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Abstract

In this paper, a nonmonotonic trust region method for optimization problems

with equality constraints is proposed by introducing a nonsmooth merit function

and adopting a correction step. It is proved that all accumulation points of the

iterates generated by the proposed algorithm are Kuhn-Tucker points and that the

algorithm is q-superlinearly convergent.

1. Introduction

Consider the nonlinear equality constrained optimization problem

min f(x), s.t. c(x) = 01.1

where f : Rn → R1 and c : Rn → Rm, m ≤ n. Recently, reduced Hessian methods

are proposed to solve this problem. Coleman and Conn[1], and Nocedal and Overton[6]

proposed separately similar quasi-Newton methods using approximate reduced Hessian.

However, such methods can not ensure global convergence and therefore are available

only when the initial starts are good enough.

Two basic approaches, namely the line search and the trust region, have been de-

veloped in order to ensure global convergence towards local minima (see [4] and [5]

for example). However, most of the methods based on these two approaches enforce a

monotonic decrease of a certain merit function at each step, and this can considerably

slow the convergence rate of the minimization process, especially in the presence of

steep-sided valleys (see [4], [5]). More recently, the nonmonotonic line search technique

for unconstrained optimization was proposed by Grippo, Lampariello and Lucidi[5].

Furthermore, the nonmonotonic technique has been developed into the trust region al-

gorithm for unconstrained optimization[4]. The nonmonotonic idea motivates the study

on the projected Hessian methods with trust region. In this paper, we describe and

analyze improved projected methods with nonmonotonic trust region for problem (1.1),
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introducing a nondifferentiable penalty function as a merit function and employing a

correction step which allows us to overcome phenomena similar to the Maratos effect.

Section 2 of this paper gives the improved projected Hessian method in association

with the nonmonotonic trust region in more detail. In Section 3, we state the global

convergence properties of the method, while in Section 4 we prove the local convergence

rate of the algorithm.

2. Algorithm

We first introduce some standard notations. Let ‖ ·‖ be the Euclidean norm on Rn.

Let f : Rn → R1 be twice continuously differentiable, with gradient g : Rn → R1 and

Hessian matrix ∇2f . Let c : Rm → Rn be the vector of twice continuously differentiable

constrained function ci(x), for i = 1, 2, · · · ,m; with the gradient of ci(x) denoted by

ai(x) and the Hessian matrix of ci(x) denoted by ∇2ci(x).

In the sequel, we adopt the notations

fk := f(xk), gk := g(xk), Hk := H(xk).

We first state the revised projected reduced Hession algorithms, in which, after a

moving vector pk is determined by using the two-sided projected Hessian technique of

Nocedal and Overton [6], a correction step will also be taken to make the performance

of the algorithm more satisfactory and to overcome the Maratos effect.

Let A(x) = ∇c(x) be the n×m matrix consisting of the column vectors ai(x), for

i = 1, · · · ,m. Assume A(x) has full column rank. Make a QR decomposition for A(x):

A(x) = [Y (x), Z(x)] [ R (x)0] = Y (x)R(x)2.1

where [Y,Z] is an orthogonal matrix and R(x) ∈ Rm×m is a nonsingular upper tri-

angular matrix. The columns of Y (x) ∈ Rn×m and Z(x) ∈ Rn×t, t = n − m, form

respectively a normalized basis of the range space R(A(x)) of A(x) and the null space

N(A(x)T ) of A(x)T , i.e.

A(x)T Z(x) = 0.2.2

Clearly,

Y (x)T Z(x) = 0, Y (x)T Y (x) = Im, Z(x)T Z(x) = It,

Y (x)Y (x)T + Z(x)Z(x)T = In.2.3

Let

L(x, λ) = f(x)− λT c(x)2.4

be the Lagrangian of problem (1.1), where λ is the solution vector of the least-squares

problem, called projective multiplier,

min
λ
‖A(x)λ− g(x)‖.
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From (2.1), we have

λ(x) = (A(x)T A(x))−1A(x)T∇f(x) = R(x)−1Y (x)T g(x).2.4

Let

W (x, λ) = ∇2
xxL(x, λ)

be the Hessian of the function L(x, λ) with respect to x.

The general projected Hessian proposed by Nocedal and Overton in [6] follows. In

each iteration:

Solve the equations

RT
k p

y
k = −ck, 2.5Bkpz

k = −ZT
k gk2.6

to obtain p
y
k and pz

k, respectively. Let

pk = Zkp
z
k + Ykp

y
k2.7

and then take

xk+1 = xk + pk.

