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Abstract

In this paper,_we introduce a new convergence accelerator for vector sequences
— vector Padé approximation method(VPA), discuss its convergence and stability
properties, and show that it is a bona fide acceleration method for some vector
sequences. |

i 1. Introduction

There are two well known families of convergence acceleration methods for vector se-
quences: polynomial methods and epsilon algorithms. Five classical methods have been
discussed in [10}: the minimal polynomial extrapolation(MPE) of Cabay and J acksonl?,
the reduced rank extrapolation(RRE) of Eddy!® and Mesinal?l, the scalar epsilon algo-
rithm(SEA) and the vector epsilon algorithm(VEA) of Wynn!1112l and the topological
epsilon algorithm(TEA) of Brezinskilll. In a recent paper [9]; Sidi et al. improved the
MPE and RRE methods and obtained a modified minimal polynomial extrapolation
- method(MMPE). Convergence and stability analyses of MPE, RRE, MMPE and TEA
are discussed in {7] and [9] respectively. In [14] a rational acceleration method using
vector Padé approximation is derived. This method also has the following important
properties:

(1) It accelerates the convergence of a slowly converging vector sequence and makes a
diverging sequence converge to an“anti-limit” which will be defined in the next section.

(2) It depends only upon the given vector sequence whose convergence is being
accelerated; it does not depend on how the vector sequence is generated.

(3) It can use partial components of the vectors to accelerate convergence of the
whole vectors. | |

We call this new method vector Padé approximation method(VPA). In [14] we
also gave some properties of VPA, and obtained an algorithm quite similar to the
H-algorithm!?l, In this paper, we first introduce vector Padé approximation and an
associated acceleration method (i.e., VPA) in 2. From the viewpoint of Shanks’
transformation!® we will explain the relation between VPA and MMPE. Adopting
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the same technique as in [9], we will analyze the convergence and stability properties .
of VPA in 3 and 4 respectively. It is easy to see that our conclusions and even the
remarks are quite similar to those of [7] and [9]. All the results show that VPA is a
bona fide convergence acceleration method.

2. Notations and description of VPA method

Let C? be the p-dimensional linear complex space, and the inner product (-,-) and
norm || - || be defined as usual.

In order to define vector Padé approximation, we introduce the following notations:

K
Hi = {p(2) : p(z) = Zaiz*,a.i e C},
1=0

Ey = {elz) : e(z) = Z ai2t 0z € O,
i=k+1
=l l= o o), hefe d=1; 0k
where p 1s a given pnsitive integer, and Z is the set of all nonnegative integers. Define
NE P I, for { e Z,
HTI: i (Hﬂ.ﬂ S Hﬂ)Ta EET = (E‘uu: B Ewp)T'

If g(2) = 325 2%, 05 € C, we denote

[ ci G—i % Clepga |
Ci41 € "t C—n42
Tnnl)=| 70 T T &1
L Cl4m—-1 Cl4m ' Cl4m—n_
Here we define ¢; = 0, if 7 < 0.
Definition. Let f(z) = Y 2,ci2',¢c; € CP be a given power series, n € Z, and
w =(w, ---,wp)T &= Z_:T_ be a given integer vector such that
é':z'zﬁ——n:z(wl——n,---,wp—n)TEZP, W =p-n+k

where k is a given inleger. If we can find a vector polynomial N(z) € H? and a scalar
polynomial M(z) € Hy such that

f(z)M(2) —N(z) € E, and M{0)=1, (2.2)

then we. call N(z)M(2)™! the [n, k, %] vector Padé approzimation of f. We denote it
as [n,k,w|y.
If H(n,k,w) is nonsingular, then we have (see [13], [14])

M(z) 1 1 z e (2.3)
3) det H(n,k, W) | B(n, k, &) H(n, k,w) ’ '
(n) (n—1) ... sk f(n—k)
N(z) = : } A # 4 | (2.4)
det H(n, k,w) | B(n, k, W) H(n,k, o)
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where forz = 1,---,p
A B hY
H(ﬂ,k?ﬂ?): b B(ﬂ“:k&iﬁ): »
| T w(Sp) - L el

