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GENERAL INTERPOLATION FORMULAS FOR SPACES OF
DISCRETE FUNCTIONS WITH NONUNIFORM MESHES*!
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Abstract

The unequal meshsteps are unavoidable in general for scientific and engineering
computations especially in large scale computations. The analysis of difference
schemes with nonuniform meshes is very rare even by use of fully heuristic methods.
For the purpose of the systematic and theoretical study of the finite difference
method with nonuniform meshes for the problems of partial differential equations,
the general interpolation formulas for the spaces of discrete functions of one index
with unequal meshsteps are established in the present work. These formulas give
the connected relationships among the norms of various types, such as the sum of
powers of discrete values, the discrete maximum modulo, the discrete Holder and
Lipschitz coefficients.

1. Introduction

The great number of problems for the large scale scientific and engineering compu-
tations concern the numerical solutions of various problems for the partial differential
equations and systems in mathematical physics. The finite difference method is the
most commonly used in these computations. So the theoretical and numerical studies
of the finite difference schemes for the problems of the partial differential equations and
systems naturally call people’s great attentions.

The imbedding theorems and the interpolation formulas for the functions of Sobolev’s
spaces are very useful in the linear and nonlinear theory of the partial differential equa-
tions [1-4]. It is natural that the analogous extensions of the interpolation formulas
for the discrete functional spaces must play the extremely important role in the study
of the finite difference approximations to the problems of linear and nonlinear par-
tial differential equations and systems. The discrete interpolation formulas and their
consequences can be used in the study of the convergence and stability of the finite
difference schemes for the various problems of linear and nonlinear systems of partial
differential equations of different types. And they can also be used to construct the

* Received March 14, 1994.
Y The Project Supported by National Natural Science Foundation of China and Foundation of
Chinese Academy of Engineering Physics.



General Interpolation Formulas for Spaces of Discrete Functions with Nonuniform Meshes 71

weak, generalized and classical, local and global solution for the problems of partial
differential equations and systems. [5-11]

The finite difference schemes with unequal meshsteps for the problems of partial
differential equations are much more complicated than the schemes with equal mesh-
steps. There are only very few simple results concerning this topic. Establishment
of the general interpolation formulas for the spaces of discrete functions with unequal
meshsteps obviously gives the possibility and strong apparatus for the systematic stud-
ies of the finite difference schemes with unequal meshsteps for the problems of partial
differential equations.

The purpose of the present work is to establish a series of general interpolation
formulas for the discrete functional spaces of discrete functions with equal and un-
equal meshsteps. These general interpolation formulas give the connected relationship
among the discrete norms as the summations of powers, the maximum modulo and
the Lipschitz and Holder quotients for different discrete functional spaces. Also a se-
ries of consequences, derivations and applications for these interpolation formulas are
justified. They are very commonly used in the further study for the finite difference
approximations to the theory of partial differential equations.

2

Let us divide the finite interval [0,[] into the small segments by the grid points
{z;]j =0,1,---,J}, where 0 = 29 < 1 < --- < xj_1 < w7 = [, J is an integer
and hj+% =xj41 —x; > 0(j =0,1,---,J — 1) are the equal and unequal meshsteps.
The discrete function up = {uj|j = 0,1, - -, J} is defined on the grid points {z;|j =
0,1, -, J} with unequal in general meshsteps h = {hj+%]j =0,1,- -, J —1}. Let
us denote Aju; = w1 — uj or simplely Auj = ujpq —ui(j = 0,1,---,J — 1) and
A_’U,j =Uu; — uj—l(j = O, 1, cy J)

Now let us introduce some notations of the difference quotients for the discrete
function up = {u;|j = 0,1,---,J}. As the discrete functions we take the notation for
the difference quotient of first order

— Lk L
5uh—{5u]+% —T‘j—0,1,7j—1}, (1)
t+3

which can be regarded as a discrete function defined on the grid points

{:ES:% = %(33]4_1 —I-ﬂij)‘j =0,1,---,J — 1}.

of the interval [x(ll),xfllzl] of length a:f]lzl - a:(ll) =1- %(h% + hj_%) with the unequal
in general meshstzeps ’ ’ ’
{n)y =hi

j:QL~yJ—Q.
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(2)

The difference quotient of second order for the discrete function up, = {u;|j =
0,1,---,J} is a discrete function
ou, 1 —ou,; 1
2, _ [s2., _ _Jt3 1735 | J =
5uh—{5u3— e j=0,1,---J 1}

J

The grid points of this discrete function are

@ _ 1, @ M | _
{:Ej —2(£Ej+%+ﬂ;‘j_ )

of the interval [:E§2) @) | with length xf,zll — x§2) and the corresponding unequal mesh-

Ty
steps are

@ _1
{h? =5y +hy )

For the difference quotients of higher order, we have

j=0,1,--J —1}.

