1 we have ˜̃π
2n+1

1 = 0, [π2n+1
1 , π2n

2 ] = θ1[π
2n
1 , π2n

2 ]+(1−θ1)[π̃
2n
1 , π2n

2 ]. Using

the method of Zhang and Huang[2] and Lemma 4.2-Lemma 4.4 we can prove that

‖π2n+1‖2
1 ≤ k1‖π

2n‖2
1 (67)

k1 = [(1 − θ1)
2(σ2τ + τ + 2) − 2(1 − θ1)(τ + 1) + τ ]τ−1. (68)

Similarly we can get that

‖π2n+2‖2
1 ≤ k2‖π

2n+1
1 ‖2

1, (69)

‖π2n+2‖2
2 ≤ k2‖π̃

2n+1
2 ‖2

2, ‖π̃
2n+1‖2

2 ≤ k1‖π
2n
2 ‖2

2, (70)

k2 = [(1 − θ2)
2(στ2 + σ + 2) − 2(1 − θ2)(σ + 1) + σ]σ−1 (71)

From (68)-(70) we know that (64) holds. Similarly we can prove that (65) holds.

Remark: When θ1 =
σ2τ + 1

σ2τ + τ + 2
, θ2 =

τ2σ + 1

τ2σ + σ + 2
we have k1 =

σ2τ2 − 1

σ2τ2 + τ2 + 2τ
,

k2 =
σ2τ2 − 1

τ2σ2 + σ2 + 2σ
, which take their minimum values. In practical computation, the

values of θ1, θ2 can be determined by using of the computational results(see [2], [6]).

6. Numerical Example

Consider the following problem

−△ u = f, rminΩ,
∂u

∂n
= g, on∂Ω. (72)
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where Ω = (0, 2π)×(0, π), f, g have been chosen in such a way that the exact solution is

u = sinx sin y. We use a uniform mesh with 10×5, 20×10 elementary squares(h = 0.2π

and h = 0.1π respectively). Decompose the domain into Ω1 = (0, 0.8π) × (0, π),Ω2 =

(0.8π, 2π) × (0, π), using the algorithm given in Section 2. The error Eσ, Eu, denoting

L2 error for σ and u respectively, are depicted in the following table.

h = 0.1π h = 0.2π

Eσ Eu Eσ Eu

n=0 2.82 2.78

n=1 0.437 0.07 0.235 0.047

n=2 0.093 0.017 0.088 0.021

n=3 0.017 0.007 0.051 0.008
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