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Abstract

By estaBlishing the spectrum (matrix) function for the block Jacobi matrix,
theorems of existence and uniqueness for the inverse problem and algorithms for its
solution are obtained. The study takes into account all possible multiple-eigenvalue
cases that are very difficult to deal with by other means.

1. Introduction

There is an extensive study [1-5] on inverse eigenvalue problems for Jacobi matrices,
but only a few papers [4] deal with block or banded matrices which arise more often
in practice. In these papers most work is restricted to the case of simple eigenvalue
only, which is often not the case in practice. Further study of such problems involving
multiple eigenvalues is urgently needed.

In this paper, we study the Jacobi matrix with entries as r x r matrices of the form:

b; a- bg

bn—l

2%k
- 1

A

aj, b r X r matrices on C, a,; = a;, all b; invertible.

We denote the set of all » x » matrices on C as a ring /. The main points we must
bear in mind are

(1) for a,b € F, then ab # ba in general,

(2) for a € F and a # 0,a7! may not exist in general.

* Received October 15, 1991.
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First, we need to establish operations in F, and some definitions. Then is Section
2 we will apply the Fourier theory to the matrix A. This fresh approach will turn
out to be very useful. In Section 3. a general inverse spectrum problem and the
main theorems of the problem will be given. Two algorithms based on G-L theory are
formulated, and another algorithm based on orthogonalization is given in Section 4.
Finally, a brief description of the applications and numerical testing will be presented.
The main advantage of our treatment is that; our conclusion takes into account all
possible multiple-eigenvalue cases that are difficult to deal with by other means.

Beside the well known operations such as multiplication, scalar multiplication and
addition, we recall the conjugate operation ‘*’ in F:
(1) for a € F,a* = a’, (a*)* = q, (2)
(2) for a,b € F,{(ab)* = b*a”,
(3) for @ € F,a*a and aa* are semi-positive and self-adjoint,
(4) a =0 < a*a = aa® = 0.
Let H denote a linear space of n-dimensional column vectors on F, that is

s H={f={f1,f2, ", fa)!, all fx € F}.

And denote H* as its conjugate space, that 1s

H* = {f* = (1, f5 -, f2), all fx € F).

Then we define the inner product of f,g € H as follows:
(1) (f,9)=f9=Ffin+figz+ -+ fagn€F, (3)
:2) (f:g) — (Q, f)*a
B) (L H=Ff20,
4) f=0e(f,f})=0.

Denote by 0 and I the zero element and identity element respectively of either F or H

or some matrices without causing confusion.

Since (f, g) is a matrix in F, then it is natural to regard a*a(aa™) in (2) and (f, )
in (3) as certain matrix measurement instead of a usual norm. This is something

interesting beyond our problem.

2. Fourier Theory for a Block Jacobi Matrix

First, we introduce an eigenfunction ¢(A), A € (—o0, +00), for (1} as follows:
B(A) = ($1(2), 62(A), - du(N))", (N) = 1,
A(A) = M$(\) + R(X), R(X)=(0,0,---, ()" (4)

where ®,(A\) = b*_10n_1{X) + (an — A)én(A). In general &,(A) # 0, unless when A is
an eigenvalue, such that det |®,(\)] = 0 and the homogeneous system $,(A)y = 0 has
nontrival solutions v = ().
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Let Ax be an eigenvalue with multiplicity s;. Then the homogeneous system pos-
sesses s linearly independent solutions vy/(Az),! = 1,2,---,8; < r. Furthermore, we
normalize ¢(Ax )7 (Ax) as follows:

(H(V)* (67 )a=n, = V& V" = Ol, Sk 2 1; 6k =0 for k # 1. (5)

If we take into account the multiplicity, then we may omit the superscript of -, and
simply write y(Ag).
Definition. The spectrum function p(A) of the block matriz (1) is defined by

p(N) = Y Y)Y (M), A€ (o0, +00).
Ak < A

By the definition, p()) is ¢ nondecreasing and semi-positive funciion:
(1) for A, u € (—o0,+00) and A < p, p(A) < p(p);
(2) p(A) =p*(A) 2 0.
Remark 1. It is easy to check that for matrix (1) the spectrum function is uniquely

determined and assumption (A2} in 3 must be valid.
Denote by Fp the set of all functions of A in F with measure do()A). Then we define
P