2 2
1) Uj+1 -0 ’LLj

Fup = {%uy, 1 = —]j =0,1,-+,J -2},

1
3 3)
hj+%
Bu, 1 —Bu._1
4 4, _ its 73 T
0 up = {5 u] = h(4) ] —27 7=] 2}7
j
0%k g — 6%
2%k+1 2k+1 _ j+1 j
o+, = {o Uey = — G \]_k,kﬂ, J = (k+ 1)},
it+3
52k+1u L 52k+1’LL» L
2k+2 2k+2 Jt3 I=3 |, _
P = {0 = [ = kLT (D),
j
k:0717 7
where
o _
A O NN I W1 A S
j 2\ i+s -3 g \i+gy T =5/

2k
@k+1) _ 1ooery e, 1 o% .
hj+§ - §(hj+1 +hi) = 92k Zo( i)hj+k+%—i7
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(2k+2)
h]

1 2k+1

(2k+1) (2k+1) 2k+1
2(h3+— +uj—% )= WZ )hg+k+——w

=0
k=01, -

73

(4)

The discrete difference quotients 62¢+1v;, and 52k+2uh (k > 0) can be regarded as

the discrete functions defined on the grid points {x

(e = k41,

(k+1)} and {h* 2|

k+1)|j = k) >J_

J — (k+ 1)} with unequal meshsteps {h 2k+1)‘] =
=k+1,---,J—(k+1)} of the intervals [z (2k+1)7$ —(k

k+1

l ](621?2) 5214&2_21)] with the lengths lo,4 = ;Eff?;:j%) _ ‘/El(f-f;l) and oy =
x,(ff;r 2) respectively, where
(2k11) 2k+1
j+d 22k Y Nk, (G =k, J = (k+1));
=0
k) _ 2k+2
i 22k+1 Z T i) G =k + 1, T = (k+1))

and

(2k+1) _  (2k) (2k) .,
hiifr =i -2

2k+1) _ 1 2k)y
b0 = LGB 4 0 G (k)
(2k+2) _ _(2k+1) _ _(2k+1)
h] xy+2 xj—% ’
@k+2) _ 1 (2k+1) (Zk+1)y s e J —
z; _2(96]+2 e i+s ), j=k41 o J = (k+1)
Let us denote
WY —  max h. he= min h;

It is clear that

h* >

and
hy <

for k=0,1,--

> lgpyr > 1 —2kh* >

max h' , h*< max
j=k,

1
=k, J—(k+1) It3

.. And it can be verified that

=00, g—1 I+3 =00, g1 I3

(2k41) ,(2k+2)

1
J—(k+1) J+3 j=k41,,J—(k+1) 7 ’

min h(2k+1), he < min p(2k+2)

T =kl J—(k+1)

I, 1> l_2k+2 > — (2]{7 + 1)h* >

N —
N —

(k+ 1)} and
J -
+%)] and

(
J—(k+1)

(®)
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for k=0,1,---.
3
The norms of the discrete function uj, = {u;|j =0,1,---, J} with unequal meshsteps
are defined as
Lo -« pl P 5
lunlly = (Gluol"hy + > [ul'5 (s + hy 1) + SlusPhy_1)? (8)
j=1
or
71 1
lunlly = (3 3 (s +hy_)ll?)? )
§=0
or
J—1 1 1
lunlly = (2 5 (lusl” + [uj4a ")y 1)P (10)
j=0
and
A ——) (11)

where h_% :hJ+% =0and 1 <p<oo.
The difference quotient of first order is the discrete function duy has the norm as

[0unlloc = omax, |60, 1] (12)
and
J—1 L
l[0unlly = (_Z(:) |6u;y 1fPhy 1) (13)
]:

where 1 < p < oo is a real number. The norms of the difference quotients §%u; of
second order for the discrete function uy have the expressions as

H52uhH00 — j:()Hll?J.XJ_l |52uj| (14)
and
J—1 1
16%unllp = (3 16%u; PR, (15)
j=1

where 1 < p < oo.
Then for the norms of the difference quotients §*u;, of order k > 1, we take the
notations as follows:
J—(k+1) sy
2k+1 2k-+1 +1)y 2
8% unlly = (30 15y RO ),
Jj=k
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J—(k+1) k2], L
1625 2yl = (3 (022 PR, (16)
Jj=k+1
and
2k+1 _ 2k+1
107 unlloo = max 1074,
0% 20y [l = max  [0%F2u), (17)

j=k+1,,J—(k+1)
where 1 <p<oocand k=0,1,---.
Denote by

D=

h. 1 h,
M = max i73 _IF
§=0,1,,J—1

)
Prjps Pye

|

the maximum ratio constant of two consecutive unequal meshsteps or simply the ratio

(SIS

constant of meshsteps.

4

Lemma 1. For any discrete functions u, = {u;|j =0,1,---,J} defined on the grid
points {z;|j = 0,1, - -, J} with unequal meshsteps {hj+% =z —x; >0[j=0,1,--
- J — 1} of the interval [0,1] of finite length | < co and for any constants 1 < q,r < oo
and g < p < oo, there is

1_1
unllp < C(llunllg™I6unlld + 17 [lunllq) (18)
with
1 1-«a 1
i Z 1 19
= ta(s 1) (19)
and
1
0<a< —»1 - <1 (20)
—_ = 1 1—7
-2+

where C is a constant independent of the constants p, q, r, the finite length | < oo, the
meshsteps {hj+% >0l =0,1,---,J — 1} and the discrete function uy,.
Proof. For any uj, = {u;|j =0,1,---,J}, we have
m—1

| = Jus| < Judy —ud] <@ > (Juja |+ Jug T g — gl

j=s

whered >1land 0 <s<m<J. Let 1 <g,r < oo and

—
—_

S4-=1
"