The computation will be terminated when ck = 0 and ZT
k gk = 0. At this point, the

Kuhn-Tucker condition is satisfied. The matrix Bk is updated using the BFGS or DFP

formulas after each iteration (see [6]).

A principal distinction between the Nocedal-Overton method or the Coleman-Conn

method, called the reduced Hessian, and the usual quasi-Newton methods, called the

full Hessian, is that in the former the updating matrix B ∈ Rt×t is an approximation

of the square matrix Z(x)T W (x, λ)Z(x) of order t, whereas in the latter the updating

matrix approximates W (x, λ). Nocedal and Overton proved the local convergence and

two-step q-superlinear convergence rate for their methods in [6]. Coleman and Conn

also gave the result of the local convergence and convergence rate in [1].

Now, we consider the nonmonotonic trust region technique for the improved pro-

jected reduced Hessian method, introducing a nondifferentiable penalty function as the

merit function.

In each iteration, we first solve a trust region subproblem

(Sk) l min (ZT
k gk)

T pz + 12(pz)T Bk(p
z), s.t. ‖pz‖ ≤ ∆k

where ∆k is the radius of the trust region. Let pz
k be the solution of problem (Sk).

Then, calculate

p
y
k = −αkR

−T
k ck2.8

where

αk = { 1 , if ck = 0,1, if ck 6= 0 and ∆k‖ck‖‖Ak(A
T
k Ak)

−1‖ ≥ 1,∆k‖ck‖‖Ak(AT
k Ak)

−1‖, otherwise.2.9
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The definition of p
y
k is the same as in [8] and for its motivation, please refer to that

paper.

Let

pk = Ykp
y
k + Zkp

z
k2.10

which will be the main movement in any successful iteration. But to overcome the

Maratos effect, a correction term dk generated from the lower triangular equation

RT
k hk = −c(xk + pk) + (1− αk)ck2.11

and then

dk = Ykhk2.12

needs to be introduced.

In order to decide whether to take

xk+1 = xk + pk + dk2.13

we introduce the l1-nondifferentiable exact penalty function

φ(x, ρ) = f(x) + ρ‖c(x)‖12.14

where

‖c(x)‖1 =
m

∑

i=1

|ci(x)|2.15

and ρ is a penalty parameter which is updated by

ρk = { ρk−1 , if ρk−1 ≥ τ + ‖λk‖∞,max{ρk−1, ‖λk‖∞}+ τ, otherwise 2.16

where τ is a given positive constant.

For the actual change of φ(x, ρ) from xk to xk + pk + dk;

∆φk = φ(xk + pk + dk; , ρk)− φ(xk, ρk), 2.17

we define its estimate value by

∆ϕk = (ZT
k gk)

T pT
k +

1

2
(pz

k)
T Bkp

z
k − αk(λ

T
k ck + ρk‖ck‖1).2.18

Relaxing the acceptability condition on pk + dk, we use the nonmonotonic trust

region method. Set

φ(xl(k), ρl(k)) = max
0≤j≤m(k)

{φ(xk−j , ρk−j)}2.19

and

∆φ̃k = φ(xk + pk + dk, ρk)− φ(xl(k), ρl(k))2.20
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where m(0) = 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1,M}, k ≥ 1, M is a nonnegative

integer, and l(k) satisfies

k −m(k) ≤ l(k) ≤ k.2.21

Now the complete algorithm can be stated as follows.

Nonmonotonic Trust Region Algorithm (NTRA).

Given µ ∈ (0, 1), η ∈ (µ, 1) and r0, r1, r2 which satisfy

0 < r0 ≤ r1 < 1 ≤ r2.2.22

Step 0. Give the starting x0, f0 and g0 and an initial trust region radius ∆0 and

B0, an initial approximation the Hessian at the starting point.

Step 1. Solve the subproblem (Sk) and (2.8)–(2.9).

Step 2. If pk = 0, then stop; otherwise go to the next step.

Step 3. Compute dk, ρk,∆φk,∆ϕk,∆φ̃k and set

ηk =
∆ϕk

∆ϕk

, and εk =
∆φ̃k

∆ϕk

.2.23

Step 4. In the case where

εk ≥ µ2.24

this iteration is said to be successful; set

xk+1 = xk + pk + dk2.25

and choose

∆k+1 ∈ [∆k, r2∆k], if ηk ≥ η, 2.26

or

∆k+1 ∈ [r1∆k,∆k), if ηk ≤ η.2.27

Otherwise, i.e. εk < µ, the iteration is said to be unsuccessful, and let

xk+1 = xk, 2.28∆k+1 ∈ [r0∆k, r1∆k].2.29

Go to step 1.

