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1. Introduction

So far, there have been many papers concerning with the superconvergence of fi-

nite elements. Under some conditions, a higher convergence accuracy is obtained at

some specific points. This phenomenon is called superconvergence. The theory of

supercovergence[1] tells us that, in order to gain superconvergence, two conditions must

be satisfied. One is the good subdivision and the second is the existence of locally

sufficient smooth solution. If these conditions are not satisfied, e.g., low smoothness of

the solution, occurs a contrary phenomenon that some local errors is greater than that

of average errors. This phenomenon, we call subconvergence.

Subconvergence is conflicting with superconvergence. It often occurs in the neighour-

hood of singular points, where higher accuracy algorithm is followed with great interest

by engineers but it is very difficult. So it is necessary to study the theory of subcon-

vergence.

Bubuska[2] proposed the h–p version that locally refining subdivision or locally in-

creasing the degree of piecewise polynomials gets locally higher accuracy. To implement

this method, it is necessary to use the posterior data to find the elements at which the

subconvergence occurs. Otherwise, refining all elements and not distinguishing the

‘good’ ones with the ‘bad’ ones, the algorithm is very inefficiency and it is not a high

accuracy one.

This paper uses the idea of subconvergence to obtain a simple criterion ∆e, which

only depends on the approximate solution uh and the function f. Comparing the sizes

of ∆e, the element e0 with the worst convergence can be found. Then, e0 and the

neighbouring elements are refined by the h-version or p-version. Repeating this process

many times, the high accuracy results may be obtained for the problem with singularity.

The outline of this paper is as follows. Section 1 presents some definitions about

the subconvergence. Section 2 gives a method of locally refinement or local increasing

the degree of polynomials and some main results. In section 3 several examples are

provided.
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2. Subconvergence Point, Subconvergence Element and A

Self–Adaptive Method

Consider the model problem: to find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v), v ∈ H1
0 (Ω) (2.1)

where (·, ·) is the inner product in L2(Ω), f ∈ L2(Ω), and a(·, ·) an elliptic bilinear form

with some singularity, Ω a bounded domain in RN (N = 1, 2, 3). We call

‖u‖ =
√

a(u, u)

the energy norm.

Let T h be a regular subdivision on Ω, Sh(Ω) a piecewise linear finite element space

and

Sh
0 (Ω) = {v ∈ Sh(Ω) : v|∂Ω = 0}

Suppose uh ∈ Sh
0 (Ω) be the Galerkin approximation of the solution u of problem (2.1).

Then the energy
∥
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∥

∥

∥

2
=

∑

e∈T h
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∥
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Generally speaking, the element e ∈ T h with large
∥

∥

∥u − uh
∥

∥

∥

e

2 is a subconvergence

element or bad element.

Now, we want to find a criterion to say
∥

∥

∥u − uh
∥

∥

∥

2

e
large or small. To do this, we

denote, by S
h/2
0 (Ω), p−degree finite element space on T h or the linear finite element

space after many times refinement of T h, and denote, by Ḡ, the set of base functions

of finite element space S
h/2
0 (Ω). It is obvious that there exists a δ0 ∈ Ge ≡ span {φ ∈

Ḡ : ( supp φ) ∩ e 6= ∅} such that

∆e ≡
∣

∣

∣a(u − uh, δ0) / ‖δ0‖
∣

∣

∣ = max
δ∈Ge

∣

∣

∣ a(u − uh, δ) / ‖δ‖
∣

∣

∣ (2.2)

If ∆e0 = maxe∈T h{∆e}, we call e0 the bad element of T h.

If we refine T h by mid-point locally again and again and the point z0 belongs to

the bad element infinitly, we call z0 subconvergence point. Since

∆e ≡
∣

∣

∣ a(u − uh, δ0) / ‖δ0‖
∣

∣

∣ (2.3)

it is a posterior datum, which can be determined by the computer. It can be seen below

that replacing the error energy
∥

∥

∥u − uh
∥

∥

∥

e
on element e with ∆e is reasonable (see Th.1

& Th. 2 ).

Let e ∈ T h be a bad element. Refine e by mid-point and then denote all new nodal

points by N ′
e. For each point z ∈ N ′

e, we have a basis function φz ∈ Ḡ. Introduce the

following notations

S
h/2
0 (De) = span{φz : z ∈ N ′

e} (2.4)
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where

De = ∪{supp(φz) : z ∈ N ′
e} (2.5)

Therefore, for e ∈ T h, a new finite element space by local refinement or locally increasing

the degree of polynomials is obtained:

V h
e (Ω) = Sh(Ω) ⊕ Sh/2(De) = {v + φ : v ∈ Sh(Ω), φ ∈ Sh/2(De)}

Let uh
e (Ω) ∈ V h

e be the Galerkin approximation of u. In the next section, we will prove

∥

∥

∥u − uh
e

∥

∥

∥

2
−

∥

∥

∥u − uh
∥

∥

∥

2
≥ ∆e

2

It follows that the criterion ∆e indicates to some extent the change of the error on the

element e.