Q

Here we then have

m—1 m—1
d d— d— 1 Ujt+1 — Uj 1 d
i |* < d[ Y (] 1+hwllﬁ%+gﬂ§ ri—f;irw+gr+ha
; o 1

j=s J+3
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1
< 2d[ 7 (Ju | 9709+ Jug |09 by 4T 0wl + s

j=s

1 _
< 2d27 HuhH‘(id_ll)gHéuhHr + |ug|?. Take(d-1)g=q(q> 1), then

3= |Q =

13
d 1-14

Q|

If for j =0,1,---,J, |uj| > a >0, then
1
[unlly = al.
Thus there always exists such a ug, that
1
[unllg = Jus|la.
Taking this special ug, we get for any m =0,1,-- -, J,
_d
| < ddlup g |Sunllr + 179 [funlg-

Hence we have ) ) X
1-1 1 _1
lunlloo < 4lunllq llounll¥ + 1" 7[lunllg,

where (4d)é <4 ford>1.
For any 1 < g < p < o0, there is

Junllpy < llunllE?Ilunllg-

Therefore, we have

1

1
lunllp < 4llunllg™ 10unll + 1774 [lunlq,

where
1_1
g p
Q= I, 1
1-141
for any 1 < g < p < o0.
By means of Holder inequality, we have
Up, Up,
| lHq < H l”” < Nunlloosp > ¢
la I
and then also 1S
Up,
. = < 16un o

These show that

Hm |lupllq = lunllos,  lim [|6upllr = [|6uplloo-
q—00 r—00

ZHOU YU-LIN
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Hence the obtained estimate is valid also for » = co and ¢ = co. Then the lemma is

proved.
Lemma 2. For every discrete function u, = {uj|j = 0,1, -, J} defined on
the grid points {x;|j = 0,1,- - -, J} with unequal meshsteps {hj+% = Tjf1 — x5 >

0l =0,1,---,J — 1} of the interval [0,1] of finite length | < oo and for any constants
1<q,r<o0andq<p< oo, there is

1_1
165 unllp < C (16" un = N unll + 1777 || 6% un ) (22)
with 1 1 1
-«
i Z 1 23
p= G )
and
1
0<a§1_i1 <1, (24)
r g

where k > 1 and C is a constant independent of the constants p, q, r, the finite length
I < oo, the meshsteps {hj+% >0l =0,1,- -+, J — 1} and the discrete function up, and
dependent on the ratio constant M of meshsteps.

Proof. For the sake of brevity, let us consider the case of k being odd integer,
k=2k'+1,k =0,1,---. Then let vy, = 6*uy or

on={vj = up1lj =K, T = (K +1)).
This discrete function vy, = 6*uy, is defined on the grid points
v =)L li =K. = (K + 1))

with the meshsteps

k k+1
{7 Ti+l = Yj+1— yjzl’;:%— ng)l—th:{)\ =K, - J—kK -2}
the interval = %) 2% f length [, — g =
on the interval [yw,y;_41)] = [mk,+1, S l] of length [ YJj_k'—1 — Yk
:Ef]k_)k,_% — ngi_% > %l. Here we also have dvy, = 5k+1uh, in fact

. o SRu s — R
I S R b | ity _ gktl,
B 4D J+l
7+1

5vj+

N

Tiyl
for j =k, -, J—kK —2.

By the same way as the begin of the proof of Lemma 1, we have for d > 0, ¥’ < s <
m§J—k:’—1andlgq,r<oowithé—l—%:l,theestimate

m—1 m—1

onl? < 24] 3 (gl + oyl a] [ 0 [

1
T d
21 v
_ 1 ’ J+§} + [l
j=s i=s  Tit3
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or
m—1 1
k d k k (k+1)] 79
0¥y 1 < 20 37 (105 0]+ 105, o [9AES]?
J=s

y [Z;n:—sl |65 Ly |7 hgil } + [0%u er1| ,whereq=(d-1)g> 1. Then we have

1
|5kum+% |d < 2dW'ys ||5k+1uh||r + |5kus+% |d,

where
J—k'—2

W= > (16%u;, 817 + 0% uy,1]7) Y.
=k
Here we have
(J—K'—2)
= [0Fwy [T+ 100 1Y 4 D) j6Ru s R
Jj=k'+1

(k+ (k+1 k+1)
J—k'—2 1’qh(k) (hj )+h(‘+1 )

h
sk q1,(k) k’+1 k
0 Uk/_,_%‘ hk’ 2 (k) +Z] =k/+1 ’(5 u]+_ h(k)
ity
k h(k+1,)
_ q J—k/—1
T T |hJ o l(h(k) )
2 1
J—k'—3
k h(k+1) (k+1) B D h(zk/+2)
< 2”5 Uh||q{maX] =k'+1,---,J—k'—1 h(k) maszk’7"~7J—k’—2 (k) }.SZTLCG hj(k) h?2k’+1) =
th 3+2 i+s i+
2k’ +1 Qk +1
22k’+1 Z ( )b +k’+%—i
1 2K/ 2k/!
22K/ Zi:o( i)hj+k/+%,i
1 k h(k‘H) 1 A
J+2

