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Abstract

Matrix analysis on additive Schwarz methods as preconditioners is given in this
paper. Both cases of with and without coarse mesh are considered. It is pointed
out that an advantage of matrix analysis is to obtain more exact upper bound.
Our numerical tests access the estimations.

1. Introduction

We consider the following second order elliptic boundary value problem:

Lu = f, in Ω, (1)

u = 0, on ∂Ω, (2)

where L is a self-adjoint positive operator and

Ω ⊂ Rd (1 ≤ d ≤ 3)

is a polyhedral domain.

A weak solution has the following form: Find u ∈ H0
1 (Ω) such that :

A(u, v) = f(v), ∀v ∈ H0
1 (Ω)

A(u, v) =

∫

Ω
Lu(x)v(x)dx, f(v) =

∫

Ω
f(x)v(x)dx.

Let V h := M = Span {φi}, where {φi} could be nodal basis consisting of piece-wise

linear functions or other spline functions. Substituting the following solution

uh =
∑

uiφi

into the above weak form leads to a discrete equation

Au = f, (3)
where

A = (αij), αij = A(φi, φj). (4)
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It is well known that the coefficient matrix A is symmetry positive definite matrix with

condition number

κ(A) = O(h−2). (5)

When we use conjugate gradient algorithm for solving the system, for a given tolerance,

the iteration number will proportional to h−1. This convergent rate is really slow for a

large scale problems. It is our purpose, in this paper, to do some analysis on Additive

Schwarz Methods (ASM) as preconditioners in detail. In order to obtain estimation on

condition number of the preconditioner system more accuracy, we take 1-D case as a

model problem. The related results on higher dimension will be reported later.

2. A Projector Preconditioner

Suppose a subspace

Mc := Span{ψk} ⊂ M

with the basis transformation

ψk =
∑

tkiφi, Ψ = TΦ, T = (tki).

Define a projector Pc : M → Mc such that for any given u ∈ M

A(Pcu, v) = A(u, v), ∀v ∈ Mc. (6)

Assume that

Pcφj =
∑

βkjψk or PcΦ = GΨ, G = (βkj).

So

A(Pcφj, ψl) =
∑

A(ψk, ψl)βkj .

Denote

Ac = (A(ψk, ψl)), Q = (A(φj , ψl)),

then

AcG = Q.

This means that as a linear operator from M to Mc, the matrix representation of Pc

from coordinate basis φ to ψ is as follows

Pc ∼ G = A−1
c Q = A−1

c TA.

When we back to the original space and take Pc as a linear operator from M to M

itself, the corresponding matrix form becomes

Pc ∼ T ′G = A−1
c Q = T ′A−1

c TA . (7)

Therefore, we may look the projector Pc as the result from a preconditioned operator

of A, the related preconditioner is

Bc := T ′A−1
c T . (8)
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The above discuss provides us a way to construct an appropriate preconditioner via

subspaces. First, it is easy to see that if Mc is a proper subspace of M, the resulting

matrix Bc is singular. It is impossible to get a good preconditioner by using one proper

subspace only. So it is reasonable to add one subspace as a coarse mesh to the original

space, this is just the technique called two-level multigrid method.

3. Subdomain Preconditioner

For parallel computing it is natural to consider subdomain solver first. Suppose

Ω = ∪Ωi, with Ωi ∩ Ωj 6= φ if i 6= j

and denote Ai be a matrix representation which is the restriction of the original operator

A over the subdomain Ωi. If we permute the unknowns appropriately, then the related

preconditioner is

Bi =

[

A−1
i 0

0 0

]

and the corresponding matrix A has the following block form

A =

[

Ai Aij

At
ij Aj

]

, BiA =

[

I A−1
i Aij

0 0

]

.

Because the term Aij reflects the influence of subdomain Ωi to Ωj in the difference

scheme, all elements are zero except on the boundary close of Ωj. So all eigenvalues

of the preconditioned matrix BiA are equal to one except those relating to the inner

boundary.

Hence, in general we obtain a whole subdomain preconditioner Bs as follows:

Bs =
∑

Bi, with Bi = T t
iA

−1
i Ti , (9)

where Ti is a truncated permutation matrix from Ω to the subdomain Ωi.