{

g7, t [ >0,
F® () = [fM (@), -, fMENT, 1) = E(Cj g, for

0, for [ <O0.
Here ¢;(z = 1,--+,p) is the ¢-th unit coordinate vector.
Now we will consider a sequence of vectors, z,,, m = 0,1, .-, in CP, satisfying
[
$m~3+21}iﬁ? as  m — o0 (2.5)

i=1
where s and v; are vectors in CP, and \; are scalars, independent of m, X\; # 1,i =
1,2,---, A # Aj for all ¢ # j, and [A1] > |Ag]| > ---. We also assume that there can be
at most p A; having the same modolus. An example of (2.5) is described in [8]. It is
easy to see thatif |A1| < 1, {zm} converges to s; otherwise, it diverges, in which case
we call s the anti-limit of the sequence {z,,}.
For the given vector sequence {x,,}, we construct f(z) by the following formal power

series

o)=Y ar, eecr, 2.6)
o
where
Co =— I, Cs =ﬂ$§ﬁ1 — Wi — L=l § = 1,2,*-*. | (2.7)

Then by the determinant expression (2.3) and (2.4), we define the acceleration formula

as
L'n Lnt-1 S Tnih
l — :&iﬂ g &;I: —+ 4 ‘ﬁﬂ_‘: k —
Snkad — [‘n * k,k,w]f(l) = lﬂvﬂ ’fi+1£ T_ Rz
.&iﬁn’g &mﬂ‘l‘l,é‘ o &mﬂ-i-k,é'
where
E:(Ela"'aep)T:lH_(n‘i“k) }
T
L, = [(ﬂ:na 91): g ($n+e1—1: QI): S (mm Qp), Ly ($n+ep—1, qp)] ,
&$H|E — Lnpt1,e LT
and

@B (n+k)>0, W =p-(n+k)+k.

It has been pointed out in [14] that (2.8) is an acceleration formula that is a general-
ization of the Henrici transformation [5]. In order to implement this VPA method, an
algorithm similar to the H-algorithm [5] is provided in [14]. We will not state it here.
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For the simplicity of discussing the convergence and stability properties of VPA, we
give another expression of s,, ; 5 here. Let the vector sequence be generated as in (2.5).
We write u; = Az; = x4 — 2,1 =0,1,---. Without loss of generality we will assume
that A; 3£ 0, and v; # 0 for all > 1. Then

- =
Uy ~ Zztv\? as  m — oo, (2.9)
t=1
where z; = (A; —1)vs,2 = 1,2, --. Denote u; ; = (us,45), 25 = {(2,¢;),1 > 1,1 < 7 < p.
Then

o0
Um,j ™~ z 25 A as m - 00. (2.10)
=1
With the above notations we define D(og,04,-++,0%) to be the determinant
ﬂ"n ﬂ'l a v = ﬂ-k
Un,l Un41,l 0 Un4kl
D(aﬂﬁ 15> Jk) = [Un2 Unt12 "°° Unik,2 ! (211)
»
Unk Untylk " Untkk

where o; are scalars. Let NN; be the cofactor of o; in the first row expansion of this
determinant. Then

k
D(G’g,ﬂ'l,”-,ﬂ'k) — Z:ﬂ'iNi . (2.12)
=0}
When o; are vectors, we again let D{og,01,--+,0%) be defined by the determinant in
(2.11), and take (2.12) as the interpretation of this determinant.
Obviously,
D(xﬂﬁmﬂ—f—l& o $ﬂ+k)
Snkw — ' 2.13)
[ e— (
It 1s easy to prove that
Dty — 8,Zn41 — 8,y Ttk — 8)
5 — 8§ = ; 2.14
Sn k@ § D(l,l,“*,l) ( )
Let A N
Vi = - =_——"—, 0<i<k. (2.15)
D(1,1,---,1) Ej:DNi

Then we can also write s, ¢ z as
15%y

Snkad = Z YiTrnii- (2.16)

As [9] does, we consider the overdetermined (and in general inconsistent) linear

system -
k—1 |
z CiATmii = —ADZpur, n<m<nt+k—1 - (2.17)

