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Abstract

In this paper, we have proved that the lower bound of the number of real

multiplications for computing a length 2t real GFT(a,b) (a = ±1/2, b = 0 or b =

±1/2, a = 0) is 2t+1−2t−2 and that for computing a length 2t real GFT(a,b)(a =

±1/2, b = ±1/2) is 2t+1 − 2. Practical algorithms which meet the lower bounds of

multiplications are given.

1. Introduction

Since the fast Fourier transform was proposed, great interests for fast algorithms

have been aroused. In this area, there have been many achievements, which have greatly

stimulated the development of digital signal processing and other fields. The compu-

tational complexity is to study what the best algorithm will be for a given problem.

There are many standards for appraising whether an algorithm is good or bad. In nu-

merical computation, a common standard is the number of multiplications, that is, we

say an algorithm is good or bad if the number of multiplications is large or small. The

famous mathematican S. Winograd and L. Auslander have done some pioneering works

in this area. They found the lower bound of the number of multiplications for multiply-

ing two polynomials, and also gave an algorithm which met the lower bound[1]. Some

later,they found the lower bound of the number of mulitplications for computing the

discrete Fourier transform (DFT)[2−3]. After that, Heidemann-Burrus and Duhamel et

al. also studied the multiplicative complexity of DFT. Heidemann-Burrus pointed out

that 2t+1 − t2 − t − 2 multiplications is necessary for computing a length-2t DFT, and

also gave a practical algorithm which met the bound[4]. Some later, Duhamel et al.

also proved the assertion and gave a new algorithm[5].

Generalized discrete Fourier transform (GFT) is a generalization of DFT (In ref.[10]

the transform is called DET). It is shown that GFT is better than DFT in some

applications. Let x(n)(n = 0, 1, · · · , N − 1) be a real number sequence, we call

X(k) =
N−1
∑

n=0

x(n)W
(n+a)(k+b)
N , k = 0, 1, · · · , N − 1. (1)
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the generalized discrete Fourier transform of {x(n)}, where WN = e−i 2π

N and i =
√
−1.

In (1) a is called the time parameter and b the frequency parameter. A GFT with

time parameter a and frequency parameter b is denoted by GFT(a,b). Especially,

if a = b = 0, (1) is the DFT. It is very interesting to determine the multiplicative

complexity of GFT. Since in practical applications a,b can either be 0 or ±1/2, so

when we discuss the multiplicative complexity, we confine our research on these cases.

2. The Computation of GFT(a,b)(a,b are integers)

If a,b are integers, the compution of GFT(a,b) is almost the same as that of DFT.

In fact, if we set

x
′

(n) =

{

x(N + n − a), n = 0, 1, · · · , a − 1

x(n − a), n = a, · · · , N − 1

and denote the DFT of {x′

(n)} by {X ′

(k)}, then it is easy to prove that

X(k − b) = X
′

(k), k ∈ Z

where {X(k)} means the GFT(a,b) of {x(n)} . Therefore, the multiplicative complexity

of GFT(a,b)(a,b are integers) is the same as that of DFT.

3. The Multiplicative Complexity and Algorithm of GFT(0,1/2) and

GFT(1/2,0)

1. The relationship between DFT and GFT(1/2,0)

Let {Y (k)} be the DFT of {x(n)}(n = 0, 1, · · · , N − 1;N = 2t), that is

Y (k) =
N−1
∑

n=0

x(n)W nk
N , k = 0, 1, · · · , N − 1.

In the following, {Y (k)} is turned to a series of GFT(1/2,0).

Y (k) =

N/2−1
∑

n=0

x(2n)W nk
N/2 +

N/2−1
∑

n=0

x(2n + 1)W
(n+1/2)k
N/2 .

If we set {U(k)} and {V (k)} to be the DFT of {x(2n)}(n = 0, 1, · · · , N/2 − 1) and the

GFT(1/2,0) of {x(2n + 1)}(n = 0, 1, · · · , N/2 − 1) respectively, then

Y (k) = U(k) + V (k), k = 0, 1, · · · , N/2 − 1,

Y (k + N/2) = U(k) − V (k), k = 0, 1, · · · , N/2 − 1.

Therefore, a DFT of length N is decomposed to a DFT of length N/2 and a GFT(1/2,0)

of length N/2 plus N additions. If N/2 ≥ 2, the decomposition can continue. In
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general, a DFT of length 2t can be decomposed to one GFT(1/2,0) of length 2t−1, one

GFT(1/2,0) of length 2t−2, · · ·, one GFT(1/2,0) of length 2 plus one DFT of length 2.