Step 5. Using the BFGS or DFP formula to update Bk, set k ← k + 1 and

m(k) ≤ min{m(k − 1) + 1,M}, and return to step 1.

Comparing the usual trust region with the nonmonotonic trust region, when M > 0,

we see the accepted step pk + dk should guarantee a certain decrease of φ(xk + pk +

dk, ρk) compared with φ(xl(k), ρl(k)). Therefore {φ(xk, ρk)} may not be monotonically

decreasing although ∆φk < 0 can be proved in the following section.

Furthermore, it is easy to see that Algorithm NTRA is the usual trust region algo-

rithm when M = 0. So the usual trust region algorithm, the monotonic trust region

algorithm, can be viewed as a special case of Algorithm NTRA.
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3. Global Convergence

In order to discuss the global convergence properties of Algorithm NTRA, we should

make the following assumptions.

Assumption A1. Sequences {xk}, {xk + pk} and {xk + pk + dk} are all contained

in a convex compact set Ω, and ∇2f and ∇2ci (i = 1, · · · ,m) are Lipschitz continuous

matrix functions on a convex compact Ω.

Assumption A2. Matrix A(x) has full column-rank over Ω.

Assumption A3. Y (x), Z(x) and R(x), obtained by a QR decomposition of A(x),

are Lipschitz continuous matrix functions on Ω.

Assumption A4. There is a b > 0 such that, for each matrix Bk,

vT Bkv ≤ b‖v‖2, ∀v ∈ Rt, ∀k.3.1

According to the assumptions, there exists an r such that

‖R−1
k ‖ ≤ r, ∀k.3.2

The following properties have been proved in [8].

Lemma 3.1.

‖dk‖ = O(‖pk‖
2), and ‖dk‖ = O(∆2

k)3.3

(see Lemma 3.1 in [8]).

Lemma 3.2.

αk‖ck‖1 ≥ min{‖ck‖,
∆k

r
}, for all k3.4

(see Lemma 3.3 in [8]).

Lemma 3.3.

|∆φk −∆φk| = O(‖pk‖
2).3.5

Proof. The proof is similar to that of Lemma 3.2 in [8].

Corollary 3.4. There exists a positive constant L such that, for all k,

|∆φk −∆ϕk| ≤ L∆2
k.3.6

Proof. By (3.5) and the definitions of pz
k and p

y
k,

‖pk‖
2 = ‖pz

k‖
2 + ‖py

k‖
2 ≤ 2∆2

k.3.7

Lemma 3.5.

∆ϕk ≤ −
1

2
‖ZT

k gk‖min
{

∆k,
‖ZT

k gk‖

b

}

− τ min
{

‖ck‖,
∆k

r

}

3.8

(see Lemma 3.5 in [8]).

Define

Kε = {x‖c(x)‖ + ‖Z(x)T g(x)‖ ≤ ε}.3.9
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Lemma 3.6. For any given ε > 0, there exists ∆̄ > 0 such that, for any x ∈ X\Kε,

with a trust region radius ∆k ≤ ∆̄ (2.4) holds, i.e.

ξk ≥ µ.

Proof. By the definitions of ∆ϕk and ∆φ̃k in (2.17) and (2.20), we have

∆φk = φ(xk + pk + dk, ρk)− φ(xk, ρk) ≤ φ(xk + pk + dk, ρk)− φ(xl(k); ρl(k)) = ∆φ̃k.3.10

Therefore, from (3.8), ∆φk < 0, we have

ξk =
∆φ̃k

∆ϕk

≥
∆φk

∆ϕk

= ηk.3.11

Moreover, by Lemma 3.6 of [8], ηk ≥ µ when ∆k ≤ ∆̄. This implies that (2.24) is true.

Theorem 3.7. Under assumptions A1–A4, assume the sequence {xk} generated

by Algorithm NTRA. Then,

lim
k→∞

inf{‖ZT
k gk‖+ ‖ck‖} = 0, 3.12

i.e. every limit point of {xk} is a Kuhn-Tucker point of problem (1.1).

Proof. According to (2.24) and (3.8), we have

φ(xk+pk+dk, ρk)−φ(xl(k), ρl(k)) ≤ µ∆ϕk ≤ −
µ

2
‖ZT

k gk‖min

{

‖∆k‖,
‖ZT

k gk‖

b

}

−µτ min

{

‖ck‖,
∆k

r

}

.3.13

Similarly to the proof of the theorem of [8], we have that the sequence {φ(xl(k),

ρl(k))} is nonincreasing for large enough k.