1=0
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for ¢;. Once ¢;,2 =0,1,---,k — 1, have been determined “in some sense”, set
-
tr=1 M=_—F— 0igh, (2.18)
§=0€j

provided that Z ¢; # 0. Then s, . 7 can be computed by (2.16).
=0

Now the pmblem is how to decide on ¢;,7 = 0,1,--+,k — 1. MMPE considers only
one of the equations in (2.17)}, namely that with m = n, and obtains ¢; by solving the

system of k equations

k—1
Z c'in(‘ﬁ‘mﬂ-l-i) == _Qj (&‘Iﬂ-i-k)& =1,k (219)

where @; are linearly independent bounded functionals. For VPA method, if we define

linear functionals @Q;(j = 1,---,p) by

Q;ily) = (v,4;), y€CP, (2.20)
then we determ{ne ci{t =0,1,---,k — 1) by the following equations:
k—1
Z CiQ.’f(&anH) = _Qj(&$n+i+k)= l=1,-- » €53 3=1-,p. (2‘21)
1=0
Clearly, if e = e3 = --- = e, = 1, the systems (2.19) and (2.21) are the same if the

linear functionals Q; (j = 1,---,p} in (2.19) are defined by (2.20). Therefore MMPE
and VPA are related. However, they do not include each other in general.

3. Convergence analysis of VPA

In the following we shall assume that £ < p, e := @ — (n + k) < 1 which means
0<ej <1forall j=1,---,p. Without loss of generality, we will assume that e; =
.= ep = 1, €gyy = +-- = e, = 0. Moreover, later we will always assume that the

vector sequence {z,,} is generated as in (2.5). Before stating the main theorem, we
first introduce a lemma given in [9], which will be used many times in this paper.

Lemma 3.1. Letig, 11, --,1 be integers greater than or equal to 1, and assume that
the scalars vy ;, ... i, are odd under an interchange of any two indices of tg, %1, +, 1k.
Let 0,1 > 1, be scalars (or vectors), and let t;;,¢ > 1,1 < j <k, be scalars. Define

Ik;N e Z Z Tig (H tt: j) tn, P : (31)

tg=1 in=1

and
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Jiﬂ J’-‘-‘.-l & g ﬂ-i'k

biol  Lig,1 v g
kaN — Z ti[],ﬂ til,z S tik,g' viﬂ,'“,'ﬁ’:kﬂ (3-2)

1<ig 1 << <N : : :

tiu,k t‘il,k s tik k

where the determinant in (3.2) is to bﬂ tnterpreted in the same way as D(op, - ,01) in
(2.11). Then

e v = Je N (3.3)

Theorem 3.2. Define (v;,q;) = vi5,t 2 1,1 < § <p, and let

Yigp V21 -+ Uk
V12 V22 - Vg2
F=|" k | #£0., (3.4)
Uk Y2k -t Urk
Assume that |\| = -+ = |Xjp,.—1] implies the vectors Vis Vg1, "+, Vigr—1 are linearly

independent, for all #=1,2,.--:r < p, and that As satisfy
Al 2 - 2 Ak] > [ M| = |Aiga] > - . (3.5)

Then, for all sufficiently large n, D(1,1,---,1)# 0; hence, Sn.ka5s 08 given in (2.13)
exists.

Furthermore,

Snes = 8 =D)AL [1 +0(1)] as n— oo, (3.6)

where the vector T'(n) is nonzero and bﬂunded for all sufficiently large n. If, in addition,
1 Ak+1] > [Ary2l, then |

o8] Wy oEhr By

“1,1 221 " Zp41.1 L
-1 (Akt1 — A
{n)=—=1212 222 -+ 2py30 . 3.7
<Lk 22k " Rhk41k

Proof. For simplicity of notations we shall sometimes denote Grnia = D(xy —
Sy Tny1 — 8, - y Itk — S) and Hn,k,tﬂ = D(la P 1)
From (2.11) and (2.10) we have

1 . oy 1
B0 : n o0 n+1 n+k
Eﬁz‘l 21111)‘:'1 i1=1 %1, 1}‘ S Zt1—1 Zir 1A, g
o0 _ n o n+1 e -4
Ho g ™~ 12=1 312,2}11:2 iz=1 %iz,2; i2 ' 1-2"-1 “ig, 2/\ - (3.8)
o0 . T 241 Gﬂ n+k
=1 ztk,k’}‘ik Z:k =1 ztk,k‘h Gy Aik

e == zﬂk,
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By the multilinearity property of determinant, (3.8) is equivalent to

i Z (H J) (HA )V(l,,\il,---,,\fk),  (3.9)