2. The multiplicative complexity and algorithm of GFT(1/2,0)

In [9] we have proved that a GFT(1/2,0) of length N can be turned to a DCT-

II of length N/2 and a DST-II of length N/2 plus some additions. We will not give

the details here. In [11] we proved that a DCT-II or a DST-II of length 2t−1 can be

computed using 2t − t − 1 multiplications and also gave an algorithm which met this

bound. Therefore, we get an algorithm which uses 2(2t − t − 1) = 2t+1 − 2t − 2 real

multiplications to compute a GFT(1/2,0) of length 2t.

Theorem 1. At least 2t+1 − 2t − 2 multiplications must be used for computing a

GFT(1/2,0) of length 2t, and there exists an algorithm whose number of multiplications

meets this bound.

Proof. The algorithm discussd above meets the bound. So, we need only to show

that 2t+1 − 2t − 2 multiplications is necessary for any algorithm which computes a

GFT(1/2,0) of length 2t.

If t=0 or 1, the conclusion is obviously right.

Now, assume t ≥ 2. We have shown that a DFT of length 2t+1 can be decomposed

to a DFT of 2t and a GFT(1/2,0) of length 2t. Assume that we have an algorithm

to compute a GFT(1/2,0) of length 2t which costs M1(2
t) multiplications. Using this

algorithm combined with the algorithm which computes a DFT of length 2t with 2t+1−
t2 − t− 2 multiplications, we get an algorithm to compute the DFT of length 2t+1 with

M1(2
t)+2t+1 − t2 − t− 2 multiplications. But it has been proved that 2t+2 − (t+1)2 −

(t+1)−2 multiplications is necessary for computing a DFT of length 2t+1, we see that

M1(2
t) + 2t+1 − t2 − t − 2 ≥ 2t+2 − (t + 1)2 − (t + 1) − 2

This leads to

M1(2
t) ≥ 2t+1 − 2t − 2.

3. The relationship between DFT and GFT(0,1/2)

Let {Y (k)}(k = 0, 1, · · · , N − 1;N = 2t) be the DFT of a real number sequence

{x(n)}(n = 0, 1, · · · , N − 1). Then

Y (2k) =

N/2−1
∑

n=0

(x(n) + x(n + N/2))W nk
N/2,

Y (2k + 1) =

N/2−1
∑

n=0

(x(n) − x(n + N/2)W
n(k+1/2)
N/2 ,

k = 0, 1, · · · , N/2 − 1.

This tells us that a DFT of length 2t can be computed through computing a DFT

of length 2t−1 and a GFT(0,1/2) of length 2t−1 plus some additions. The DFT of
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length 2t−1 can be computed in the same way. Therefore, a DFT of length 2t can

be decomposed to a GFT(0,1/2) of length 2t−1, a GFT(0,1/2) of length 2t−2, · · ·, a

GFT(0,1/2) of length 2 and a DFT of length 2. In other words, a DFT can be computed

by a series of GFT(0,1/2).

4. The multiplicative complexity and algorithm of GFT(0,1/2)

First, in [9] an algorithm was given for computing GFT(0,1/2) by IDCT-II and

IDST-II. The algorithm uses a IDCT-II of length 2t−1 to compute a GFT(0,1/2) of

length 2t plus some additions. In [11] we gave an algorithm for IDCT-II or IDST-II

of length 2t−1 which costs 2t − t − 1 multiplications. So, we get an algorithm that

computes a GFT(0,1/2) with 2(2t − t − 1) = 2t+1 − 2t − 2 real multiplications.

Theorem 2. At least 2t+1 − 2t − 2 multiplications must be used for computing a

real GFT(0,1/2) of length 2t, and there exists an algorithm which meets the bound.

Proof. The proof for this theorem is the same as theorem 1, so we simply omit the

detail.

4. The Multiplicative Complexity and Algorithm of GFT(1/2,1/2)

Let {X(k)} denote the GFT(1/2,1/2) of a real number sequence {x(n)} (n =

0, 1, · · · , N − 1;N = 2t), that is

X(k) =
N−1
∑

n=0

x(n)W
(n+1/2)(k+1/2)
N , k = 0, 1, · · · , N − 1.

In the following, DCT-II is used for computing the GFT(1/2,1/2). Let U(k) and V(k)

be defined by

U(k) =
N−1
∑

n=0

x(n) cos
π(2n + 1)(2k + 1)

2N
, k = 0, 1, · · · , N − 1.

V (k) =
N−1
∑

n=0

x(n) sin
π(2n + 1)(2k + 1)

2N
, k = 0, 1, · · · , N − 1.

Then we see that

X(k) = U(k) − iV (k).