In particular, let us take

Bs =

[

A−1
i 0

0 A−1
j

]

,

then

ABSA =

[

Ai +AijA
−1
j At

ij 2Aij

2At
ij Aj +At

ijA
−1
i Aij

]

,

ABsA = 2A−Q, Q = diag{Ai −AijA
−1
j At

ij , Aj −At
ijA

−1
i Aij}. (10)

Note that the matrix Q is symmetric positive definite if A is. In this case we have

an upper bound for eigenvalues of BsA

λ(BsA) < 2 . (11)
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4. Coarse Mesh Correction

It is not difficult to imagine that the preconditioned effect is not good if the number

of subdomain increase. Because the block matrix Ai represents the same difference

scheme with the original matrix A for internal points of Ωi with zero boundary, we have

to add the boundary effect and take these inner boundaries as coarse mesh. Consider

B = Bs +Bc . (12)

We may interpret the coarse mesh preconditioner as global correction from another

point of view. We may ask the following question: which kind of matrices Bs could

be as a good preconditioner? For an answer let us do observation further. For sake of

simplicity, we suppose

Bs = diag{A−1
11 , A

−1
22 , ..., A

−1
mm}, (13)

BA = (Bs +Bc)A = BsÂ ,

where

Â = A+B−1
s BcA = A+AdT

′A−1
c TA ,

Ad = diag{A11, A22, ..., Amm} ,

and

Rank((TAd)
′A−1

c (TA)) ≤ Rank(Ac) .

Moreover,

(ABcAu, u) = A(Pcu, u) = A(Pcu, Pcu) ≤ (u, u) ,

then we have an upper bound for eigenvalues of BA

λ(BA) < 3 . (14)

5. 1-D Model Problem

To exploit the core of Additive Schwarz Method, as first example we discuss the

following simple two-points boundary value problem in detail.

−u′′ = f, u(0) = u(1) = 0 . (15)

For a given partition

∆ : 0 = x0 < x1 < ... < xN+1 = 1 ,

by using linear finite element method, the resulting stiffness matrix A is tridiagonal of

order N and its coefficients are equal to

αij = A(φi, φj) =



















0 , if |i− j| > 1

−h−1
i , if j = i− 1

h−1
i + h−1

i+1 , if j = i

−h−1
i+1 , if j = i+ 1

. (16)
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and it is easy to find its inverse matrix explicitly as follows

A−1 = (γij) where γij =







(xi − x0)(xN+1 − xj)

xN+1 − x0
, if i ≤ j

γji , if i < j
.

At first, we consider Block-Jacobi preconditioner (22). Let

s0 = 0, s1 = n1, s2 = n1 + n2, sm =
m

∑

k=1

nk = N, with nk > 1, k = 1, 2, ...,m,

BsA =











I A−1
11 A12 ...

A−1
22 A

t
12 I ... A−1

22 A23 ...

... ...

..A−1
mmA

t
m,m−1 I











,

where rank(Akk) = nk, k = 1, 2, ...,m.

Denote

A−1
kk = (γ

[k]
ij ), Hk = xsk+1 − xsk−1

,

then

A−1
11 A12 = −h−1

n1+1













γ
[1]
1,n1

0... 0

γ
[1]
2,n1

0... 0

...

γ
[1]
n1,n1 0... 0













,

A−1
22 A

t
12 = −h−1

n1+1













0 ... 0 γ
[2]
n1+1,n1+1

0 ... 0 γ
[2]
n1+2,n1+1

0 ... 0 ...

0 ... 0 γ
[2]
s2,n1+1













and so on.

Hence, in this case all eigenvalues of the preconditioned matrix BsA are equal to 1

except 2(m-1) eigenvalues which are ones of the following matrix with 2(m-1) order:

As =





























1 −(1 − α1) ...

−(1 − β1) 1 −β1 ...

−α2 0 1 −(1 − α2) ...

−(1 − β2) 1 ...

... ...

... −βm

−αm 0 1 −(1 − αm)

−(1 − βm) 1





























,

where

αk = hsk+1H
−1
k , βk = hsk+1H

−1
k+1.

In particularly, for a special case m = 2, the eigenvalues are the roots of polynomial

(λ− 1)2 = (1 − α1)(1 − β1)
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and for m = 3

(λ−1)4−(λ−1)2[(1−α1)(1−β1)+(1−α2)(1−β2)]+(1−α1)(1−β2)(1−α2−β1) = 0 .