Moreover, we obtain

φ(xl(k), ρl(k)) ≤ φ(xl(l(k)−1), ρl(l(k)−1))−
µ

2
‖ZT

l(k)−1gl(k)−1‖min

{

∆l(k)−1

‖ZT
l(k)−1gl(k)−1‖

b

}

−µτ min

{

‖cl(k)−1,
∆l(k)−1

r

for all k > M .

If the conclusion (3.12) is not true, there is some ε > 0 such that

‖ck‖+ ‖ZT
k gk‖ ≥ 2ε, k = 1, 2, · · · , 3.15

and hence either

‖ck‖ ≥ ε, k = 1, 2, · · · ,

or

‖ZT
k gk‖ ≥ ε, k = 1, 2, · · · .3.16

Therefore, we have either

φ(xl(k), ρl(k)) ≤ φ(xl(l(k)−1), ρl(l(k)−1))−
µ

2
εmin

{

∆l(k)−1,
ε

b

}

3.17
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or

φ(xl(k), ρl(k)) ≤ φ(xl(l(k)−1), ρl(l(k)−1))− µτ min
{

ε,
∆l(k)−1

r

}

.3.18

Since {φ(xl(k), ρl(k))} is nonincreasing and ρk is bounded for large k, from (3.17) and

(3.18) we have

lim
k→∞

∆l(k)−1 = 0.3.19

Let

l̂(k) = l(k + M + 2).3.20

Similarly to the proof of the theorem in [5], by induction we obtain

lim
k→∞

∆
l̂(k)−j

= 03.21

for any given j ≥ 1.

From (2.21),

k + 2 = (k + M + 2)−M ≤ (k + M + 2)−m(k + M + 2) ≤ l(k + M + 2) = l̂(k).

Then, taking j = l̂(k)− k ≥ 1, we have

lim
k→∞

∆k = 0.

On the other hang, if ‖ck‖ ≥ ε, from Lemma 3.5, when ∆k ≤ rε,

∆ϕk ≤ −
τ∆k

r
; 3.23

if ‖ZT
k gk‖ ≥ ε, then from Lemma 3.5, when ε

b
≥ ∆k,

∆ϕk ≤ −
1

2
ε∆k.3.24

As above, when ∆k ≤ min
{

ε
b
, rε

}

we have

∆ϕk ≤ −∆k min

{

1

2
ε,

τ

r

}

= −τ1∆k.3.25

From (3.6), as ∆k → 0,

|(ηk − 1)| =

(

∆φk −∆ϕk

∆ϕk

)

≤
L∆2

k

τ1∆k

→ 0.3.26

This implies ηk → 1, i.e. for large k, ηk ≥ η. This implies that the trust region radius

will be bounded away from 0, which contradicts (3.22).

We have proved that the improved projected reduced Hessian method with non-

monotonic trust region technique is globally convergent. The advantage of our choice
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is relaxing some trust region conditions to accept steps. The cost is that the convergence

result is

lim
k→∞

inf{‖ZT
k gk‖+ ‖ck‖} = 03.27

instead of

lim
k→∞
{‖ZT

k gk‖+ ‖ck‖} = 0.3.28

4. Local Convergence Rate

In the following, we further discuss the local convergence rate of the improved

algorithm with nonmonotonic trust region technique. We further take

Assumption A5.

xk → x∗4.1

where x∗ is a Kuhn-Tucker point of problem (1.1), i.e. there exists a vector λ∗ ∈ Rm

such that

∇∗l(x∗, λ∗) = g∗ + A∗λ∗ = 0.4.2

Assumption A6. There is α1 > 0 such that

pT W∗p ≥ α1‖p‖
2, when AT

∗ p = 04.3

where

W∗ = W |x∗, λ∗|

is a Hessian matrix of the Lagrangian of problem (1.1) at x∗.

Assumption A7.

lim
k→∞

‖(Bk − ZT
∗ W∗Z∗)p

z
k‖

‖pk‖
= 0.4.4

The following two properties were proved in [8].

Lemma 4.1.

∆φk −∆ϕk = o(‖pz
k‖

2) + o(‖py
k‖).4.5

Lemma 4.2.

∆ϕk ≤ −
α1

2
‖pz

k‖
2 −

τ

r
‖py

k‖4.6

(See Lemma 4.2 and Lemma 4.3 in [8]).

