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Abstract

We discuss the Hermite-type collocation method for the solution of Volterra
integral equation with weakly singular kernel. The constructed approximation is
a cubic spline in the continuity class C!. We prove that this method is convergent
with order of four.

1. Introduction

This paper considers the numerical solution of the second-kind Volterra integral
equation

y(t) + (Ky)(t) = g(t), (L.1)

where y(t) is the unknown solution, ¢(¢) is a given function and K is the integral
operator for some given kernel function K,

(K0 = [ Kl 2as (1.2

Such equations arise from certain diffusion problems. Because K is not compact, so
the standard stability proofs for numerical methods do not fit.

Many people have worked on Hermite-type collocation methods for second-kind
Volterra integral equations with smooth kernels!®%56 but very few deal with weakly
singular kernels. Papatheodorou & Jesanis (1980) considered Volterra integro-
differential equations with weakly singular kernels. Diogo, Mckee & Tang (1991) in-
vestigated a Hermite-type collocation method for (1.1) with a singular kernel of the

form K (o) = m, > 1. They also considered two low-order product integration
1 (10]

methods for the solution of (1.1) with a singular kernel of the form K (o) = NN
For general kernel K (o), no papers have appeared to discuss it.
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In this paper, first we would to show that a unique smooth solution exists when
a= [~ @da < 1. The basic idea is to derive two (linear) Volterra equations for y(t)
and y/(t) by transforming the original integral equation. Having the coupled equations
for both y(t) and y/(t), we can then employ piecewise cubic Hermite polynomials to
obtain numerical solution of (1.1). Finally, the convergence analysis is given.

2. Preliminaries

Let C™[0.7] denote the Banach space of mth order derivative continuous real-valued
functions with the uniform norm

— (4)
Il llmco= jmasx mmade, [u™ ()]

Our assumption on K is

:/1°O|K(U)|da<1. (2.1)

o
Lemma 1. If g € C™[0,T] and (2.1) is satisfied, then (1.1) possesses a unique
solution y € C™[0,T1.
Proof: Choosing an arbitrary function v(t) € C™[0,T], and defining u = S(v) such
that

u(t) —|—/tK(E)U(8)§d8 —g(t), te[0,T] (2.2)

where S(v) = — fO ds +g(t).
Setting s = )\t we have

1
/ K ds - / K(S)on)San . (2.3)
0 A A
Since v € C™[0,T] and g € C™[0,T], we obtain from (2.2) and (2.3) that
/ K Yo AN LN + g9(1), (2.4)

where 0 < j <m. If uy = S(v1) and ug = S(v2), we have

Wl — W) < JHE GNP (M) — o (At)]dA

(2.5)
< fO |K % |/\_1d)\ || V1 — V2 ||m,oo .
Noting that the coefficient of the last term of (2.5) equals «, it follows that
a1 — w2 |[meo< a || v1 = v2 [|moo - (2.6)

The inequality (2.6) implies that the operator S is a contraction mapping. Since C™
is a complete normed space, S has a unique fixed point y(t) € C™[0,T] such that
y = S(y). This completes the proof.
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Lemma 2. FEquation (1.1) can be transformed into the equivalent equation

/ pCyls)ds = g1(0), (2.7a)
o @)= [ KKl (2.70)
S At '
nt) =~ [ K )glo)Tds + g0 = 9(0) ~ K(o)0), (270
Proof: Consider
/ K( d)\ — g(s). (2.8)

Multiplying both sides of (2.8) by K (t/ s)1/s and integrating the resulting equation
from O to t, we obtain

t t t t 1
/OK(—) (s)2ds + / KG d)\ds—/o K )g(s)2ds.  (2.9)

S S S S

Using Dirichlet’s formula we have

/OtK(é d8+/ /K & ds /K (2.10)

From (1.1) we obtain
—/Ot /stK(ﬁ)K(g)%y(s)% = g(t) —/OtK(é)g(s)d—j : (2.11)

)\ 1
1(t, K —)— 2.12
s) / 8 )\d)\ (2.12)

