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Abstract

The numerical simulation of the steady incompressible viscous flows in a no-slip

channel is considered. A discrete artificial boundary condition on a given segmental

artificial boundary is designed by the method of lines. Then the original problem

is reduced to a boundary value problem of Navier-Stokes equations on a bounded

domain. The numerical examples show that this artificial boundary condition is

very effective and more accurate than Dirichlet and Neumann boundary conditions

used in engineering literature.

1. Introduction

When computing the numerical solutions of viscous fluid flow problems in an un-

bounded domain, one often introduces artificial boundaries, and sets up an artificial

bopundary condition on them; then the original problem is reduced to a problem on

a bounded computational domain. In order to limit the computational cost, these

boundaries must not be too far from the domain of interest. Therefore, the artificial

boundary conditions must be good approximation to the “exact” boundary conditions

(so that the solution of the problem in the bounded domain is equal to the solution in

the original problem). Thus, the accuracy of the artificial boundary conditions and the

computational cost are closely related. Designing artificial boundary conditions with

high accuracy on a given artificial boundary has become an important and effective

method for solving partial differential equations on an unbounded domain. In the last

ten years, many authors have worked on this subject for various problems by differ-

ent techniques. For details, refer to the works by Goldstein [1], Feng [2], Han [3,4,5],

Hagstrom [6], Halpern [7] and Nataf [8] and the references there in.

The purpose of this paper is to design discrete artificial boundary conditions for the

steady incompressible viscous flow in stream function vorticity formulation in the case

when the domain is a no-slip channel. We use a direct method of lines [9] in the exterior

domain and design discrete artificial boundary conditions at the segmental artificial
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boundaries. Then the original problem is reduced to a bounded computational domain.

Furthermore, the numerical examples show that the artificial boundary condition given

in this paper is very effective and more accurate than the Dirichlet and Neumann

boundary conditions used in engineering literature.

2. Navier-Stokes Equations and Their Linearization

In this paper, we consider the numerical simulation of a steady incompressible

viscous flow arounding a body (domain Ωi) in a no-slipping channel defined by ℜ×[0, L].

Let u, v denote the components of the velocity in the x and y coordinate directions,

and p denote the pressure. Then u, v and p satisfy the following Navier-Stokes (N-S)

equations in domain Ω = ℜ× (0, L) \ Ω̄i:

u
∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
= ν △ u, (2.1)

u
∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
= ν △ v, (2.2)

∂u

∂x
+
∂v

∂y
= 0, (2.3)

and boundary conditions

u|y=0,L = v|y=0,L = 0, −∞ < x < +∞, (2.4)

u|∂Ωi
= v|∂Ωi

= 0 (2.5)

u(x, y) → u∞(y) = αy(L− y), v(x, y) → v∞ = 0, when x→ ±∞, (2.6)

where ν > 0 is the kinematic viscosity, and α > 0 is a constant.

Introduce the stream function ψ and vorticity ω. Then

∂ψ

∂y
= u,

∂ψ

∂x
= −v, (2.7)

ω =
∂v

∂x
−
∂u

∂y
. (2.8)

Then the problem (2.1)–(2.6) is reduced to the following problem:

∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x

∂ω

∂y
− ν △ ω = 0, in Ω, (2.9)

△ ψ + ω = 0, in Ω, (2.10)

ψ|y=0 = 0, ψ|y=L = ψL ≡

∫ L

0
u∞(s)ds, −∞ < x < +∞, (2.11)

∂ψ

∂y
|y=0,L = 0, −∞ < x <∞, (2.12)
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ψ|∂Ωi
= constant,

∂ψ

∂n
|∂Ωi

= 0, (2.13)

ψ → ψ∞(y) ≡

∫ y

0
u∞(s)ds, ω → ω∞(y) ≡ −u′

∞
(y), when x→ ±∞, (2.14)

where ∂
∂n

denotes the outward normal derivative.