(1) ol B0 e forall o(X) € £, f Al XXXy = / b(A)dp(A)c(A), (6)

(2) a(NZB(N) & forsll o)) e £, f N dp(N)a(}) = f c(N)dp(A)B(N),

(3) a(A) £b(A) & a*(X) Eb*(N).
The same definitions are used for vectors. If Hp denotes the space of vector functions
of A, then ¢(A) € Hp and in the above sense we have

Ap(XN) ZAg(A). (7)
For each f € H, we define its Fourier transform with respect to ¢(A) by
fQ)=¢*(Nf e F, (8)
and the inverse Fourier transform by |
+o00 4
=" sNdpNFN). ®)

By direct calculating it is easy to derive (8') from (8). Since

+00 . +co
f= [ oNdp(NFN) = [ " gdpg"f, forall feEH, (9)
we have P
I= [ #()dos* (V). (10)

Notice that if all b;’s are invertible, then for ¢(X) = (d1, P2, *,Pn), @x(A) is just a
polynomial in A of order k — 1, i.e.

dr(A) = bzl - BTIAR T = (bybe - b)) TN T = 1(A) (11)
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and it is easy to see that the transforms defined by (8) and by (8’) are in one to one
correspondence. Furthermore,

f(A) = : O* (N p(u)dp(u) flp) = f " oA, m)dp(p)f(u), forall fe H, (12)

P20

S0 we denote ¢*(A)p(u) = 6,(A, u)-the Dirac delta function with respect to p(A). Now
we reach a generalized form of Parsaval equality:

+oco
[Pg= - fT(A)dp(A)g(A), forall f,g € H,
or in particular
oo 5
ff = -/:  PNdpNF(N), forall feH (13)

3. The Inverse Eigenvalue Problem

»
In this section we will formulate the inverse eigenvalue problem and present the

main result for a block Jacobi matrix. First we need the following two assumptions
(A1) and (A2):

(Al) all by, k =1,2,--- ,n—1, are invertible, and are fully determined by aq, - -, a
and by, bg__1.

In practice by may be given, or only depend on a. For the completeness of the

épectrum function p(A) we also assume that

(A2) rank {p(Ai + 0) — p{ A — 0)} = rp < r, rp-multiplicity of Ay Erk =i 1
k
It is easy to see that for a given block Jacobi matrix (1) assumption (A2) must be

fulfilled.

Theorem 1. Under (Al) and (A2) matriz A of form (1) is uniquely determined
by the spectrum function p(\).
Proof. Our proof of this theorem is constructive. First from (7) we have

B*A = (Ag)" = A¢" + R*(N),
1.e.
(B1(A); -, Gn(A)A = (AB], A, 3, -+, A], + B*(N)).
This impplies
#1(A)a1 + @3 (A)b] = Agi(A),
$1(A)b1 + B3(A)az + ¢*(A)by = Ag3(),

iiiiii

Sr—1(A)bn-1 + 8 (MNay = Mgy () + 8,(A) £ A (14)
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Moreover, relation (10) implies
+o0 |
| 0k Ndo(NE (V) = T8k, b = 1,85 = 0 for k # ;.

— 0

Theretore, premultiplying the first eugation of (14) by ¢1()) and using (14) gives
a1 = [ Mu(Ndpdt (V) i(A) = $1(A) = T.