K- J — K — 2 thenwehaveW < (1 + M)M*1|[6Fuy 4.
This shows that
1 k-1 _
[ty 17 < 2d(1+ M) M7 |6 up g 10" a1+ 165 1|,

Similarly to the proof of Lemma 1, we get the estimate

1_1
6% upllp < C ) (|[6%upllg™ 16" unlly + 77 (|8 )

with
1 11—«
p q
) depends on the maximum ratio constant M of two consecutive unequal

where C'(M
meshsteps. This gives the result of the lemma for the case k = 2k’ + 1 being odd.
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For the case of k being even, k = 2k’, k' = 1,2, - - -, let us denote vy, = 6*Fuy, or
vy, = {v; = 5kuj\j =K, - J-kK}.
This discrete function vy, is defined on the grid points
W j=k o J— K
Ty = e = W, — K

with the meshsteps

k k k+1
{r01 =y — gy = 25y — " _h§++ Nj=K, - J—K —1}
on the interval [y, y;_p/| = [$,(€]f),xsk_)k,] of length I, = yj_1 —ypr = :ngk)k, — x,(g,) > %l.

Here we have vy, = 6*T 1y, in fact

Sv. 1:Uj+1_v'_6u]+1 5“] _5k+l .
J+3 T‘+l h(k-l—l) J+§
i+3 j+d

for j =k, -, J—K —1.
Similarly we have for d > 0, k’§s<m§J—k’andlﬁq,r<oowithé+%:1,
the estimate

m—1 m—1

1 1
d 9 Vj41 — v k. d
ol < 2d[ 37 (ogl” + oy ]7 [ 3 [ 7] +10%0]
j=s i=s i3
or
- 1
‘5ku ‘d<2d[mz ‘5ku ‘q_’_’(sku ’q k-i-l}%[m }5144-1 (k-i-l} —i—\éku ’d
mh= £ +1 J 3+2 j+2 s

j=s j=s

where ¢ = (d — 1)g > 1. Then we have also
1
|5kum|d < 2dWs ||5k+1uh||r + |5kus|d’

where
J—k'—1

W= 3 (0 ujml? + 105 |)A]Y.
J=K

Similarly, we can prove that
k— k
W < (1 + M)ME[6% ][4,
Hence we have also the estimate
1 k-1 B
lékumld <2d(1+ M)sM s HékuthIl 1H5k+1uhHr + lékus\d.

By the method of the proof of Lemma 1, we also obtain the result of present lemma
for the case of k = 2k’ being even, k' = 1,2, - .
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Thus the lemma is proved.

5

Lemma 3. For any discrete function up, = {u;j|j =0,1,---,J} defined on the grid
points {x;|j = 0,1, - -, J} with unequal meshsteps {hj+% =z —x; >0[j=0,1,--
- J — 1} of the interval [0,1] of finite length | < oo and for the constants 1 < q,r < oo
and 1 < p < oo, there is

1_1_
16unllp < Cllunlly™ (18 unlly + 17 ™5 |lunllq) (25)

with

1 11—« 1

1= 444;—ﬂ (26)
and

1 1+1

—SQS%SL (27)

2 2-141

where C is a constant independent of the constants p, q, r, the finite length | < oo, the
meshsteps {hj+% > 0|5 =0,1,---,J — 1} and the discrete function u, and C' depends
on the ratio constant M of the meshsteps.

Proof. (1) For any u, = {uj|j = 0,1,---,J} with unequal meshsteps {hj+%|j =
0,1,---,J — 1}, we have

-1 J-1 hoo1  h
Ujp1 — Uy |2 A_uy AN i+h -1\,
N o e ] (e M i Y
j:O‘ hj+% ‘ J+3 hJ_% h% = h§-2) J
2
< 9l |9l [ g 2 un awheren® = L(hy s b, _y) for j = 0,1, T 1
and
1 1
— =1
qo T

From Lemmas 1 and 2, there are

ltnlloo < CCllun |2 [8unll3 + 177 unllgo)
Up|loo = Up, qo0 Up (|2 Up, qo )

— _1 _ _
6unlioo < CIounlly 8% unllf + 172 |Sunllz), 28whered = 122 — 3, 0 = 5£ +

I (% — 1) , (29)andthesecondconstantCdependsontheratioconstantMo fmeshsteps. Thusl-

T

A=pu= .
3r—2
Substituting two above inequalities into the previous one, then we have

2-2 -+ 2—
1unll3 < CLlunllqo 8% 1) 1 unlly™ + (72 [fup g0 ) 16un I3~

1
_L 1—
+ (72 ([l go) 1 0unllo ™ (lunllgo 107wl )
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1
72 [Jupllgo) 10unl2 + llunllgo|0%unllr -
For every terms in the right hand side of the above inequality, we have

2—2 Ep 1 —pyy
Ol lao16% ) 18unl3™ < elldunl + 1= (C—=) " unlan 16 unlr

_a _ N
(2 Junllgo )V |0wnl)3 ™ < ellounld + 2 (CZ2) ™ (1 2 fun o),
_ L _
K 1lUnllqo Unll)2 Uh|lqo Un||r
72 [Junllgo) 15w )3~ Clenlgo 1%n 1)

2
1—p\ Tog ,— -
< ellounld + 25 (CZ2) ™ (172 flunl)?