Take two constants b < d, such that Ω̄i ⊂ (b, d) × (0, L). Then Ω is divided into

three parts: Ωb, ΩT and Ωd by the artificial boundaries Γb and Γd with

Γb = {x = b, 0 ≤ y ≤ L},

Γd = {x = d, 0 ≤ y ≤ L},

Ωb = {(x, y), | −∞ < x < b, 0 < y < L},

ΩT = {(x, y) | b < x < d, 0 < y < L} \ Ω̄i,

Ωd = {(x, y) | d < x < +∞, 0 < y < L}.

When |b|, d are sufficiently large, in the domain Ωb ∪ Ωd the flow is almost a Poiseulle

flow. So the nonlinear N-S equations (2.9)–(2.10) can be linearized, namely, in domain

Ωd (and Ωb) the solution ω and ψ of the problem (2.9)–(2.14) approximately satisfy

the following problem:

△ ω − u∞(y)Re
∂ω

∂x
= 0, in Ωd, (2.15)

△ ψ + ω = 0, in Ωd, (2.16)

ψ|y=0 = 0, ψ|y=L = ψL, d ≤ x < +∞, (2.17)

∂ψ

∂y
|y=0,L = 0, d ≤ x < +∞, (2.18)

ψ(x, y) → ψ∞(y), ω(x, y) → ω∞(y), when x→ +∞ (2.19)

where Re= 1
ν
. Let

ω̃(x, y) = ω(x, y) − ω∞(y), ψ̃(x, y) = ψ(x, y) − ψ∞(y). (2.20)

Since ψ∞(y) is a polynomial of degree three, ω∞(y) is a polynomial of degree one and

ψ′′

∞
(y) + ω∞(y) = 0, it is straightforward to check that ω̃ and ψ̃ satisfy the equations

(2.15)–(2.16) and the following boundary conditions:

ψ̃|y=0,L =
∂ψ̃

∂y
|y=0,L = 0, d ≤ x < +∞, (2.21)

ψ̃(x, y) → 0, ω̃(x, y) → 0, when x→ +∞. (2.22)

Since the boundary condition on the artificial boundary Γd is unknown, equations

(2.15)–(2.16) with boundary conditions (2.21)–(2.22) are an incompletely posed prob-

lem, which can not be solved. Let

ψ̃|x=d = ψ̃d(y), ω̃|x=d = ω̃d(y), 0 ≤ y ≤ L. (2.23)
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For given functions ψ̃d(y) and ω̃d(y) with ψ̃d(0) = ψ̃d(L) = 0 and dψ̃d(y)
dy

|y=0,L = 0,

we discuss the numerical solution of equations (2.15)–(2.16) with boundary conditions

(2.21)–(2.23), and design a discrete artificial boundary condition on the segment Γd for

the problem (2.9)–(2.14).

3. An Artificial Boundary Condition

We now consider the semidiscretization approximations of the problem (2.15)–

(2.16), (2.21)–(2.23). Let △y = L
N

be the mesh size, where N is a positive integer.

The domain Ωd is divided into N strips, i.e. Ω̄d = ∪Nk=1Ω̄k, where

Ωk = {(x, y) | d < x < +∞, (k − 1)△y = yk−1 < y < yk = k△y}.

The following semidiscretization scheme is used to solve equations (2.15)–(2.16) with

boundary conditions (2.21)–(2.23):

d2ω̃k(x)

dx2
+
ω̃k+1(x) − 2ω̃k(x) + ω̃k−1(x)

△y2
− u∞(yk)Re

dω̃(x)

dx
= 0, (3.1)

d2ψ̃k(x)

dx2
+
ψ̃k+1(x) − 2ψ̃k(x) + ψ̃k−1(x)

△y2
+ ω̃k(x) = 0, 1 ≤ k ≤ N − 1, (3.2)

with boundary conditions

ψ̃0(x) = ψ̃N (x) = 0, d ≤ x < +∞, (3.3)

ω̃0(x) = −
1

2
ω̃1(x)−

3ψ̃1(x)

∆y2
, ω̃N (x) = −

1

2
ω̃N−1(x)−

3ψ̃N−1(x)

∆y2
, d ≤ x < +∞, (3.4)

ψ̃k(d) = ψ̃d(yk), ω̃k(d) = ω̃d(yk), 1 ≤ k ≤ N − 1, (3.5)

lim
x→+∞

ψ̃k(x) = lim
x→+∞

ω̃k(x) = 0, 1 ≤ k ≤ N − 1. (3.6)

Let

X0 = [ω̃d(y1), . . . , ω̃d(yN−1), ψ̃d(y1), . . . , ψ̃d(yN−1)]
T ,

X(x) = [ω̃1(x), . . . , ω̃N−1(x), ψ̃1(x), . . . , ψ̃N−1(x)]
T .