Now, by (Al), by can be found and ¢1(A) = b7' (A —a1),-+-. If ay,a9, -, ap_1:
b1,b2, -, bx_1 and @1, @2, -+, P are known, then from the k-th equality of (14), we

can find -
ae= [ AGNdpBi(N), by and ria(A), k= 2,3,
— )

By induction, the proof is completed.
The proof of the theorem is constructive, but it does not provide a practical al-

gorithm for numerical computation, because the construction is numerically unstable
for large n (see de Boor and Golub [2] for r = 1). Interestingly we have the following

theorem:
Theorem 2+ If A is a block Jacobi matriz of form (1), where all by ’s are nonsingu-

lar, then under (A2) all ar and bib} are uniquely detérmined by the spectrum function

p(A).
Proof. There is only a little difference in the proof. First we have

] = /A¢1dﬁ¢'? and bl — fAQﬁldpqﬁ;,ﬂf’l = 4.

Then we have

by = / Agdp(b )" f Ardp((A — ay)éy )"

Similarly,

i ] Addpdt,
bt = / MidpBE(R), BulAT = BY . dps & [N —6k)dis

k=1 2« f—1. a, =/Aq§ndp¢;.

The proof is completed.
Remark 2. Since bib} is unique, the by QL factorization method we may suppose

br are lower triangular matrices, and A becomes a band matrix.

Denote
—+ o0

(a(), b(A)) = / a(N)dpb* (), a,be E,.

== OO0

Let Pr(A) = A*~! 4 ... be orthogonal monic polynomials, then we have Pi(A) =
b1by - - br_10k(A) and (Pr, Pi) = bybo -+ - bp_1(b1ba -+ - bp_1)".
Theorem 3. Assumption (A2) insures all (P, Py) and (by) invertible.
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Proof. ¥ (P, P1), -+, (Pr-1, Px—1) > 0, but (P, Fy) is singular, l.e. det (P, Bi)| =
0, then for the following block k x k matrix

(1,1) (1,A) (1, 2%71)
5 g k-1
5o (A1) (A (A, A7) i
(’\k—lﬁ 1) (’\'krla ;\) " (}‘k_la Ak_l)

the homogeneous system has a nontrivial solution @ = (q1,92, . )T, which implies

(Q(), QM) =0, Q) =ar +gr—1+ @ A",

ie. det |Q(\;)| =0, 7 =1,2,---,nr. This means det Q(A) must be a polynomial of
order nr, which 1s impossible for £ < n.

Remark 3. Theorem 3 also shows the solvability of the inverse problem under
assumption (A2).

»

4. Some Algorithms for Solving the Problem

Our original algorithm is based on the recurrence
bi_10i-1(A) + 2:9i(X) + bidit1(A) = Adi(A) (1)

from Theorems 1-2, where ¢1()A) = I. Since {¢;(A)} form an orthonormal set with
respect to the inner product associated with matrix A, it follows immediately that

a; = (Adi(A), #:(N)) and b; = (Adi(A), ¢i+1(A)) whence
bib} = (Adi(A), Gir1(ANG; = (Ai(A), bidit1(A))
" = (Agi(A), Ai(A) — aidi(A) — bi_19i-1(A))
= (Agi(A), Ai(A)) — (Adi(A), di(A))a; — (Adi(A), di—1{A))bi-1.

We nse the recurrence, the equation for a; and the last equation for b;b; as the basis
for our original algorithm. We take b; to be the Cholesky factor of b;b;. Below we call

this scheme Algorithm la.
We can improve this scheme by using

bib; = (Adi(A), Adi(A)) — aiai — b_1bi1

in place of the equation for b;b7. To derive this last equation, start with the equation for
b;bf and substitute a; for (Ag;(A), ¢i(A)) amd b;—; for (Agi(A), ¢i—1(A)), where the last
substitution is based on the equality b;_1 = (M;(A), #;i—1(})) and the orthonormality
of ¢. Again we take b; to be the Cholesky factor of b;b}. Below we call this revised

scheme Algorithm 1b.
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The new equation for §;b; can be derived more easilty by noting
(Adi(A), Agi(A)) = (bi_10i—1(A) + @igi(A) + bidir1(A), bi_19i—1(A) + aids(A)
+ bipir1(A) = bi_1bi—1 + a;a; + bib].