In general, it is not difficult to verify As is a positive real matrix. Moreover, there

is an estimation of the largest eigenvalue:

λMax(As) < 2 .

In order to estimate the lowest eigenvalue, by using so called “Red-Black” order, the

above matrix can be rewritten as

Âs =

[

SRR SRB

SBR SBB

]

, (17)

where SRB and SBR both are diagonal matrices:

SRB = diag{−(1 − α1), ...,−(1 − αm)}, SBR = diag{−(1 − β1), ...,−(1 − βm)}

and SRR and SBB both are bi-diagonal matrices

SRR =











1

−α2 1

...

−αm 1











, SBB =











1 −β1

1

... −βm−1

1











.

Now we turn to consider the following eigen-problem:
[

SRR − λIm SRB

SBR SBB − λIm

] [

XR

XB

]

= 0 . (18)

Hence

SRBXB = (λI − SRR)XR = (λI − SRR)S−1
BR(λI − SBB)XB ,

or

SB(λ)XB = 0 ,

where

SB = SRB − (λI − SRR)S−1
BR(λI − SBB).

Therefore, all eigenvalues are the roots of the following polynomial

∆m(λ) = det(SB(λ)).

In the uniform case (m+ 1)H = 1, α = hH−1, it reduces to

∆m =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(λ− 1)2 − (1 − α)2 α(λ− 1) ...

α(λ− 1) (λ− 1)2 − (1 − α)2 + α2 α(λ− 1) ...

... ...

..α(λ − 1) (λ− 1)2 − (1 − α)2 + α2

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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There is a three-term recurrence

∆0 = 1,∆1 = (λ− 1)2 − (1 − α)2,

∆k = {(λ− 1)2 − (1 − α)2 + α2}∆k−1 − α2(λ− 1)2∆k−2.

Hence, we have the following representation

∆m =
ξm+1
2 − ξm+1

1 − α2(ξm
2 − ξm

1 )

ξ2 − ξ1
,

where ξ1 and ξ2 are two roots of the following characteristic quadratic equation

ξ2 − {(λ− 1)2 − (1 − α)2 + α2}ξ + α2(λ− 1)2 = 0 .

Let

(λ− 1)2 − (1 − α)2 + α2 = 2α(λ − 1) cos θ ,

then

∆m(λ) =
αm(λ− 1)m−1

sin θ
{(λ− 1) sin(m+ 1)θ − α sinmθ} .

Note that λ = 1 is not a root of the above polynomial. So for small α = h/H, it

is reasonable to take the roots of sin(m + 1)θ = 0 as initial guess, then the Newton’s

iteration could be used to get more accuracy roots. Hence, corresponding to the smallest

eigenvalue we may find

θ = H(1 +O(h))π,

or

λmin =
hHπ2

2
+O(h2). (19)

Finally, we have computed the condition number of the preconditioned system and

got one order improvement comparing with A as follows:

κ(BsA) =
4

π2
(Hh)−1(1 −

h

2H
) +O(H−2). (20)

A numerical result is shown in section 7 Table A.

Therefore, for getting better preconditioner it is necessary to introduce some global

corrections adding to the above subdomain solver. As a choice, we introduce a coarse

mesh as follows:

∆c : 0 = xc0 < xc1 < ... < xcm+1 = 1 (m << N) .

In this case new basis in the coarse mesh subspace becomes

ψk(x) =











0 , if x < xck−1
orx > xck+1

(x− xck−1
)H−1

k , if xck−1
≤ x ≤ xck

(xck+1
− x)H−1

k+1 , if xck
≤ x ≤ xck+1

,

where

Hk = xck
− xck−1

.
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And the coordinate transformation is

ψk = φck
+

∑

i6=ck

tkiφi , where tki = ψk(xi) .

Hence

(TA)kj =
∑

i

tki < Aφi, φj >=< Aψk, φj >

or

TA = [Ac, 0]Pr ,

where Pr is a truncated permutation matrix

(Pr)ki = δlk,i, (1 ≤ i ≤ N, 1 ≤ k ≤ m).