Therefore, the problem (3.1)–(3.6) is equivalent to the following ordinary differential

system with constant coefficients:

Find X such that

Ẍ(x) +A0Ẋ(x) +B0X(x) = 0, (3.7)

X(d) = X0, lim
x→+∞

X(x) = 0 (3.8)
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where B0 and A0 are 2(N − 1) × 2(N − 1) matrices and

B0 =











































−5β
2 β 0 . . . 0 −3β2 0 0 . . . 0

β −2β 0 . . . 0 0 0 0 . . . 0

0 β −2β . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 . . . β −5β
2 0 0 . . . 0 −3β2

1 0 0 . . . 0 −2β β 0 . . . 0

0 1 0 . . . 0 β −2β β . . . 0

0 0 1 . . . 0 0 β −2β . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 . . . 0 1 0 0 . . . β −2β











































,

A0 = −Re

(

C0 0

0 0

)

,

with

C0 =













u∞(y1) 0 . . . 0

0 u∞(y2) . . . 0
...

...
. . .

...

0 0 . . . u∞(yN−1)













,

and

β =
1

△y2
.

Let

Y (x) = Ẋ(x), W (x) =

(

X(x)

Y (x)

)

.

Then we have

Ẏ (x) +A0Y (x) +B0X(x) = 0.

Therrefore the problem (3.7)–(3.8) is equivalent to the following boundary value prob-

lem of a system of ordinary differential equations:

Find W such that

Ẇ (x) = D0W (x), (3.9)

X(d) = X0, lim
x→+∞

X(x) = 0 (3.10)

where

D0 =

(

0 I2N−2

−B0 −A0

)

,

and I2n−2 is a (2N − 2) × (2N − 2) unit matrix.

We now solve the problem (3.9)–(3.10) by a direct method. Suppose eλ(x−d)ς is

a nonzero solution of the system of ordinary differential equations in (3.9). Then we
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know that the constant λ and nonzero vector ς are a solution of the following standard

eigenvalue problem:

(λI4N−4 −D0)ς = 0. (3.11)

From the boundary condition limx→+∞X(x) = 0, the real part of λ must be negative.

So to solve the problem (3.9)–(3.10) we need only to calculate the eigenvalues with

negative relal parts and the corresponding eigenvectors of the eigenvalue problem (3.11).

Fortunately, in our numerical examples, the computation shows that the problem (3.11)

has just 2N−2 eigenvalues with negative real parts, which is what we expect. Therefore,

we assume λi (1 ≤ i ≤ 2N − 2) are the eigenvalues with negative real parts of the

problem (3.11) and ςi (1 ≤ i ≤ 2N−2) are the corresponding eigenvectors. Particularly,

we assume λi (1 ≤ i ≤ 2r) are real eigenvalues, λi (2r + 1 ≤ i ≤ 2N − 2) are complex

eigenvalues with nonzero imaginary parts and λ2l = λ̄2l−1 (r + 1 ≤ l ≤ N − 1).

Thus

W (x) =
2r
∑

j=1

aje
λj(x−d)ςj +

N−1
∑

j=r+1

[
a2j−1

2
(eλ2j (x−d)ς2j + eλ̄2j(x−d)ς̄2j)

+
a2j

2i
(eλ2j (x−d)ς2j − eλ̄2j (x−d)ς̄2j) (3.12)

satisfies the system of ordinary differential equation (3.7) and the boundary condition

limx→+∞X(x) = 0 for any constants a1, a2, . . ., a2N−2.