+2ep

2
L\ T
1 (022) T unllg 152l

C(l 21 ”u ” )H u ” <— ” ”2 C(l 21 H Hq )2
hllqo 6 h|l2 € 6uh 2 de Up, o/
Thus we get

el 1—puN=t  2ep 1 — p\ =
(= de)lunl} < |3 (C—5)" + 7=, (C—5) ™ unlaa | unll)

1 1—u

—l—[a,u 3 3 Takinge = % and regarding 1 <
2-p |\ F 2 1—p\ T, oo 9
2_“ c 2e +17,u, ¢ 2e +E (l ””“h”qo) .

r < oo and % < p <1, we see that the coefficients on the right hand side of the above

inequality are bounded. Hence we obtain

1

1 1 1
8unlla < Clunlldol|8%unll? + 127 luplg0), (30)

where C' depends on the ratio constant M of meshsteps and is independent of the
constants 1 < gg,r < oo and q% + % =1.
(2) Let 1 < ¢ < qo. From Lemma 1, we have

<O 1-8 5 B8 l%_%
unllgo < Cllunlly™"[10unlly + lunllg)s

where

1 1-6 B

0 q 2
Substituting this relation into the inequality obtained in the previous section, we
get the following inequality

1 1

1-5 s 1 1 1
1unlla < C{llunllg® [10unll3 16%unll? + 1702 |fup 1§ [|6%unl?

1

_1_1 1
+1 2 q0||uh\|é_5\|5uh||g+l 274 ||lup |4} T hisinequalitycanberewritteninthe f ollowing f orm||dup ||2 <

_ 8 8 _1_1 8 _ 1
C{[lunllg 6% unllZ) 2z [|0unlls + (1727 7 Junllg) 2 (Junlly~ 10%unl|7) 2=
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82
1_1 1 1
+1 27« Huth)l_ﬁH(SuhHg + 12 d||luplq} - whereo = ﬁ This implies the estimate
11
274 [uallg),

16unllz < C(lunllg~"116%un|I7 +1

where
1 1-— 1
5= qa+a(;—2).

Again let us suppose that ¢y < ¢ < oo. Substituting

1 1
lunllge < 1% @ lupllq

into the right hand part of the inequality (30) obtained in the previous section, we get

11 1 1 _1_1
[6unlle < C{17%0 24 [|up |1 [|6%un |7 + 172 0| junllg}
L Then there

_1_1
274 ||lup||q ), whereo = 5

1

-1-1 8 —0o o\
=C{( 2" [lunllq) > (unllg716%un|7) 2 +1

(31)

_1_1
16unllz < C(llunllg™ 1% unllT + 1727 |unlly),

is
where I 1-o 1
_5 - q + O'(; — 2) .
Hence we then obtain the inequality in the present lemma for the case of p = 2 and
1<q,r < o0.
(3) For the case p = oo, let us substitute the estimate (31) for p = 2 into the

estimate (28) for the case of p = 0o, ¢ = 2 of Lemma 2. we obtain

8unlloo < Cflun 0= |20y 7O = GFDOT 10 52
T hisinequalitycanberewriteninthe follo

1 1
“|Jupllq}, wherep = 521 and o = 2+1I-1
2 r q T

_1 _ 11—
73 g | S0P |7+
B _a A

unllg) =& (lunli=10%un|2)

_1-1
q

C{llunllg™*10%unll + (1
1 o _ N 11
lunllg) & llunllg= 182 un )& + T |juplgwherea = p+ o(1 = p)

_1-1

+(1 q
141
é—j%. This implies
a 5 11
[6unlse < C(unlli=%6%un ]S + +1 7 |uplly), (32)
where
l—-a _/1

q
(4) Let us now consider the case of 1 < p < oco. At first let p > 2, then

16unllf < lunls®[I6unl3 < C{llun|l§i = E=D+20=) 62y |2 E-20420
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2 —a(n— G(p—
+1—(1+§)(p—2)”u Hp_z"HézuhH%”+l_(1+5)|]uh|]5 a(p 2)”52uh”g(p 2)
—-(1+YH» 142 - 1441
1 CEDEDOED [y or a1 < CL(lun 152 10%unll2) + (5 un )P

gl _2 _ 20
U ) (a2 [2) 5
( &(p— 11,1

ap 142
(||Uh\|1 0P upl2) " 2—‘1’+‘{— Hencewehave||dup ||, <

T

_ _l__
FATTE T g )P

C’(\|uh\|é_°‘||52uh||?—l—l_HF_E||uhH ), (33)where— —1=1xa +oz(— —2).Thenletl< p <
2, we have

[ dunllp, < 1573 [|dup |2

Hence . L
1_1 _ S D S §
6unllp < CLLP ™2 [|unlly 6% unllZ + 1574 |upllq}

1+——— — o 1411
< c{l ®lunllg) ™5 (lunlly™*l16%unll2)s + 17274 ug 4}

This shows the above estimate (33) for 1 <p < 2.