Lemma 4.3. There is ∆̄ > 0 such that, for sufficiently large k,

∆k ≥ ∆̄.4.7

Proof. By the previous two lemmas,

|(ηk − 1)| =

∣

∣

∣

∣

(∆φk −∆ϕk)

(∆ϕk)

∣

∣

∣

∣

≤
(o(‖pz

k‖
2) + o(‖py

k‖))
α1
2 ‖p

z
k‖

2 + τ
r
‖py

k‖
→ 04.8
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as pz
k → 0 and p

y
k → 0. Thus, by the proposed algorithm, for large k, ∆k+1 ≥ ∆k, and

(4.7) holds.

The theorem implies that, as pz
k → 0 and for large k, the constraint of the subprob-

lem (Sk) is inactive, which means that pz
k is the solution of the equation

Bkp
z
k = −ZT

k gk4.9

and ck → c∗ = 0, which ensures αk = 1 for large k. So

p
y
k = −R−T

k ck4.10

and hk is the solution of equation

Rkhk = −c(xk + pk)4.11

where

pk = Ykp
y
k + Zkp

z
k.4.12

In addition,

dk = Ykhk.4.13

Set

xk+1 = xk + pk + dk.4.14

Theorem 4.4. Under assumptions A1–A7, the algorithm is two-step q-superlinearly

convergent, i.e.

lim
k→∞

‖xk+1 − x∗‖

‖xk−1 − x∗‖
= 0.4.15

Furthermore, sequence {xk + pk} is one-step q-superlinearly convergent, i.e.

lim
k→∞

‖xk + pk − x∗‖

‖xk−1 + pk−1 − x∗‖
= 0.4.16

Proof. The proof of (4.15) can be found in Theorem 4.1 of [8]. Now we prove (4.16).

It is easy to prove that

‖dk‖ = O(‖xk + pk − x∗‖), 4.17‖xk+1 − x∗‖ = O(‖xk + pk − x∗‖).4.18

By [6], we obtain

‖pk‖ = O(‖xk − x∗‖), 4.19‖xk + pk − x∗‖ = O(‖xk − x∗‖).4.20

And hence

AT
k (xk+pk−x∗) = AT

k (xk−x∗)−(ck−c∗) = (Ak−A∗)
T (xk−x∗)+o(‖xk−x∗‖) = o(‖xk−x∗‖) = o(‖xk−1+pk−1−x∗‖).4

Moreover,

ck = c(xk−1+pk−1+dk−1) = x(xk−1+pk−1)A(xk−1+pk−1)
T dk−1+O(‖dk−1‖

2) = [A(xk−1+pk−1)−Ak−1]
T dk−1+O(‖d
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In [6], Nocedal and Overton proved that

ZT
k W∗(xk − x∗) = ZT

k gk + O(‖xk − x∗‖
2).4.23

Let

Pk = I −Ak(A
T
k Ak)

−1AT
k , Qk = Ak(A

T
k Ak)

−1AT
k .4.24

Then,

Qk(xk−x∗) = Qk(xk+pk−x∗)−Qkpk = o(‖xk−1+pk−1−x∗‖)−Ykp
y
k = o(‖xk−1+pk−1−x∗‖)+Ak(A

T
k Ak)

−1ck = o(‖xk

Since

ZT
k W∗Pk(xk + pk − x∗) = −ZT

k gk + ZT
k W∗[(xk − x∗)−Qk(xk − x∗)] + o(‖pk‖

2), 4.26

we have

ZT
k (xk + pk − x∗) = o(‖xk−1 + pk−1 − x∗‖), 4.27

and (4.21) can be written as

Y T
k (xk + pk − x∗) = o(‖xk−1 + pk+1 − x∗‖).4.28

Combining (4.27) and (4.28) and noting

‖xk + pk − x∗‖ ≤ ‖Z
T
k (xk + pk − x∗)‖+ ‖Y T

k (xk + pk − x∗)‖,

we obtain

‖xk + pk − x∗‖ = o(‖xk−1 + pk−1 − x∗‖),

i.e., (4.16) is true.

Remark. In the proof of Lemma 4.3, (4.8) indicates that

ηk → 1, 4.29

which implies that, when k is large enough, {φ(xk, ρk)} is nonmonotonically decreasing.

So the same results of the superlinear convergence rate for the usual trust region in [8]

and Algorithm NTRA remain valid.

In the above, we have studied the convergence properties of the projected reduced

Hessian methods with nonmonotonic trust region technique, introducing the nondif-

ferentiable merit function, for nonlinear equality constrained optimization problems.

The proposed algorithm still needs a lot of numerical tests so that it can be applied in

practice.
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