The third algorithm is based on the unique set of monic matrix polynomials satis-

fying p;(A) = 0,p1(A) = I, the recurrence
Pi+1(A) = (A — ai)p:(A) — Bipi—1(A)

and orthogonality with respect to the inner product associated with A. Given p; and
F;..1, orthogonality requires that

a; = (Api(A), pi(N)(ps(A), pi(A))

and

G = (pi(A):pi("\))(pi—l(A)api—l(A))_l

since
(Api(A), pi-1(A)) = (Bi(A). pi(N))-

Hence we can compute p;+1(A) (Note 3; is not defined for ¢ = 1, but this just reflects
the fact that p2(A) = (A — a;)). These equations for o; and 3; can be used to calculate
all @ and 3 recursively. In this paper we have shown

—p—] —1
a; — bi—l e -b1 t’libl el bz'—l

bib} = b - b7 By - biy.

These last two equations can be used to calculate a and b from «a and 3, again using
the Cholesky factor of ;0] for b,.

In our algorithm implementing this shceme, we start with «; and multiply on the
left and right by by 1 and b; respectively. We then multiply on the left and right by
by ! and b, respectively and so on. We use a similar approach to calculate b; b;. Below
we call this scheme Algorithm 2. (It would be more efficient to form and update the
products bi__ll ‘o -bl_l and by - - b;—1, but we think this could lead to a loss of precision
due to roundoff. We'll implement a scheme that uses this alternate approach later to
check if this is the case.)

Problem 1.
[ 1.8480 —0.3767 —0.2032]
a; = | —0.3767 0.6053 0.0566 and b, =1 for all 3.
| —0.2032 0.0566  1.0467
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Algorithm 1la

n=3J3

=20

n=29

n=12

n=1>5

IA — Al
|4 — All,
AV — VA2
AV — VAl

9.2149D-15
1.0958D-14

1.2921D-14
1.1944D-14

1.8652D-14
4.5079D-14
4.4815D)-14
4.4247D-14

7.9936D-15
3.2878D-13
3.2939D-13
3.2802D-13

1.2795D-14
3.3642D-11
3.3641D-11
3.3642D-11

1.1303D-14
4.9396D-10
4.9396D-10
4.9396D-10

Algorithm 1b

=g

n==0

n=9

1= 12

n =195

s
|
puf i SR 3

AV — VA,

7.7716D-15
1.3296D-14
1.3857D-14
1.3961D-14

1.8652D-14
4.4522D-14
4.3468D-14
4.3663D-14

6.2172D-15

- 3.4571D-13

3.4365D-13
3.4480D-13

1.8971D-14
3.4134D-11
3.4133D-11
3.4134D-11

1.5987D-14
5.0618D-10
5.0618D-10
2.0618D-10

Algorithm 2

=N

n—==~06

n=29

n =12

=15

A — Al
A~ Allg
AV — VA,
AV — VA,

3.1086D-15
3.1693D-15
4.4376D-15
3.5966D-15

4.4409D-15
2.0006D-14
2.1418D-14
1.9280D-14

4.4409D-15
3.4738D-13
3.4637D-13
3.4658D-13

3.9968D-15
3.3915D-11
3.3916D-11
3.3915D-11

5.9952D-15
5.0056D-10
5.0056D-10
5.0066D-10

Problem 2.

"~ 1.8480
—0.3767
| —0.2032

—0.3767
0.6053
0.0566

—0.20327
0.0566
1.0467

and b; =

o ' on

;= O
o O

-
d

for all 1.