(5) We have proved till now the estimates of the present lemma for the cases of
1<p<ooand 1l < gq,r < oo. The estimate of the present lemma is also valid for
qg =00 and r = .

In fact for any interval [0, 1] of finite length [ < oo, the set {||6*up,|1 < p < 0o} is
uniformly bounded (k= 0,1, - --), that is

" k
9% urllq 107 ukllp

Tt < < [0F up oo (34)
la q
for1<g¢<p<oo, k=0,1,---, where
T[22 I
l= hﬁ%zl (k:—l)h*zg,
i=(%]

as J large and h* is small. Then we have also
Jim 168 unllp = 116" unloo (35)

for k=0,1,- - and for the finite length | < co.

Therefore the lemma is proved completely for any constants 1 < p,q,r < oo and
for any interval [0,[] of finite length [ < co.

Lemma 4. For any discrete function up, = {u;|j =0,1,---,J} defined on the grid
points {x;|j = 0,1, - -, J} with unequal meshsteps {hj+%\j =0,1,---,J — 1} of the
interval [0,1] with finite length I < co and for constants 1 < p,q,r < co, there is

— —a «a i1 4 —
165w lp < CUIG* Munlly ™ N16%  unl|e + 1270165 upll,) (36)
with
1 l-« 1
1= -2
, - +a=-2), (37)
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where C is a constant independent of the constants p, q, r, the finite length | < oo, the
meshsteps {hj+% |l7=0,1,---,J — 1} and the discrete function up and C depends on the
ratio constant M of meshsteps.

The proof of this lemma is similar to that of Lemma 2.

6

Lemma 5. For any discrete function up, = {u;|j =0,1,---,J} defined on the grid
points {x;|j = 0,1, - -, J} with unequal meshsteps {hj+% =z —x; >0[j=0,1,--
- J — 1} of the interval [0,1] with finite length | < oo and the constants 1 < q,r < oo
and g < p < oo, there is the estimate

1_1
Junlly < C(llunlly™ 6% un |l + 174 [|upllq) (38)
with
1 1-a 1
= -2 39
= +a(s-2) (39)
and
1
0<ac< z (40)
=& = 1, 10
2—1+2

where C is a constant independent of the constants p, q, r, the finite length | < oo, the
meshsteps {hj+ |7 =0,1,---,J —1} and the discrete function up and C depends on the

1
p)
ratio constant M of the meshsteps.

Proof. From Lemma 1 and 3, we have

1

1
Up|lp < uhq_ Up || s Uhn||q),
lunllp < C(lunlly M ounlld + 177 |uplly)

1 1
loupls < C(HuhHé_“HfﬁuhHﬁ + ZE_E_IHuth),wherelg q,7r < 00, qg<p<ooand

1 <s< o0,

1 1= 1 1 1-— 1
ST NS, — 1= — P ).
P q s s q r
By direct substitution and similar as before but much more simpler calculation, we
obtain
11
lunlly < Clunllg M 16%unll* + 177 [[unlly),
where
1 1—A 1
== (s - 2),
p q S

and the constant C' depends on the ratio constant M of meshsteps. This shows the
conclusion of the lemma.
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7

Theorem 1. For any discrete function up = {u;|j = 0,1, --,J} defined on
the grid points {x;|j = 0,1,- - -, J} with unequal meshsteps {hj+l = T4 — x5 >
2

0lj =0,1,---,J — 1} of the interval [0,1] of finite length | < oo and for any constants
1<q,r<ooand0 <k <n, there is the estimate

1_1_
165wl < Ol |26 [+ 1777 lunlq) (41)
with 1 1
—
— k= - 42
. + a(r n) (42)
and
k k+1
— < a< % <1, (43)
n n—y+tyg

where C' is a constant independent of the constants p, q, r, the finite length | < oo, the
meshsteps {hj+%]j =0,1,---,J — 1} and the discrete function uy, and C depends on the
ratio constant M of the meshsteps.

Proof. Lemma 1 is the case of the present theorem for n = 1 and £ = 0. Lemmas 3
and 5 are the cases of k =1 and k = 0 respectively for n = 2 of (41).

Let us now prove the theorem by mathematical induction. Then suppose that the
relation (41) is valid for n =m > 2.

From Lemma 4 for £ = m, there is the inequality relation

1_1_4

1
6™ unllp < CCUIS™ unllTM 6™ aunlly + 127 7H|6™  un), (44)

where 1 < s,p,r < 00, and

and

14+ 1
2 2141

By the induction hypothesis for n = m and k = m + 1, we have

1_1_ (0
167 gl < C(lup L 16™un e+ 75~y ), (45)
where ) ] ]
— K
- - 1)= " -
L= =S —m)
and
m—1 m—1+2
<p< —t-
m m — P + q
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Substituting (45) into (44), we get

6™ unlly < O unlg 0 07 g 237w 5
AU g Xy

___1Huh\|1 ”||5muh||“—|—l____m\|uh\| }.Bysimilarderivationasbe fore, weobtain||0™uy ||, <

+1s
C(Huth ﬁH(S’”“uhHﬁ—kl____mHuhH ), (46)wherel = 1’\ N and— m== ﬁ—i—ﬂ[

(m + 1)} .Sincef increases as the parameters A and p increases respectively, then

