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SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS*V
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Abstract |

For partitioned Runge-Kutta methods, in the integration of Hamiltontan sys-
tems, a condition for symplecticness and its characterization which is based on the
W -transformation of Hairer and Wanner are presented. Examples for partitioned
Runge-Kutta methods which satisfy the symplecticness condition are given. A
special class of symplectic partitioned Runge-Kutta methods is constructed.

- 1. Introduction

Let © be a domain (i.e. a non-empty, open, simply connected set) in the oriented
Euclidean space IR?? of the point (p,q) = (P1, P q1, - ,qq) - If Hisa sufficiently
smooth real function defined in (2, then the Hamiltonian system of differential equations
with Hamiltonian H is given by

i SH dg;, OH |
% = fi(p. q) &= T =Y (p, q) i (1.1)

The integer d is called the number of degrees of freedom and 2 is the phase space. Here
we assume that all Hamiltonians considered are autonomous, i.e. time-independent.
A smooth transformation (p, ¢) = ¥(p*, ¢*) defined in  is said to be symplectic{with

f a 3 .
respect to symplectic matrix J) if the Jacobian ¢ = 5 ((f qz ) satisfies
P4
! £ a(pa Q)T 3(;}, Q)
d)TJﬁ; o J :J: vp*!q* EQ!
op*,q*) O(p*, q*) | )
0 f3X ; : ; :
where J = 7 0 ) B the standard symplectic matrix. This property is the
—id

hallmark of Hamiltonian systems.

In this paper we restrict our interest to one-step methods. If h denotes the step-
length and (p”,q¢") denotes the numerical approximations at time ¢, = nh to the
value (p(t,), g(t,)) of a solution of (1.1), the one-step method is specified by a smooth
mapping

(P ") = (", ™)
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and ¥y, g is assumed to depend only smoothly on A and H. In numerically solving
the Hamiltonian systems of differential equations (1.1), it is natural to require that
numerical solutions should preserve the property of symplecticness. Then the numerical
method |

7 Y = a0 ™)

should be a symplectic transformation. Consequently we may give the following defi-
nitions.
Definition 1.1. A one-step method s called symplectic if, as applied to the Hamil-

tonian system (1.1), the underlying formula generating numerical solutions (p"*+',¢" 1) =
Yn mg{p™,q") is a symplectic transformation, that is
! f 3(p“+1 qn+l)T a(pn+13qn+l)
Uy U = ’ J =J, Y('q¢")eq, (1.2)
= a(p™, q") a(p",q") _
.. (gt
where 1, g = 0 a1 :1 m is the Jacobian matriz of the transformation.
’ rP.q)

At least three authors ([5],[6]and [9]) discovered independently the fact that the
Runge-Kutta method #ith tableau

% | 211 dis
Ca a21 a2g
Cs g1 Ass
bl a s u bs (1-3)

applied to the Hamiltonian system (1.1), if its coeflicients (1.3) satisfy the relation
M= BA -+ ATB - bbT =0 or Miq — biﬂij + bjﬂj,‘ = bibj — U, 1< i,j <_: S, (1.4)

where B = diag (b, b2, -+, bs), then the Runge-Kutta method is symplectic.

In the integration of systems of differential equations it is possible to integrate
some components of an unknown vector with a numerical method and the remaining
components with an other one, as in dealing with some stiff systems including both
stiff and nonstiff components. In Section 2, for Hamiltonian systems we shall integrate
the p equations with an RK formula and the ¢ equations with a different RK formula.
The overall scheme is called a partitioned Runge-Kutta (PRK) scheme. For PRK
scheme we shall give the conditions for symplecticness and its characterization which
is based on the W-transformation of Hairer and Wanner!®l:[4/. Besides, some examples
are presented. In Section 3, a special class of symplectic PRK methods is constructed.

2. Conditions for symplecticness and its Characterization

In this section first of all we derive the conditions of symplecticness for PRK meth-
ods. For notational simplicity we shall assume d = 1 in the following. |
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A partitioned Runge-Kutta method with tableaux

Cq a11 ... Qig
Co dg21 ... @94
Cs Qs1  -.. (Qgg
b]_ . ua b.g (2-1)
and
C1 a1y ... dig
Co aa1 a2s
EE ﬁ-sl " .. {_I'SS
- = ;
bl . 5w bs (2-1)

applied to the Hamiltonian system (1.1), may have the relation

Pi:pﬂ‘l‘hfzﬂ'ijf(}%:c?j)ﬂ Qi:qn'l'hzﬁ‘i.fg(PﬁQ.f)? 1<1< s, (2*2)
1=1 7=1

PP =" R bif(PaQ), " =q"+hS big(P, Q). (2.3)
i=1 i=1
By virtue of the relation
T
o(f, g) Py Ja(f, g) 3 (2.4)

9(p, g) (p.g)

which exist in Hamiltonian eystems, we can obtain the following result:
Theorem 2.1a. If the coefficients of an s-stage PRK-method (2.1) satisfy the

relation

M=BA+ATB_pT — ¢

or
mi; = bia; + by — bib; =0, b;=b;, 1<4i,j<s, (2.5)
then the method is symplectic.