For convenience, we also use uI ∈ Sh
0 (Ω) and uI

e ∈ V h
e to denote the interpolations

of the exact solution u on the finite element space Sh
0 and V h

e respectively.

In section 3, a concrete method of subconvergence local refinement is presented

and a high accuracy result can be obtained automatically in the neighbourhood of the

singular point ( subconvergence point ).

3. Some Methods of Local Refinement and Locally Increasing the

Degree of Polynomials

At first, we give some methods of local refinement for finite element.

Example 1. One dimensional element

Let e = [α, β] be a one dimensional linear element. Thus

De = e, S
h/2
0 (De) = {αφ0 : α ∈ R}

where φ0 is the basis function at the middle point c of e :

φ0(x) =















1, when x = c

0, when x ≤ c − h/2 or x ≥ c + h/2 .

linear, other

If

Sh
0 = span{φ1, φ2, · · · , φn}

then

Ve = span{φ1, φ2, · · · , φn, φ0}
and the criterion

∆e =
∣

∣

∣(f, φ0) − a(uh, φ0)
∣

∣

∣ /||φ0||. (3.1)

Example 2. Two dimensional triangular linear element

Let e = ∆z1z2z3 ( Figure 1) and let z4, z5, z6 the three middel points of the sides

of e with the basis function φ4, φ5, φ6 respectively:

De = ∪{supp(φi), i = 4, 5, 6} ∪ e
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S
h/2
0 (De) = span{φ4, φ5, φ6}.

The supports of these basis functions do not belong to e. However,

∆e = |(f, δ0) − a(u, δ0)| /||δ0|| ≡ ‖δ0‖ (3.2)

can be used as a criterion, where δ0 ∈ S
h/2
0 (De) is the solution of the simple equation

a(δ0, v) = (f, v) − a(uh, v), v ∈ S
h/2
0 (De) (3.3)

where uh ∈ Sh
0 (Ω) is the finite element solution before refinement.

Example 3. Two dimensional bilinear element

Let e = rectangular z1z2z3z4 ( Figure 2 ). Add on e five nodal points z0, z5, z6, z7,

z8 and denote by φi ∈ Ḡ the basis function at each point zi, i = 0, 5, 6, 7, 8. Let

S
h/2
0 (De) = span{φ0, φ5, φ6, φ7, φ8}

De = ∪{suppφi, i = 0, 5, 6, 7, 8}.
The criterion

∆e =
∣

∣

∣(f, δ0) − a(uh, δ0)
∣

∣

∣ / ||δ0|| = ||δ0|| (3.4)

where δ0 ∈ S
h/2
0 (De) is the solution of the simple equation

a(δ0, v) = (f, v) − a(uh, v), v ∈ S
h/2
0 (De). (3.5)
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Figure 1. Figure 2.

Those similar to (3.1) are called the first kind criterion and those similar to (3.2)

and (3.4) are called the second kind criterion.

∆e in Example 1 – Example 3 is defined by changing the sizes of h. We call it the

h − v criterion, which was studied in [4] and in [5]. If we define ∆e by increasing the

degree of polynomials, we call it the p − v criterion, which will be demonstrated as

follows:

Denote the linear finite element on T h by Sh
0 (Ω) again.

Let

S
h/2
0 (Ω) = {v ∈ C0(Ω) : v|e ∈ P2(e), e ∈ T h}, for Example1 & Example2

S
h/2
0 (Ω) = {v ∈ C0(Ω) : v|e ∈ Q2(e), e ∈ T h}, for Example3
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where P2(e) is the set of all quadratic polynomials on e and Q2(e) the set of all

biquadratic polynomials on e . And let

De =

{

∪{e′ ∈ T h : ē′ ∩ ē 6= ∅}, for multi − dimensional space

e for one − dimensional space

S
h/2
0 (De) = {v ∈ S

h/2
0 : supp (v) ⊂ De}

Ve = Sh
0 (Ω) ⊕ S

h/2
0 (De)

the p − v criterion ∆e can be defined by (3.1) (3.2) and (3.4) similarly.

The proofs of the following two theorems are valid not only for h − v criterion but

also for the p − v criterion.