Setting

the equation (2.11) becomes

o) = [ mateshuls) s = gtt) - [ K (213

We now calculate p;(t,s). Setting s = ot, we have
tot Al
t,s)= | K(=)K(—)=d\
pilts) = [ KK ()TN
setting A\ = tn we obtain

|
pl(t73) = K( )K(

ag
—/K K
U

(2.14)
)=dn = p(o) = p(3),
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so we have

This completes the proof .
Lemma 3. The derivative of y, the solution of (1.1), satisfies

/ P53/ (5)~ds = ga(t), (2.150)

where
/ KL ds+g( ), (2.15b)

p(o) is given in Lemma 2.
Proof: By a change of variables, (2.7a) can be written in the form

~ [Ton % =~ [T K900 + ), (210

Differentiating both sides of (2.16) with respect to t yields (2.15).

3. Hermite-Type Collocation Method
Let Ay denote an equidistant partition of [0,T]
Ay: O=tg<ti<...<ty=T,

and let h = t;y1 — t; = T/N. The subintervals generated by this partition of Ay are
denoted by I,; i.e., Iy = [to, t1], I, = (tn, tnt1](n =1,2,..., N —1). In the following we
shall be concerned with the approximating spaces

SHAN) ={u:ueC0,T),ul|s,€mn=01,...,N—1}.

Forn=0,1,...,N —1, let

P1n(t) = (t = tns1)*[h +2(t — ta)]/ 1, (3.1a)
bon(t) = (t — t,)2[h + 2(tne1 — t)] /A%, (3.1b)
Din(t) = (t = tn)(t = tns1)? /B2, (3.1¢c)
ban(t) = (t = tn)*(t = tns1) /B2, (3.1d)

then for any u(t) € S3(An), u(t) can be expressed as

w(t) = uid1i(t) + wip1d2:(t) + winhyi(t) + uly i (t), (3.2)

tc [ti,t“_l], 1=0,1,,...,N —1.



310 G.Q. HAN and L.Q. ZHANG

Definition. Let f € C™[0,T], m > 1, be a given function. Then Hy(t) € Si(An)
1s the Hermite cubic interpolant of f if

Hy(tn) = f(tn), H}(tn) = f'(ta), 0<n<N.

Lemma 4. (Schultz, 1973) Assume f € C*[0,T]. Then

Loy p@
— < .
1 = Hy lloo= 5z 11 7Y [loo: (3-30)
V3
11" = Hj oo 576 11 FY oo - (3.3b)

The Hermite-type collocation method of (1.1) is looking for u € S3(Ay) satisfying

ultn) — /0 " p(%)u(s)%ds — Gi(b), (3.40)
() — /0 " p(%)%u(s)%ds = Goltn), 1<n<N, (3.4b)
with
u(0) = y(0) = g(0)/(1 + &), (3.4¢)
W' (0) =y/(0) = ¢'(0)/(1 + B), (3.4d)
where -
&= /1 K:’)d : (3.4e)
~ © K(o
3= /1 = ) dor, (3.41)
Bt == [ K(2)5(6) s + g0, (3.49)
ga(tn) = — Otn K(%)%g’(s)éds —|—g’(tn), (3.4h)

Here the function § € S}(Ay) is the Hermite cubic interpolant to g. The approxi-
mations ¢ (t,,) and go(t,) will be replaced by the exact values g1 (t,,) and go(t,) if the
integrals involved can be calculated analytically.

4. Convergence

Lemma 5. Fort € [ty,tp+1], 0 <n < N —1, we have

100 |41 o2 =1, [1a(0) |+ | 2nl) |< 3, (110)

3 / /
| $1n(8) [ + ] 9 (2) [< 7o 19w [+ [ (1) [< 1. (4.1b)
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Define the error function
e(t) = y(t) — u(®), teo,T].