Proof. By (2.3), inserting

3(}:}”""1, qn+1) ° . 3 a(fi! Qi)
=I+h E dia, b,', bi
p™, q") — B (% b o(p™, q")

into (1.2) yields
ﬁ(pn-Fl qn+1)T 3(pﬂ.+1 qn+1) 8 ' o 3(f g_) T
: J : =J+h (dla b, b il ) J
o o) 2 o8 (B g

- i - a(ft'agt')
h d t3y Ug
+ ;J iag (b b)a(pn’qn)
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2 % : T (f'nqt)) o(f5,9i)
" E_:(dg( B, qny) 7 08 B Pi) g gy el
DBy (2.2)
NP, () A(fi: 95)
= ] h di r7y Y 3 2.7
A gy Z] 28 i i gm, ) o
thus
(ft:gt) (ji 91) a(PzaQt)
hJ diag (b;, b; == il di
?: B Bl e g Z 8 (5 %) 5P, 1) 6, a7
__ ] — 8(f1 gi) 2 (firgi) . o 0(f;» 9;)
— fif % ding {b;, b ) 3D, Qz) e jzl diag (b?.,b ]6”_;.. Q;) diag (atjaatj)a(pn?qn)
8(.f!-:~.91 2 8(f”g) : co: P 0(fi:9;)
“Z dag 0. bilzrs 5y T2 ;1 disg(h ! (P Q) dlag(ﬂ”"a”)a(p”-,q“)
_ ? ] . g 6’(fijgi) 2 (fﬂg't) (fjﬁg_?)
— hJZ: dla.g(bi,bf)g(phc?i) h ”221 diag (b é‘LP 2) )Jdmg(aﬂ-}ng)a(p ™)
. 6(}2,91 2 ( (ft:gt) a(P‘I—ﬂQ‘E)
hJZ dlag(bt,b)d(P‘Q) : h 321 diag (b 3(&,@;)(3(1? o)
~ .. _ O(fr, 90) ) N[ 9;5)
— h IIH. Pads ke 5 : Jd 73 Mg
j;f h(ﬂk.&k)a{pﬂjqn)) lﬂg({lj a})a(p . q )
B D 5 (fz,gi) : L\ Ofi,95)
hJZ diag (b, b)) 500y jzl ding (56,8 Gpn, quy 7 4128 (9402 843) 5 "oy
TR = S o fi, g:) |, _ O(fregk) N, _, 0(f;,95)
Jeil ij%::l diag (b;, b‘*)(a((r{:, él)) diag (@, ﬂjk)aépi,q:))) J diag (ﬂz‘jaﬂfij)ﬁ(pij qi‘)

- . is i o fi, gi ) _ Of5. 95
= hJ ) diag (b; b-)a(“f’g) h? Z diag (b, b;) (i 9:) J diag (a5, Gij) J5:93)

— TP T & o(p"sq") o(p",q")
+ h° ijki:l diag (b, b;) 6;(3;;952; diag (@i, @ik } g((i;gé); J diag (a;j, @;;) ggﬁ: gi)) :
On the other hand,
h (dlag(bj,b ) ((g-?:gf))) F = —h(Jdlag(b b )a((;ﬂzi))f
_ hz ‘Z‘(J%?géf; diag (b. b;)J — h? ﬁz_:l a(fugt)) J diag (aﬁ,aﬁ)ggi:zi)) diag (;, b;)
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— O fi, Gk)" . 3 I fsoe) .. L B ents) e e
+h3 - : dia ik, Oy J - dia 55, Qi g Et dia, bi,bi ”
2 Bam, gy G128 (i @0n) grp e diag (e ) s dio (B )

For non separable Hamiltonian systems, if and only if b; = b; (¢=1,2,---,8) there is

i(diag (b;, b;).J ofi» 9:) + a(fh'E’H)TJt::lia.g(E;',-,,!:q)) =1

i1 a a(PiaQi) a(ﬁ:@i)
Now inserting the above two formulas into (2.6) and leting b; = b; (1 = 1,2, .-, s) we
may obtain
S(pnt1 gntI\T nt+l .n+l
(p Fqn ) ‘},a(p ﬂ! )_J_hz*
a(p"™, ¢") d(p™, q")
ft!g! ( ; o ) a(.fjag )
b; diag (a;:, a;; b; diag (a;i, aj; =
1; a(p 1Q) ( J J) g(.? .?) a@n?q )

Therefore

mi; = bjag; +b;8; —bb; =0, b, =b;, 1<4,j<s
or

’ M=BA+ ATB-bT =0
the PRK method is symplectic.

Of course, an RK method is a particular instance of Theorem 2.1a, where A = A .
Therefore, for an irreducible PRK method, condition (2.5) is also necessary and there
must be b; #0, (¢ =1,2,---,35) just as for an RK method.