Ik-——l j—l j—].
where V (£, &1, -+, &) is the Vandermonde determinant defined by

1 1 - 1
o & - &

V(6o be) =6 & o0 &) (3.10)
55“ & - &

Since V(&g,&1,- -+, &) is odd under an interchange of the indices 0,1,---, %k, by Lemma
3.1, (3.9) can be expressed as

ziljl z'iﬂ:l]- T E’ik,l
o0
<11,2  Ri,2 T &g 2
Hn,k,‘!ﬁw Z ; : : H}‘ 113 ”1/\1:;5)' . (311)
I<g1<o<i | - -
“iy kg Tt Zipk
(3.5), if
21,1 42,1 "' ZkA
= “1,2 232 ‘' k2
H = _ : L g (3.12)
<1,k 22k ** Zkk

then as n — oo the most dominant term in the summation on the left side of (3.11) is
that for which ¢; = 1,-.-, 4 = k. Since z; = (A; — 1)u;, i > 1, we have

e ] k ]

F=|][x-1)F (3.13)
Li=1 .

Because F' # 0 by assumption, F # 0. Thus the first part of the theorem follows, with

k
B A = H(A —1) (HA_;.*)V(L,\l,--.,,\k)[l+a(1)]
j=1

_z==(]

as n — oo . (3.14)

For the proof of the second part we can proceed similarly. By (2.5), (2.10) and (2.11)
we have

n o0 n41 o n+k
Zzuﬁl ”tu‘}‘ Zaﬂ._l U‘in’\ w Zzu—l '”i-u)‘
oo 'S n+1 oo ﬂ;+k
Etl—l 211:1’\1-1 Z‘il = | zlla Af.]_ s E'f.l: z‘l: A

o) o0 n+1 00 n+k

Gnikiﬁ s 12=1 31212A 190=1 332: Aig e tp=] zlz, A : (315)
o n o0 n+1 oo . n4-k
tp=1 z‘kak'xik ir=1“ig k ’)‘ s A i, =1 %ig, AH:
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Again from the multilinearity property of the determinant,

k
Gk, ™ Z Z Z Vig (H z;j,;,») (H /\:‘;) Vil diis Xigst #5900, ) - (3.16)

ip=01;=1 =1 =1

By Lemma 3.1, (3.16) can be expressed as

vi'-u qu tmell vik
L Zig,1 %y, Zig,1 i
. . ; n n
Gn,k,qﬁ ~ Z Zig,2  ~i1,2 Xty .2 Ai(} H Aij 1/(]1r }“1111 e '-“"\T:k)' (317)
1<ip<iy < - <2 ! g=1 '
<igk  %iy,k Zin ke

By the assumption made following (2.5), there are at most p A; with modulus equal
to [Aky1]|- Let |Aks1| =|Akt2] =+ = |Ak4r| (clearly r < p). From this and (3.5), it
follows that the dominant term on the right side of (3.17) is the sum of those terms

with indices ig =1, =2, ---, g1 =k, ixy =k +1I,1=1,---,r. That is,
Gﬂ,k,‘!ﬁ =Ty — 3, Tnt1 — 8" "y Tntk — s)
»

(H }*n) > AR V(AL, Az, Ak Akt

== |
(21 Vi VE+I
Z1.1 Zk1 <k+l1
x | 21,2 Zk2 Zk+2([14+0(1)] as n —co. (3.18)
21,k kk  Zk+lk

Now the cofactor of vi4; in the determinant in (3.1) is F', which is nonzero since

F # 0. Thus, for n sufficiently large, the coeflicients of vg41,- -,
the assumption Vg41,-*-,VUs+r are linearly independent. Therefore the summation in

(3.15) is never zero. Combining (3.14) and (3.18) in {2.14) results in (3.6).
If |Aky1]| > |Aks2], then 7 = 1. In this case, because

V({Oa 61:- Tt agk) — H (gj

0<i<i<k

Vg4 are nonzero. By

—gj)a

from (3.14) and (3.18), we have (3.7).
The asymptotic error analysis of VPA leads to the following important conclusions:
(1) Under the conditions stated in Theorem 3.2, VPA is a bona fide vector acceler-

ator in the sense that
A T
-—OK k+1) ] as 7n — 00 .
A1

[ 8n e, — 8|
(2) The result in (3.6} shows that, when the VPA is applied to a vector sequence

‘ 3.19
N —
generated by using the matrix iterative method described in 8], it will be especially
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effective if the iteration matrix A has a small number of large eigenvalues (the number
can not be larger than & when s,z 5 is used) that are well separated from the small

eigenvalues.