Set t = t,, in (2.7a) and subtract (3.4a) from the resulting equation . It follows that
e(t) satisfies the error equations

s 1 _
eltn) = [P0 el)zds = ga(t) — (b (4.20)
Similarly, we can obtain
, s s, .1 _
Ct) = [ Pl ) ds = goltn) — ) (1.20)
0 tn tn S
where n =0,1,...,N.
Lemma 6. If g € C*[0,T], then
) gr(ta) = 51(t) 1< 3 b 1 69 oo (4.30)
. _ V3
() 1 92(0a) — 92(1n) < 51 | 62 e, (4.3
where X X
a:/ LK@ 4 5:/ [K(o) ] 4y
1 g 1 o
Proof: (i)
~ N S 1
[grlt) = 3at) | =] [ K@)~ g()2ds |

ot 1 )
< Y ds - _
_/0 | K(5)ds - max | g(s) —g(s) |

< amaxo<s<t | 9(s) — g(s) | -

Applying (3.3a), we obtain (4.3a).
(ii) Similarly, we have

| ga(tn) = Galta) 1< 8 max | 9/(5) =5 (5) |

Applying (3.3b), we can obtain (4.3b).

Theorem 1. If g € C*[0,T], a < /3 —1, then the error function e(t) = y(t) —u(t)
satisfies

() _ @) (1) |— O pA—i L
1 lloo= max | e®(t) |=0(A"), =01
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Proof: Let Ey = maxj<p<n | e(t,) |, and Ey = maxj<p<n | he/(t,) | -
For t € [ty, tn11], we have

w(t) = 1 (t)un + don () unt1 + Yin(t)us, + on (t)ul, 4. (4.4)
As g € C*0,T], by Lemma 1, y(t) € C4[0,T)]. It follows from Lemma 4 that
y(t) = G ()y(tn) + 20Dy (tnr1) + 1a(t)y (tn) + Y2u D)y (tarr) +0(RT).  (4.5)
Subtracting (4.4) from (4.5) and using (4.1a), we obtain
le(t) |< By + i@ +o(hb). (4.6)

From equation (4.2a) we have
tn s 1 4
etta) | < [ 1o 1+ els) | ds+ 00"
0 n S
1 P s, 1 4
< (Br+ B2+ 0() [ 1 a(D) | Sds o).

Noting that

[ 1o ks = [ o) \—dz—/ [ KK a
/11/ K ——|d77dz
=/0 —|K<—>|/0 KD | dady

([ 21w a2 = 02

We have )
Ey <o?(Ep + 1)+ 0(hh). (4.8)

Thus

o?

< ———
=11 —a?)

Ey +0(h?). (4.9)
On the other hand
| €'(t) 1< (| 61 (t) | + 1 @2 (t) NEL + (I Vin(t) | + 1 9'90(t) ) B2 +0(R%).  (4.10)

Using (4.1b) we obtain
h|e(t)|<3E + Ey +0(h%). (4.11)
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Combining this with (4.2b) we have

e | < [ 1o ) | Lds + 001,

< @E+ By o) [ | s 000

n

Since
tn
/ ol r—ds /\p \dz—/r/K dn\dz
//\K ——]dndz
1
LRG| [T TEG) Dndady
n
1 | K(0)|, 9 9
/]K)\]d)\ (/1 T do)? = .
We have

Ey < B%(3E; + Eo) + 0(hh).

This implies
33° 4
By < e ——E1+0(h%).

Substitute this inequality into (4.9) we obtain

304252 4
E < E 4+ 0(h%).
P TE ) T R
Using the fact of 3% < o?, we have
3ot
E Ei +0(h*
1_4(1_ ) 1+ 0(R7)
So -
4(1 — a®) 4
Ei < 0(h
! 8a2+4( )

313

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

provided a* — 8a2 + 4 > 0. Solving this inequality we obtain o < v/3 — 1. Combining

(4.16), (4.13), (4.6) and (4.11) the Theorem is thus proved.

Appendix. In the following, we show that the singular kernel of the form K (o) =

(i > 1), which had been considered in [2], satisfies

*|K()|, 1
/1 Tda—\/ﬁ<l.

1
Vrlpoot
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From the definition of K (o) we have

/1 |K((Ta) do — \F/ lOJH‘Hd (+)

Let /l,0 = t, then 0 = et? , do = otel’ dt.

[1]
2]

Substituting these expressions into (*) we have
| K(o) | oo otel” dt 2 [ _ e 1
——d = — At = — < 1.
/1 s T / te2rD) ﬁ/o ‘ NG
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