In the following we give examples of symplectic PRK methods and its characteri-
zation which is based on the W-transformation of Hairer and Wanner/3)[4l

Example 1. One stage, order 1:

PL=p" +hf(P1,Qu), =g~ .
pﬂ+1 — Pﬂ + h.f(Pl*: Ql): qﬂ-l-l - qn+hg(P1 ’Q.l)

In implementation only d-nonlinear algebraic equations are solved per step.
For an s- stage PRK method generated by (A4, A,b,c) with distinct nodes ¢; and
bi #0 (¢=1,2,---,5), we consider the transformation (see [7], [2] and [4])

X = WTBAW.

Thus, Theorem 2.1a can be rewritten in the following form: |
Theorem 2.1b. If an s-stage PRK method generated by (A, A,b,c) with distinct
nodes ¢; and b; #0 (1 =1,2,---,8) satisfies

WIMW =X 4+ X7 —e1el =0, (2.8)

then the method is symple&tz’c.
From Theorem 2.1b. we may construct a lot of symplectic PRK methods. For
example, all the s-stage PRK methods with order (25 — 2) :
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1) s-stage Lobatto III A method and Lobatto III B method,

2) s-stage Radau I C method and Radau I D method[s], |

3) s-stage Radau II C method and Radau I1 D method®l

4) s-stage Gauss-type methods with B(2s), C(s — 1) and D(s — 2) and with B{2s),
C(s —2) and D(s — 1) ® are symplectic. Furthermore, we have the following result:

Corollary 1. For an s-stage RK method with distinct nodes ¢; and b; #0 (2 =
1,2,---,8) satisfying B{(p),C(n) and D((), if its transformation matrix X takes the

following form :

/2 —¢&
&1 e, :
X =W'BAW = w0 —E, , where v = min(z, ¢), (2.9)
3
R,
then the PRK method generated by the transformation X and
1/2 —&
» y
) £1 : .
X =(erel — X1 = Y, O - (2.10)

Ev
T

with p<n+ {4+ 1 and p < 2v + 2, is symplectic and of order p (see [1] and [4]).

3. A special class of symplectic PRK methods

In this section we give a special class of symplectic PRK methods. In fact, from
a known RK method generated by {A,b,c} with b; # 0 (s 1,2,---,8), by the
symplecticness condition (2.5) it is very easy to construct an associated symplectic
PRK method. By symplecticness condition (2.5) there is

ai; = b;(1 — ’:;i) 1<4,j<s. (3.1)
1

Now we consider the known RK methods generated by (A,b,c) with b; # 0, i =
1,2,.-+,s, which are explicit. A special class of symplectic PRK methods can be given
as

Table 3.1. One stage, order 1
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Table 3.2. Two stages, order 2

1 1

0 — s 0 0 {
P 3

1 — — 1 1 0
2 2
L 1 1 s
2 2 2 2

Table 3.3. Three stages, order 3

1 4 7
0 a A oz 0 0 0 0
1 ¢ ; : I |
i % o s - s 0
S O T T
1 - s & 1 = 2 0
6 6 6
T = 2 T T 2 1
6 3 6 6 3 6

Table 3.4. Four stages, order 4

| a a a
0 b be(l—=2)  b3(1=Z2) b1 — =AY
bl bl b]
a32 42
¢ b b bs(l — —— ba(l
2 1 2 3 b ) by b )
C3 bl bg b3 1}4(1 ﬂ:3 )
| 3
1 bl bz bS b4
bl bg | bg b4
0 (} 0 0 0
Ca Co 0 4 0
(33(3(32 = e e 46%) E3(C3 o Cz)
C3 0 0
2::'2(1 = 2{32) 2{32(1 T 2(1'2)
1 @41 a42 asz O
b ba by by
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where

; - 1 —2(cg + c3) + Beges L 2¢3 — 1
B 12¢5¢3 ’ g 12¢3(e3 — ¢2)(1 —¢2)’
b — 1 — 2¢ o 3 — 4(ca + ¢3) + 6egcs
g 12c3(c3 — €2)(1 — ¢3)° e 12(1 ~ &1 ~ea) ~
) c3(12¢3 — 12¢5 + 4) — e3(12¢3 — 15c5 + 5) + (4¢3 — 6cg + 2)
4 — 1
o 2(?2{23 [3 == 4((’:2 - {33) + 6(3263]
_—— (—4cs + 5eg + e — 2)(1 — c2)
¥ 7 2e5(es — 02)[3 — 4(ca + c3) + Beacy]”
_ 1 —2¢c)(1 —e3)1 — 9 .
Gag = ( ?)( 3)( ) (SEE[Q]).

Cg(ﬂg — ﬂz)[.?) — 4((22 + 83) -}- 6{22{:3]
Motivated by the above low-order methods, we may conjecture that, if an s-stage
explicit RK method generated by (A,b,¢c) with b; #0 (i = 1,2,---,8) is of order p,
then the PRK method constituted by (A, b, ¢) with (3.1) and (A, b, ¢) is symplectic and
of order p. *
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