Letting x = d in the equality (3.12), we have

W (d) =
2r
∑

j=1

ajςj +
N−1
∑

j=r+1

[a2j−1Reς2j + a2jImς2j ], (3.13)

where Reς and Imς denote the real and imaginary part of ς. Introduce matrices

D = [ς1, . . . , ς2r, Re ς2r+2, Imς2r+2, . . . , Re ς2N−2, Im ς2N−2] =

(

D1

D2

)

,

a = [a1, a2, . . . , a2N−2]
T ,

where D1, D2 are both (2N − 2) × (2N − 2) matrices.

From (3.13), we have

X(d) = D1a, Ẋ(d) = Y (d) = D2a.

Then, we obtain

Ẋ(d) = D2D
−1
1 X(d). (3.14)

Let

Z(x) = [ω1(x), ω2(x), . . . , ωN−1(x), ψ1(x), ψ2(x), . . . , ψN−1(x)]
T .

Thus,

Z(d) = X(d) + c, Ż(d) = Ẋ(d), (3.15)
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where

c = [ω∞(y1), . . . , ω∞(yN−1), ψ∞(y1), . . . , ψ∞(yN−1)]
T .

Substituting (3.15) into (3.14), we obtain the following discrete artificial boundary

condition on artificial boundary Γd:

Ż(d) = HZ(d) + s, (3.16)

with

H = D2D
−1
1 , s = −D2D

−1
1 c.

In a similar way, we can get the artificial boundary conditions on the boundary Γb.

Suppose that {lk(y), k = 0, 1, . . . , N} is a basic set of interpolating functions on

Γd, for example {lk(y), k = 0, 1, . . . , N} is a Lagrange interpolating polynomial. Then

we have
∂ω(d, y)

∂x
=

N
∑

k=0

lk(y)
∂ω(d, yk)

∂x
=

N−1
∑

k=1

lk(y)
∂ω(d, yk)

∂x
, (3.17)

∂ψ(d, y)

∂x
=

N
∑

k=0

lk(y)
∂ψ(d, yk)

∂x
=

N−1
∑

k=1

lk(y)
∂ψ(d, yk)

∂x
. (3.18)

The last equalities in (3.17) and (3.18) are followed by

∂ω(d, y0)

∂x
=
∂ω(d, yN )

∂x
= 0,

∂ψ(d, y0)

∂x
=
∂ψ(d, yN )

∂x
= 0.

Thus we have
(

∂ω(d,y)
∂x

∂ψ(d,y)
∂x

)

=

(

∑N−1
k=1 lk(y)

∂ω(d,yk)
∂x

∑N−1
k=1 lk(y)

∂ψ(d,yk)
∂x

)

=Li

(

∂ω(d, y1)

∂x
. . .

∂ω(d, yN−1)

∂x

∂ψ(d, y1)

∂x
. . .

∂ψ(d, yN−1)

∂x

)T

=Li(HZ(d) + s) ≡ Πd
h(ω,ψ), (3.19)

where

Li =

(

l1(y) . . . lN−1(y), 0 . . . 0

0 . . . 0 l1(y) . . . lN−1(y)

)

.

Then on the domain ΩT the original problem (2.9)–(2.14) can be approximated by the

following problem:

∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x

∂ω

∂y
− ν △ ω = 0, in ΩT , (3.20)

△ ψ + ω = 0, in ΩT , (3.21)

ψ|y=0 =
∂ψ

∂y
|y=0,L = 0, ψ |y=L= ψL, b ≤ x ≤ d (3.22)
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ψ|∂Ωi
= constant,

∂ψ

∂n
|∂Ωi

= 0, (3.23)

ψ|Γb
= ψ∞(y), ω|Γb

= 0, (3.24)

(
∂ω

∂x
,
∂ψ

∂x
)T |Γd

= Πd
h(ω,ψ). (3.25)

4. Numerical Implementation and Example

In this section we now consider the numerical solution of the original problem (2.9)–

(2.14) on the given computational domain ΩT . This steady state solution is computed

as the limit in time of the unsteady N-S equations, which are discretized by an ADI

method[12]. For each example, we use the same inflow boundary conditions

ψ(b, y) = ψ∞(y), ω(b, y) = 0, 0 ≤ y ≤ L, (4.1)

at the artificial boundary Γb. To test the artificial boundary comnditions, we made

three types of computation using diferent types of outflow boundary conditions at

artificial boundary Γd in each example.