(3) Bearing I'(n) in (3.6) and (3.7) in mind, we can see that a loss of accuracy will
take place in s, ;.3 when Ap,---, A; are close to 1, since ['(n) becomes large in this
case. When the vector sequences are obtained by solving a linear system of equations
(I — A)X = b by an iterative technique, which means if A has large eigenvalues near
1, there will be a loss of accuracy in s, x . In fact, eigenvalues near 1 would cause the
system to be nearly singular.

4. Stability analysis of VPA

With the assumption at the beginning of the last section, we will consider stability

of VPA for vector sequences generated by (2.5). Let us denote ~; in (2.15) by 7§"’k).

Then the propagation of errors introduced in {z,,} will be controlled, to some extent,
by Z?:n |*}f§ﬂ’k}‘|’; the larger this quantity, the worse the error propagation is expected
to be. With this in mind, we say that s, ; 4 is asymptotically stable if

k
&
sup ¥ hj-n | < 00 . (4.1)
* j=0 |
; L (k) iy i koo (nk) :
Since 3°7_o7; ©* = 1 by (2.15), it follows that > 7_qjv; " | = 1. Thus the most ideal
situation is that 7(-“’&) > 0, 0 <3 <k, for n sufliciently large.
Theorem 4.1. Under the conditions of Theorem 3.2, s, i 5 18 asymptotically stable.
Proof. We need only to show that ,an,k), 0 < 5 <k, remains bounded for n — oc.
From (2.11), we have

Up1l ° Untj-1,1 Untj1l 1 Untkl
jUR2 0t Ungi-1,2 Untg2 70 Ungk2
| j 1 ] ¥ »
Nj = (—1) (4-2)
Unk 7 Untj-1k Un+jk 7 Unikk

Substituting the asymptotic expansion of u,, ; as given in (2.10), and utilizing the
multilinearity property of determinants, we obtain

0C o k k
NJ‘ Pt Z 2 HA: H zij,;Cj(}‘il,---,/\ik) (4.3)

i1=1  ip=1j=1  j=1

where . .
1 +1 k
1 El + & +* e{ E‘il L ] = 4 1
1 ‘52 s 7—1 7+1 k

Cj(El: 2 i :'Ek) — (_1)3 2. 2. o 2 | (4..4)

P :
1 & - & & - &
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Using Lemma 3.1 again, we have

z’il,l zizjl s 'ziﬁrl
o0 ; : k
211,2 Zig,2 e z‘ik,z -
Ni~ Y : : : T2 ] G- A - (4.5)

1<ty < <dg | : . =1

Zirk  Ziok T Ak
By (3.4), (3.12), (3.13) and (3.15),
k
N; = (H /\;‘) FIC;(A1,-+, k) +0(1)] as n—00. (4.6)
=1

Combining (4.6) and (3.14) in (2.15), and using (3.13), we obtain

(n,k) Cj(Ali"'?Ak)
B T Ve

o(l) as n— 0. (4.7)

Obviously, (4.7) implies |'r_§ﬂ"k)| < oo for n sufficiently large. Thus (4.1) holds.

Remark. If A;,1 <1 < k, are real and negative, then *r;‘:“’k) >0,0< 3 <k, forn

sufficiently large. Degailed discussions are given in [9].

5. Conclusions

In this paper, we have only discussed convergence acceleration of vector sequences
in the finite dimensional linear normed space C?. However, CP can be replaced by
any general linear normed space B, since our vector accelerator (2.13) still holds if we
modify ¥, ; in (2.10) by appropriate linear independent bounded functionals on the
space B. Sidil® has dealt with this case for MMPE.
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