Algorithm 1a

7= 3

n =0

n=9

n =12

=15

A — Al
AV — VA2
AV — VA,

2.3848D-13
6.0747D-13
6.0809D-13
6.0661D-13

1.0083D-09
4.8896D-09
4.8896-09
4.8896D-09

9.6689D-06
6.1796D-05
6.1796D-05
6.1796D-05

0.5910
2.6999
2.6999
2.6999

failed
failed
failed
failed
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Algorithm 1b
n =3 n==~6 n=29 n=124 n=15
A—Als | 3.0309D-13 | 1.4447D-09 | 8.0614D-06 | failed | failed
A— All, | 7.7805D-13 | 7.0050D-09 | 5.1522D-05 | failed | failed
AV —VA|p | 7.7690D-13 | 7.0050D-09 | 5.1522D-05 | failed | failed
AV — VAllp | 7.7706D-13 | 7.0050D-09 | 5.1522D-05 | failed | failed
Algorithm 2
n=3 n=~6 n==9 n.=_12 n=15
A—Als | 2.2204D-15 | 5.3291D-15 | 1.2879D-14 | 6.6169D-13 | 9.8049D-08
A—Aly | 83176D-15 | 1.8641D-12 | 8.6729D-10 | 1.3233D-06 | 0.0013
|AV — VAl|z | 7.8671D-15 | 1.8635D-12 | 8.6729D-10 | 1.3233D-06 | 0.0013
JAV — VAlls | 7.6669D-15 | 1.8665D-12 | 8.6729D-10 | 1.3233D-06 | 0.0013

In all tables ofthis paper “failed” means the program terminated with an error mes-
sage indicating that b;b] was not positive definite so it could not calculate its Cholesky
factorization. For n = 15, we got several warnings from Algorithm 2 that the condition
number of some matrices was large than 107, but the program did not crash and in
fact managed to construct a matrix having eigenvalues relatively close to the required

set.
Problem 3.
e @ .
a;=]1 -4 1 and b, =1 forall i.
=3 1 -—-4-
‘Algorithm 1a
n=3 =8 n=9 |n=12|n=15
IA—Allz | 1.3944D-13 | 1.1129D-08 | 1.2069D-05 | failed | failed
|A— All; | 3.4874D-13 | 3.8038D-08 | 6.7913D-05 | failed | failed
AV — VAl | 3.4775D-13 | 3.8038D-08 | 6.7913D-05 | failed | failed
AV — VA5 | 3.4752D-13 | 3.8038D-08 | 6.7913D-05 | failed | failed
Algorithm 1b |
n=3 n=6 n=29 n=12 | mn=16
JA — Allz | 2.3448D-13 | 1.0357D-08 | 4.1061D-06 | failed | failed
A — All> | 5.9899D-13 | 3.5400D-08 | 8.6591D-05 | failed | failed
AV — VAl | 5.9729D-13 | 3.5400D-08 | 8.6591D-05 | failed | failed
AV — VAllz | 5.9889D-13 | 3.5400D-08 | 8.6591D-05 | failed | failed
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Algorithm 2
=i n==6 =8 = 12 = 19
A—Als 3.5527D-15 | 5.3291D-15 | 9.7700D-15 | 6.2172D-15 | 9.7700D-15
A — Alls 5.4888D-15 | 1.0273D-13 | 1.1780D-11 | 3.4780D-10 | 1.8456D-08
AV — VAllg | 7.2797D-15 | 1.0324D-13 | 1.1782D-11 | 3.4781D-10 | 1.8416D-08
AV — VAll2 | 6.6025D-15 | 1.0338D-13 | 1.1783D-11 | 3.4781D-10 | 1.8456D-08

For each of the test problems outlined above and the yack algorithm, the test
procedure was as follows.

1. We generated the spectral data {(A;,v;,v;)} from A, where A; is an eigenvalue,
v; is the corresponding eigenvector and where ~; is the first r components of v;. We
sorted {A;} from the smallest to the largest and re-ordered the spectral data based on
this. We formed and saved A = diag (A;),V = [v1,---,0prp|] and T = {1, - ¥rnl.

2. We input the spectral data {{\;,v;)} to the algorithm and generated a block
Jacobi matrix A baving b; lower triangular with positive diagonal elements. (This
restricition makes the reconstruction unique.)

3. We computed the spectral data {(\;, 9;,7;)} from A. We sorted {\;} from the
smallest to the largest and re-ordered the spectral data based on this. We formed and
saved A = diag (:\), V = {1, ,Dprn) and [ = [0 * " s Fpen

4. We printed the error measures |A—Al|2, [|A—A|2, | AV =V A||2, and [|AV —V Alj2.
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