Noticing that U(N − 1− k) = −U(k), we know that it is sufficient to get {U(k)} from

U(0), · · · , U(N/2−1). If N ≥ 4, then the method in [6] can be used to compute {U(k)}
which needs the computation of a skew-cyclic convolution (SCC) of length N/2 plus

some additions. {V (k)} can be turned to a similar forms as {U(k)} , in fact

V (k + N/2) =
N−1
∑

n=0

(−1)nx(n) cos
π(2n + 1)(2k + 1)

2N
, k = 0, 1, · · · , N/2 − 1.

Futhermore, V (N − 1 − k) = V (k). Hence, if N ≥ 4, {V (k)} can also be computed by

a SCC of length N/2.
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In general, a GFT(1/2,1/2) of length N (N ≥ 4) can be computed by two SCC

of length N/2 plus some additions. If the Winograd algorithm for multiplying two

polynomials is used, then the computation of SCC of length N/2 needs N − 1 real

multiplications. Therefore, only 2N − 2 real multiplications is necessary for computing

the GFT(1/2,1/2). It is obvious that 2 real multiplications is necessary and sufficient

for the GFT(1/2,1/2) of length 2.

Theorem 3. At least 2t+1 − 2 real multiplications must be used for computing a

GFT(1/2,1/2) of length 2t, and there exists an algorithm which meets the bound.

Proof. First, the algorithm discussed above meets the bound.

Second, we want to show that 2t+1 − 2 multiplications is necessary.

Let {X(k)} be the GFT(0,1/2) of {x(n)}(n = 0, 1, · · · ,M − 1;M = 2t+1). {X(k)}
can be decomposed to a GFT(0,1/2) of length N = 2t and a GFT(1/2,1/2) of length

2t. In fact,

X(k) =
N−1
∑

n=0

x(2n)W
n(k+1/2)
N +

N−1
∑

n=0

x(2n+1)W
(n+1/2)(k+1/2)
N , k = 0, 1, · · · , N−1. (2)

and X(k + N) = X∗(k)(* means the conjugate). We see that the first sum of (2) is a

GFT(0,1/2) of length N and the second sum is a GFT(1/2,1/2) of length N. This tells

us that a GFT(0,1/2) of length 2t+1 can be computed by a GFT(0,1/2) of length 2t

and a GFT(1/2,1/2) of length 2t. If we have an algorithm to compute a GFT(1/2,1/2)

of length 2t with M2(2
t) multiplications, then combined with the algorithm in section

3.4 for computing the GFT(0,1/2) of length 2t we get an algorithm which computes the

GFT(0,1/2) of length 2t+1 with M2(2
t) + 2t+1 − 2t− 2 multiplications. But it is shown

in section 3.4 that 2t+2 − 2(t + 1) − 2 multiplications is necessary for the GFT(0,1/2)

of length 2t+1, hence we get

M2(2
t) + 2t+1 − 2t − 2 ≥ 2t+2 − 2(t + 1) − 2.

This leads to

M2(2
t) ≥ 2t+1 − 2.

5. Other Kinds of GFT

Any GFT(a,b) with a, b ∈ {0,−1/2, 1/2} can be turned to a GFT(a,b) with a, b ∈
{0, 1/2}. Reference [8-9] for the details. More accurately, a GFT(-1/2,b) can be turned

to a GFT(1/2,b) and a GFT(a,-1/2) can be turned to GFT(a,1/2) without any multi-

plications. Therefore, we have the following theorem.

Theorem 4. For a real GFT(a,b) of length 2t

(i) If a = b = 0, then 2t+1 − t2 − t − 2 real multiplications is necessary;

(ii) If a = ±1/2, b = 0, or b = ±1/2, a = 0, then 2t+1 − 2t − 2 real multiplications

is necessary;
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(iii) If a = ±1/2, b = ±1/2, then 2t+1 − 2 real multiplications is necessary.

There are algorithms which meet the bounds in all the cases respectively.

The above results can be extended to complex GFT. In [4-5] it was shown that

a complex DFT needs at least 2t+2 − 2t2 − 2t − 4 real multiplications, exactly two

times that of a real DFT. Also, we can show that the lower bound of the multiplicative

complexity of a complex GFT is exactly two times that of a real GFT. We will not give

the details here. Algorithms for complex GFT
′

s which meet the lower bounds can be

construsted in a similar way.

Recently a new kind of discrete orthogonal transform called DWT[12] is used in

signal processing. From the relationship between DWT and GFT[13,14] it is easy to

show that theorem 4 is correct if GFT(a,b) is replaced by DWT(a,b).
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