This gives the inequality (41) for the case n =m + 1 and k = m.
For 0 <k <mand 1 <p,s < oo, by induction assumption, we have

11y

185 unllp < (llunllg 6™ unlly + 1770 lunlq), (47)
where ] 1- 1
——k:;—k)\(——m)

p q §
and )
k+ =

B L

m m—s+ty

From (46) we have

_ 1_1_p
1™ wnlls < C(llunllg ™ 10" unllf + 177" lunlly),

with

1 1-— 1

;—m:—zﬁ+uQ¢wm+U)
Hence substituting this inequality into (47), we obtain immediately by derivation as
before

HW%MSCWWM”WW”%MM+“ “Fllunlg).
where ) . )
?—k‘: M—I—A,u(;—(rrH—l))
and also . b1
1M ST oIaT
r Ty

Thus (41) is valid for n = m + 1.
Therefore (41) is valid for any n. This completes the proof of the theorem.
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8

In this section we are going to consider the interpolation formulas for the norms of
discrete functions with unequal meshsteps of negative index.

Let p < 0 be a negative number, denote s = [IT}I] and \ = {‘7}‘} the integer and the
decimal parts of the positive real number ‘7}‘ respectively.

For the discrete function up, = {u;|j = 0,1, - -, J} defined on the grid points
{z;] =0,1,---,J} with unequal meshsteps {hj+% =xj1—x; >07=0,1,---,J -1},
let us now define the norms ||§¥up,||», k = 0,1, - - of the negative index p < 0 as follows:
for the case of 0 < A < 1, then % = —(s+ ), when k + s is odd, there is

|5k+su 1 — Sktsy l|
8% unl = max o o (48)
r>myr,m=[k+s],,J—[k+s+1] ’x(k—i-s) . x(k-i—s)‘)\
r+i m+%
and when k + s is even, there is
5k+su _ 5k+su |
5 = max | . ul 49
H h”P r>m;rym=[k+s],-,J—[k+s] |l‘$,k+s) o x%+5)|)\ ( )
for the case of A = 0, then % = —g, there is
Sy, = ma; Skt 50
for odd k£ + s and
165 unl,, = ma }I5k+sug'| (51)

X
j=lk+s], -, J—[k+s+1

for even k 4+ s. These norms for the discrete functions correspond to the Holder and
Lipschitz coefficients of the derivatives for the differentiable functions.

For these kinds of norms for the discrete functions of unequal meshsteps, we can
also have the following simple notations as

Ut = (|65 5y, (52)

for0< A< 1and
Upts = (16" S upll (53)

for A =0, where k =0,1,---, s = [‘7}‘] and \ = {‘T}‘} for the negative index p < 0.
When 0 < A < 1, for the case for example that k + s is odd, from the definition of
norm with negative index, we then have

)|

Nl

i | E;:m+1(5k+suj+% _ 5k+suj_
[0%unlp = max

r>m7r7m:[k+s]77J_[k+s+1} ’x(k-‘rls) _ x(k“l“i) ‘)\
r+3 m+3
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1 1-A
r k 1 L (k+s+1)
< MAXySomrm=[k+s], -, J —[k+s+1] (Zj:mH |& +s+ ’LLj| T—x hj

k+s k+s+1
) O
(k+s)_ (k+s) A
‘erf% wm+%—‘
M| 655y || 1, wherepi0,0iA < 1 and 1 < 115 < oo.
1—A

By means of Theorem 1, we have the following estimate formula

< MA||SEFsH Ly, N Wehavethesimilarestimate f orthecasethatk+siseven.Hencewehave|
1—

[ W S A
165+ | o < OClunllg™ 16 s + 177875 lunl)

for 1 <g,r <ooand 0 < X\ <1, where

(1=N)—(k+s+1)= 1;a+a(%—n)

. 1 .
since ; = —(s + A), there is

When A\ = 0, then % = —s. From definition, there is
6%, = 1165 *un|oo-
P

Then the interpolation formulas of Theorem 1 are also valid for this case.

Thus we obtain the following theorem of interpolation formulas for the norms of
nagetive index for the discrete functions with unequal meshsteps.

Theorem 2. For any discrete function uy, = {u;|j = 0,1,---,J} defined on the grid
points {x;|j = 0,1, - -, J} with unequal meshsteps {hj+% =z —x; >0[j=0,1,--
- J — 1} of the interval [0,1] of finite length | < oo and for the constants 1 < q,r < oo
and —(n — k — %) < % <0, there is the estimate relation

k 1—af sn o 1_1_g
[0%unllp < Cllunllg™ (16" unll + 1775 {lunllq) (54)
with
1 11—« 1
k= +a(;—n) (55)
and
k41
— 1 T <a<l (56)
n — r + a

where 0 < k < n and C is a constant independent of the constants p, q, r, the finite

length | < oo, the meshsteps {hj+;\j =0,1,---,J — 1} and the discrete functions, but
2

the constant C' depends on the ratio constant M of the unequal meshsteps.
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9

Combining Theorem 1 for positive index 1 < p < oo and Theorem 2 for negative

index —oo < p < —— ]1_ T < 0, we get the following theorem for general interpolation

formulas with both positive and negative index —(n — k — %) < % < 1 for the discrete
functions with unequal meshsteps.