So, it means that introducing coarse mesh will only modify the matrix BsA at the

columns which are related to the coarse mesh points and the contribution correction

matrix will have the following form:

BcA = T ′A−1
c TA = P ′

r

[

Tr 0

Tb 0

]

Pr.

Now the left question is how to match the coarse mesh to a given subdomain par-

tition. As an example, one natural choice is to set

xck
= xsk

k = 1, ...,m − 1 . (21)

The contribution of this coarse mesh to the preconditioner is in terms of the follow-

ing 2(m− 1) order matrix:

Acs =





























1 0 ...

(1 − β̂1) 0 β̂1 0 ...

0 0 1 0 ...

(1 − β̂2) 0 ...

... ...

... β̂m 0

0 0 1 0

(1 − βm) 0





























,

where

β̂k =
xsk+1 − xsk

xsk+1
− xsk

, βk =
xsk+1 − xsk

xsk+1+1 − xsk

.

Adding the above to As leads to

As +Acs =





























2 −(1 − α1) ...

β1 − β̂1 1 β̂1 −β1 ...

−α2 0 2 −(1 − α2) ...

β2 − β̂2 1 ...

... ...

... β̂m −βm

−αm 0 2 −(1 − αm)

0 1





























.
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It follows that the resulting preconditioned matrix (Bs +Bc)A has N +1− 2m unit

eigenvalues, the lest 2m − 1 eigenvalues are the same to the above matrix. Moreover,

using the Gershgoring’s disk theorem gives localization for others:

|λ− 2| < 1 ∪ |λ− 1| < 2β ,

where β = Max(β̂k, βk).

Finally, we obtain the following estimation:

1 − 2β < λ((Bs +Bc)A) < 3 (22)

and

κ((Bs +Bc)A) <
3

1 − 2β
. (23)

In some particular cases, we may obtain more exact estimation. For m = 2 and

m = 3 with xc1 = xs1 , xc2 = xs2+1, it is easy to verify that

A(Bc +Bs)A = A+Q1 = 2A−Q2,

where Q1 and Q2 both are non-negative definite matrices with zero eigenvalue. Hence,

in this case we have

λMax((Bs +Bc)A) = 2, λMin((Bs +Bc)A) = 1

The numerical tests are listed in section 7 (Table B and C) to match the above

results.

6. Operator Approach

To extend the related conclusion from 1-D to higher dimension later, we need take

more general operator approach instead of the above pure matrix approach.

For the given subdomain partition, we define subspaces consisting of piecewise linear

function as follows:

Mk := Spanlk+1≤l≤lk+1
{φl} ⊂ M, k = 0, 1, 2, ...,m,

and

Mc := Span1≤k≤m{ψk} ⊂ M

Hence, ψk can be written as a linear combination of {φj}

ψk = φlk +
lk−1
∑

j=lk−1+1

ξkjφj +

lk+1−1
∑

j=lk1+1

(1 − ξk+1,j)φj ,

where

ξkj = (xj − xlk−1
)H−1

k .

For any given uh ∈ M, there is a decomposition uh =
∑N

j=1 ujφj. Because

m
∑

k=1

ulkφlk =
m

∑

k=1

ulk{ψk −
lk−1
∑

j=lk−1+1

ξkjφj −

lk+1−1
∑

j=lk1+1

(1 − ξk+1,j)φj},
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hence

uh =
m

∑

k=1

ulkψk +
m+1
∑

k=1

{
lk−1
∑

j=lk−1+1

(uj − ξkj)φj +

lk+1−1
∑

j=lk1+1

(uj − (1 − ξk+1,j))φj}.

So we may decompose uh in the following way:

uh =
m+1
∑

k=0

uh
[k] (24)

where

uh
[0] =

m
∑

ν=1

ulνψν , uh
[k] =

lk−1
∑

j=lk−1+1

(uj − ûjk)φj ,

ûjk = ulkξkj + ulk−1
(1 − ξkj), k = 1, ...,m + 1.

Then

‖uh
[0]‖

2
A = A(uh

[0], u
h
[0]) =

m
∑

ν,µ=1

A(ψµ, ψν)ulµulν ,

‖uh
[k]‖

2
A =

lk−1
∑

i,j=lk−1+1

A(φi, φj)(ui − ûik)(uj − ûjk)

=
lk−1
∑

i,j=lk−1+1

A(φi, φj)uiuj − 2
lk−1
∑

i=lk−1+1

ui

lk−1
∑

j=lk−1+1

A(φi, φj)ûjk

+
lk−1
∑

i,j=lk−1+1

A(φi, φj)ûjkûik.