Theorem 1. Let Sh
0 (Ω) be the finite element space on the coarse subdivision T h,

e ∈ T h (generally, e being the subconvergence element), uh ∈ Sh
0 , uh

e ∈ V h
e ≡ Sh

0 (Ω) ⊕
S

h/2
0 (De) be the corresphonding Galerkin solution. Then, there exists the decomposition

∥

∥

∥u − uh
e

∥

∥

∥

2
=

∥

∥

∥u − uh
∥

∥

∥

2
− ‖w‖2 (3.6)

where w = uh
e − uh satisfies

‖w‖2 ≥ ∆e
2 (3.7)

Proof. It follows from the definition that u − uh = u − uh
e + w and

a(u − uh
e , w) = 0

So, (3.6) is valid. Next,

‖w‖2 = a(w,w) = a(w,w − wI) ≡ a(w, δ) (3.8)

Since w = (uh
e − u) − (uh − u) and δ ≡ w − wI ∈ Sh/2(De), we have a(uh

e − u, δ) = 0.

Therefore,

‖w‖2 = a(uh − u, δ) (3.9)

If ∆e is the first kind criterion, S
h/2
0 (De) = span{φ0}. Set

δ = δ(z0)φ0 (3.10)

where φ0 is the basis function at the center z0 of e. It follows from (3.8) that

‖w‖ ≤ ‖δ‖ = |δ(z0)| · ‖φ0‖

Then (3.8) and (3.10) give the relations:

|δ(z0)| = ||w||2 / a(u − uh, φ0) ≤ |δ(z0)|2 · ||φ0||2 / a(u − uh, φ0)

|δ(z0)| ≥ |a(u − uh, φ0)| / ||φ0||2
||w||2 = |δ(z0)| · |a(u − uh, φ0)| ≥ |a(u − uh, φ0)|2 / ||φ0||2 = ∆e

2
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so (3.7) is valid.

If ∆e is the second kind criterion, there exists a δ0 ∈ S
h/2
0 (De) such that

a(δ0, φ) = (f, φ) − a(uh, φ) = a(u − uh, φ), for any φ ∈ S
h/2
0 (De).

According to the energy product, we have

u − uh − δ0 ⊥ S
h/2
0 (De)

and then

||u − uh − δ0 + φ||2 = ||u − uh − δ0||2 + ||φ||2, for any φ ∈ S
h/2
0 (De)

Letting φ = δ0, we have

∥

∥

∥u − uh
∥

∥

∥

2
=

∥

∥

∥u − uh − δ0

∥

∥

∥

2
+ ‖δ0‖2 . (3.11)

Noticing ||u − uh − w||2 = ||u − uh
e ||2 ≤ ||u − uh − δ0||2 and comparing (3.11) and

(3.6), we get

‖w‖2 =
∥

∥

∥u − uh
∥

∥

∥

2
−

∥

∥

∥u − uh
e

∥

∥

∥

2
≥

∥

∥

∥u − uh
∥

∥

∥

2
−

∥

∥

∥u − uh − δ0

∥

∥

∥

2
= ||δ0||2 = ∆e

2

which again gives (3.7).

Theorem 2. Suppose the conditions of Theorem 1 be satisfied. Let uh ∈ Sh
0 (Ω)

and uh/2 ∈ S
h/2
0 (Ω) be the Galerkin solution on Sh

0 (Ω) and S
h/2
0 (Ω) respectively. Then,

we have

∆e ≤ ||uh/2 − uh||De (3.12)

Conversly, for the second kind criterion, there exists two positive constants c′ and c

such that

c′
√

∑

e

∆e
2 ≤ ||uh/2 − uh|| ≤ c

√

∑

e

∆e
2 (3.13)

where the summation is for all elements.

Proof. According to the definition, we have

∆e = |a(u − uh, δ)| / ‖δ0‖ = a(uh/2 − uh, δ0)| / ‖δ0‖ ≤ ‖uh/2 − uh‖De .

If ∆e is the first kind criterion, (3.12) can be proved similarly. It follows easily from

(3.12) that the left part of (3.13) is valid.

On the contrary, since uh/2 − uh ∈ S
h/2
0 (Ω), denoting v = uh/2 − uh, we have

||v||2 = a(v, uh/2 − uh) = a(v, u − uh) = a(v − vI , u − uh)

where vI ∈ Sh
0 (Ω) is an interpolation on the coarse mesh.
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Without loss of generality, suppose T h be a triangular subdivision and, for each

element e ∈ T h, let φi(i = 1, 2, 3) be the basis functions at the mid-points of three sides

of e with respect to S
h/2
0 (Ω). Set

δe =
1

2

3
∑

i=1

[v(zi) − vI(zi)]φi ∈ S
h/2
0 (De). (3.14)

Then,

v − vI =
∑

e

δe.