Theorem 3. For any discrete function up, = {u;|j =0,1,---,J} defined on the grid
points {z;|j = 0,1,---, J} with unequal meshsteps {hj+% =xj1—x; >0[j=0,1,--,J—
1} of the interval [0,1] of finite length I < oo and for the constants —(n—k— %) < % <1
and 1 < q,r < oo, and 0 < k < n, there is the estimate

1_1_
18 unlly < C(luplli= 16 un & + 17~ F[fug o) (57)
with
1 1— 1
——k’: a+a(__n)7 Oéaéla (58)
p q r

where C is a constant independent of the constants p, q, r, the finite length | < oo, the
meshsteps {hj+%|j =0,1,---,J — 1} and the discrete function, but C depends on the
ratio constant M of the unequal meshsteps.

As a consequence of the above general theorem, we have the interpolation relations
among the maximum modulo and the Hoélder coefficients for the discrete functions
up, = {uj|j =0,1,- - -, J} with unequal meshsteps.

Theorem 4. For any discrete function up, = {uj|j = 0,1, -, J} defined on the
grid points {z;|j = 0,1, - -, J} with unequal meshsteps {hj+% =xj1 —x; > 05 =
0,1,- -+, J — 1} of the interval [0,1] of finite length | < oo, there are the interpolation
formulas

UF < CUD R (UR) +17R0R), UP < C(U 52 U5 + 172 0f), (59)
where 0 < k < n, 0 < XA <1 and C is a constant independent of the finite length
j=0,1,---,J =1} and the discrete function, but
C depends on the ratio constant M of the unequal meshsteps.

[ < 00, the unequal meshsteps {hj+%

10

As an immediate consequence of the previous theorem for general interpolation for-
mulas, we have the following theorem for so-called Sobolev’s inequality for the discrete
functions with unequal meshsteps.

Theorem 5. For any discrete function up, = {u;|j = 0,1,---,J} defined on the grid
points {z;|j = 0,1, - -, J} with unequal meshsteps {hj+% =z —x; >0[j=0,1,--
- J — 1} of the interval [0,1] of finite length | < oo and for the constants 1 < q,r < oo
and —(n — k — %) < % <1, there ezists a constant C(g) depending on € > 0, such that

165 unllp < ell6™unll, + C(&) unlly, (60)
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where

k+

n —

0< <1, (61)

+
C(e) is independent of the constants p, q, r, the finite length | < oo, the unequal

3 ==
Q=B =

meshsteps {hj+; |7 =0,1,---,J — 1} and the discrete function up, but C(g) depends on
2
the ratio constant M of the unequal meshsteps.

11

For the discrete function w, = {u;|j = 0,+1,42,- - -} defined on the grid points
{z;|j =0,+1,42, -} with unequal meshsteps {hj+% =xzj1—xz; >0 =0,4+1,42,---}
of the real line R = (—o0, 00) and the discrete function u, = {u;[j =0,1,2,---} defined
on the grid points {z;|j = 0, 1,2, -} with unequal meshsteps {hj+% =xj1—x; >0 =
0,1,2,- - -} of the half real line Ry = [0, 00), the norms of these discrete functions and
their corresponding difference quotients are defined to be the limit of the convergent
infinite sums of the powers of discrete values on the corresponding grid points. Similar
to the theorem for the discrete functions on the functions on the finite interval, we have
the following theorems of interpolation formulas for the discrete functions on infinite
interval.

Theorem 6. For the discrete function u, = {u;|j = 0,+1,42,-- -} defined on
the grid points {x;j|j = 0,4+1,+2,- - -} with unequal meshsteps {hj+% = Tjy1 — xj >
0/ =0,1,2,---} on the real line R = (—o00,00) and the discrete function up = {u;|j =
0,1,2,---} defined on the grid points {x;|j = 0,1,2,---} with unequal meshsteps {hj+% =
Zjp1 —xj > 07 =0,1,2,- - -} on the half real line R = [0,00) and for the constants
—(n—k— %) <l<i 1< q,7 <00 and 0 < k < n, there is the estimate relation

5=
165 unllp < Cllunllg=* 6™ unlls, (62)
with 1 1 1
—
- —+a(;—n) (63)

where C is a constant independent of the constants p, q, r, the unequal meshsteps
{hj+%} and the discrete function up defined on the grid points of real line Ry and C
depends on M.

Theorem 7. For any discrete function uy, defined on the grid points of the real linr
R and the half real line Ry with unequal meshsteps and for any constants 1 < q,r < 00,
—(n—Fk— %) < % <1, and 0 < k < n, then for any positive small constant € > 0, there
exists a constant C(e) depending on €, such that

16%unllp < ell6™upllr + C(e)lJunllg, (64)
where
k—1+1
0< S —— <1 (65)
rq
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and C(g) is independent of the constants p, q, r, the unequal meshsteps {hj+%} and
the discrete function uy, defined on the real line R and the half real line Ry, but C(e)
depends on the ratio constant M of the unequal meshsteps.

1]
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