A straightforward computation leads to

lk−1
∑

j=lk−1+1

A(φi, φj)ûjk =











0 , if i 6= lk−1 + 1 and i 6= lk − 1

ulk−1
h−1

lk−1+1 , if i = lk−1 + 1

ulkh
−1
lk

, if i = lk−1 − 1

.

Moreover, we may have

‖uh
[k]‖

2
A =

lk−1
∑

i,j=lk−1+1

A(φi, φj)uiuj − 2(ulk−1
ulk−1+1h

−1
lk−1+1 + ulkulk−1h

−1
lk

)

+u2
lk−1

(h−1
lk−1+1 −H−1

k ) + 2ulk−1
ulkH

−1
k + u2

lk
(h−1

lk
−H−1

k ),

and

‖uh
[0]‖

2
A =

m
∑

ν=1

(H−1
ν +H−1

ν+1)u
2
lν − 2

m
∑

ν=1

H−1
ν+1ulνulν+1.
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Summation all above terms of A norm gives

‖uh
[0]‖

2
A +

m
∑

k=1

‖uh
[k]‖

2
A =

N
∑

i,j=1

A(φi, φj)uiuj − 2
m

∑

k=1

A(φlk , φlk−1)ulkulk−1

−2
m

∑

k=1

A(φlk , φlk+1)ulkulk+1 + 2
m

∑

k=1

{−(ulk−1
ulk−1+1h

−1
lk−1+1 + ulkulk−1h

−1
lk

)

+u2
lk−1

(h−1
lk−1+1 −H−1

k ) + 2ulk−1
ulkH

−1
k + u2

lk
(h−1

lk
−H−1

k )}

+
m

∑

ν=1

(H−1
ν +H−1

ν+1)u
2
lν
− 2

m
∑

ν=1

H−1
ν+1ulνulν+1.

Finally we may get the following result:

‖uh
[0]‖

2
A +

m+1
∑

k=1

‖uh
[k]‖

2
A = A(uh, uh) . (25)

By using the well-known Lion-Lemma[3], we obtain a good estimation of the lowest

eigenvalue for the preconditioned system:

λmin(BA) ≥ 1 . (26)

Therefore, we get a final estimation on the condition number once again

κ(BA) ≤ 3 . (27)

7. Numerical Results

Three numerical tests are listed here to show they access our above analysis.

Table A

Condition number of ASM for equidistant mesh

m 3 5 9

1/h (Bc +Bs)A BcA (Bc +Bs)A BcA (Bc +Bs)A Bc A

32 2.25 22.95 2.46 36.07 2.79 68.29

64 2.13 44.92 2.26 71.31 2.49 135.24

128 2.07 86.98 2.13 137.55 2.24 240.21

256 2.03 172.98 2.07 274.12 2.13 479.57

512 2.02 343.00 2.03 538.85 2.07 958.18
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Table B

Condition number of ASM for an non-uniform mesh x(i) = (i−1)i
n(n+1)

m 3 5 9 11

n=32 2.2764 2.4697 2.2897 2.9973

n=64 2.1506 2.2675 2.4908 2.5650

n=128 2.08 2.134 2.2453 2.3038

n=256 2.04 2.07 2.13 2.1580

n=512 2.02 2.04 2.0677 2.08

Table C

Eigenvalues test for ASM with 3 sub-intervals Non-uniform mesh x(i) = (i−1)i
n(n+1)

n (Bc +Bs)A BcA

λM λm κ λM λm κ

8 1.7961 0.2029 8.8076 2.0000 1.0000 2.0000

16 1.8842 0.1158 16.2779 2.0000 1.0000 2.0000

32 1.9386 0.0615 31.5301 2.0000 1.0000 2.0000

64 1.9682 0.0318 61.9696 2.0000 1.0000 2.0000

128 1.9837 0.0163 121.7075 2.0000 1.0000 2.0000

256 1.9981 0.0082 242.3839 2.0000 1.0000 2.0000

512 1.9959 0.0041 482.2293 2.0000 1.0000 2.0000
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