It is easily seen that

||v||2 =
∑

e

a(δe, u − uh) =
∑

e

a(δe, δ0)

where δ0 is defined by (3.2) or (3.5) and depends on e. Therefore,

||v‖2 ≤ c

√

∑

e

‖δe‖2

√

∑

e

∆e
2 (3.15)

where ∆e = ||δ0||.
Next, it follows from (3.14) that

||δe|| ≤ 1
2 ||v − vI ||0,∞,e max1≤i≤3 ‖φi‖2 ≤ che|v|1,∞,e

≤ c |v|1,e ≤ c ‖v‖e

Substituting it into (3.15) gets

‖v‖2 ≤ c

√

∑

e

‖v‖2
e

√

∑

e

∆e
2 = c ‖v‖

√

∑

e

∆e
2.

Therefore,

‖uh/2 − uh‖ = ‖v‖ ≤ c

√

∑

e

∆e
2.

This completes the proof.

Remark. The theory of the local extrapolation[3] shows that u − (4uh/2 − uh)/3

has a higher approximate accuracy than u − uh. Thus, not strictly speaking,

4

3
(uh/2 − uh) =

1

3
(4uh/2 − uh) − uh ≃ u − uh.

It follows from above theorem that ∆e is a reasonable and computable for testing

‖u − uh‖De being ‘good’ or ‘bad’.

3. Some Numerical Examples

Consider the two-point boundary value problem with singular points x = 0 :
{

−d2u(x)
dx2 + 1

x
du(x)

dx + 1
x2 u(x) = 7

4
1

x3/2 − 2
x

u(0) = u(1) = 0
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its exact solution is
√

x − x. Since u′(x) = 1
2x−1/2 − 1 is not square integrable, u /∈

H1
0 ([0, 1]).

We use the piecewise linear finite element method to solve the approximate solution

uh. Two methods are applied. One is the uniform subdivision and the other is the

subconvergence local refinement. The method of the subconvergence local refinement

proceeds as follows:

Step 1 (n=2): Divide [0, 1] into n = 2 elements and compute. Utilize (2.2) to find

the number i0 of the bad element.

Step 2 (n=3): Refine the i0 − th element by midpoint, then [0, 1] is divided into 3

elements. Use (2.2) again to find the number i0 of new bad element.

If ∆ei0
= maxe ∆e ≤ δ, we stop. Otherwise, we refine the bad element by mid-point

to get n+1 elements on [0, 1], then compute with the linear finite element and find the

number of new bad element.

The following is several group results.

(I) The distribution of bad elements ( subconvergence local refinement )

subdivision element number n = 2 3 4 5 6 7 8 9 10 11

bad element number i = 1 1 1 1 6 1 1 1 1 8

It may be seen from above results that the singular point x = 0 is in the majority

of bad elements in the cycling process of the subconvergence local refinement. This

shows that the criterion (2.2) is a effective method for finding singular points.

(II) The displacement error |u(x) − uh(x)| in the neighbourhood of the singular

point:

x uniform subdivision subconvergence local refinement

1/2 1.80 × E − 1(n = 2) 1.80 × E − 1(n = 2)

1/4 1.46 × E − 1(n = 4) 5.76 × E − 2(n = 3)

1/8 1.04 × E − 2(n = 8) 5.52 × E − 2(n = 4)

1/16 7.37 × E − 2(n = 16) 4.61 × E − 2(n = 5)

1/32 5.21 × E − 2(n = 32) 3.60 × E − 2(n = 6)

(III) The derivative error |u′(x)−uh′(x)| in the neighbourhood of the sigular point:

x uniform subdivision subconvergence local refinement

1/4 6.6 × E − 1(n = 2) 6.6 × E − 1(n = 2)

1/8 1.67 × E − 1(n = 4) 3.6 × E − 1(n = 3)

1/16 1.67(n = 8) 3.8 × E − 1(n = 4)

1/32 1.48(n = 16) 4.3 × E − 1(n = 5)

1/64 3.33(n = 32) 5.0 × E − 1(n = 6)

Practical computations show that

(1) the error decreases by exponential function as h = 1/n does.
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(2) the accuracy of the subconvergence local refinement is better than that of uni-

form subdivision but the number of the elements of the subconvergence local refinement

is lnn /nln2 times of that of the latter.

(3) Apart from the singular point, the derivative has superconvergence. This is in

accord with the theory of the local superconvergence.

x |u′(x) − uh′(x)|
3/8 8.59E − 2(n = 7) 8.82E − 2(n = 8) 8.86E − 2(n = 9)

1/8 8.72E − 2(n = 6) 8.92E − 2(n = 7) 7.29E − 2(n = 8) 6.97E − 2(n = 9)
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