Type I. Dirichlet boundary condition

ψ(d, y) = ψ∞(y), ω(d, y) = 0, 0 ≤ y ≤ L.

Type II. Neumann boundary condition

∂ψ

∂x
(d, y) = 0,

∂ω

∂x
(d, y) = 0, 0 ≤ y ≤ L.

Type III. Discrete artificial boundary condition (3.16) or (3.19).

In the example, the results are compared with an “exact solution”. This solution

is obtained by using an outflow boundary very far from the obstacle or step, at which

is a prescribed Neumann boundary condition. To be precise, the distance between the

inflow boundary and the outflow boundary for the “exact solution” is twice the distance

in our example.

Example 1. Computed flow in a horizontal channel of finite width with a rectan-

gular cylinder obstruction. The obstruction is defined by the domain

Ωi =
{

(x, y) | 0.8 < x < 1.2,
3

7
L < y <

4

7
L
}

.

The bounded computational domain ΩT is given by

ΩT = {(x, y) | b < x < d, 0 < y < L} \ Ω̄i,

and u∞(y) = 4u∞
L2 y(L− y); hence ψ∞(y) and ω∞(y) are given by

ω∞(y) =
4u∞
L2

(2y − L), ψ∞(y) =
4u∞
L2

y2(
L

2
−
y

3
).
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Stream function

Vorticity

Fig.1

The constants b, d, L, u∞ and Re are given by b = 0, d = 2.8, L = 1.4, u∞ = 1.0 and

Re = 100.

Let (ωE, ψE) denote the “exact solution” (Fig.1) and (ωi, ψi)(i = I, II, III) denote

the numerical solutions corresponding to the boundary conditions of type I, II and III

on artificial boundary Γd. The error ωE −ωi, ψE −ψi on the boundary Γd are given in

Fig.2. Let

err(fE − f̃i) =

√

√

√

√

N
∑

j=0

(fE(d, yj) − f̃i(d, yj))2

then the errors err(ωE − ωi), err(ψE − ψi) are given in Table 1.

Table 1

errors i =I i =II i =III

err(ωE − ωi) 2.5867 0.3423 0.0989

err(ψE − ψi) 0.0754 0.0144 0.0026
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Distance from axis: y

Distance from axis: y

Fig.2

Example 2 Backward-facing step flow. The bounded computational domain is

given by

ΩT = {(x, y) | b < x ≤ b+
L

2
,
L

2
< y < L; b+

L

2
< x < d, 0 < y < L}.
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Stream function

Vorticity

Fig.3

The inflow condition at boundary Γb = {(x, y)| x = b, L
2 ≤ y ≤ L} is given by

ω(b, y) =
16u∞
L2

(4y − 3L), ψ(b, y) =
8u∞
3L2

(y −
L

2
)2(5L− 4y).

Then u∞(y), ψ∞(y) and ω∞(y) are the same as in example 1.

We take b = 0, d = 2.1, L = 0.7, u∞ = 1.0 and Re = 100. The comparison of the

“exact solution” (ωE, ψE) (Fig.3) and the numerical solutions (ωi, ψi)(i = II, III)

on the boundary Γd are given in Fig.4. Table 2 shows the errors err(ωE − ωi) and

err(ψE − ψi).

Table 2

errors i =I i =II i =III

err(ωE − ωi) 0.9969 0.3152 0.0951

err(ψE − ψi) 0.0126 0.0038 0.0018

The examples show that the Dirichlet boundary condition is very inaccurate (Table

1 and Table 2), and the artificial boundary condition presented in this paper is more

accurate than the Neumann boundary condition (Fig.2 and Fig.4). And is saves com-

puting time, since for a given accuracy is is possible to use a smaller computational
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Distance from axis: y

Distance from axis: y

Fig.4

domain.
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