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COMPUTE MULTIPLY NONLINEAR EIGENVALUES"

L1 Ren-cang
(Institute of Applied Physics and Computational Mathematics, Betjing, China)

Abstracf

An incomplete QR decomposition called QR-like decomposition is proposed
and studied. The developed theory enables us to construct two new algorithms

for computing multiply nonlinear eigenvalues.
Several numerical tests are presented to illustrate their behavior in compar-

ison with Kublanovskaya’s approach.
5

81. Introduction

Consider an n by n matrix A(\) whose entries a;;(A) are analytic functions of a
complex scalar A (cf. a;;{)\) are functions which have at least first order derivatives
of real scalar A\). We shall call such a matrix a functional A-matrix®l. However, if
a;;(A\) are polynomials in A, then A(X) is commonly known as a A-matrixl®l. Values

X and the corresponding nonzero vectors & and y which satisfy
ANz =0, yPAN) =0 | (1.1)

are the solutions to the nonlinear eigenvalue problem associated with A(A). In the
above equations X is known as a nonlinear eigenvalue, x a right and y a left nonhnear
eigenvector (for the meaning of superscript H, see Notation below). Obviously, all
the nonlinear eigenvalues of A()\) are also the roots of its characteristic equation

det A(A) =0, (1.2)

and vice versa.

By now, several iterative methods (see [5]-[9] and [12]) have been proposed for
solving equations (1.1). Roughly speaking, they are just effective for computing
simple nonlinear eigenvalues, and often converge slowly when a multiply nonlinear
eigenvalue arises. In §2 we shall propose a kind of incomplete QR decomposition
called QR-like decomposition, and then extend the differentiability theory for QR
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2 LI REN-CANG

decomposition (QRD) (see [6], [9] and [11]) to such decomposition. The extended
theory is the basis of our algorithms for computing multiply nonlinear eigenvalue of
A(M) in §3. In §4 and 5 we shall analyse the convergence theory of our algorithms.
Numerical tests were made and are listed in §6 to illustrate their behavior.

Notation. We shall use C™*™ (IR™*") for the m by n complex (real) matrix
set, C™ = C™*! (IR™ = IR™), € = C' (IR = IR"); U, C C™*" denotes the

n by n unitary matrix set. [ ("} is the n by n unit matrix, e_g-“} the 7th column

of I™) and Ij(ﬂ) = (e(ln),---,ég-")), K;;“) = (E,E:I_}j+1, = -,EE-,,H)). When no confusion

arises, these superscripts (n) are usually omitted. A, A" denote the conjugate
transpose and transpose of A respectively, and ||A||r, |A||2 the Frobenius norm and

the spectral norm of A, respectively. For a matrix A = (ay,---,a,) where a; are
n column vectors, we define a column vector col A by col A = (af,- - ,al)t. An

adhoc notation is that for a given integer ¢ and a matrix A € IK™*" we always

partition 1t as

» n—t {
n—¢ All A12 :
A = , 1.3
t (Azl Azz) e

where IK = € or IR. Symbol ® denotes the Kronecker product of matrices.

82. QR-Like Decompositions

In this section, we first propose a kind of incomplete QR decompositions (QRDs),
and then study its differentiability properties, which are the bases of our algorithms
for computing multiply nonlinear eigenvalues in the forthcoming sections.

Definition 2.1. Let B € C**™ and 1 <t < n be an integer. A decomposition
B=QR, Qcl, (2.1)

is called a QR-like decomposition with the index t (QRD(?)), f

R R
_ ( 11 Fyo ) | (2.22)
0 R

where Ry € €%~ s an upper triangular matriz.
From this definition, it follows that a QRD is always a QRD (¢), but generally

" the converse is not true if ¢ #'1, and if ¢ =1, QRD and QRD (1) are equivalent.
The following theorem is an extension of Theorem 2.1 in {9].
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Theorem 2.1. Let A()) € C™**"™ be analytic and Ag € C. Assume that the first
n —t column vectors of A(Xg) are linearly independent.

RO RO
A(Xo) = QoRo, Ro = (0)
0 Ky

is its any QRD(t). Then there exists a neighborhood B(Ag) C € of Ag such that we
have QRD(t) of A(A),

A(A) = QA)R(A), R(M) = ( R11(A)  Riz(A)

. R22(}\) ) for AE€E B(/\U), (23)

satisfying that Q(XAg) = Qo and R(Ao) = KR, and that Roo(A) and the diagonal
elements of Ry1()\) are differentiable at Xy, and all entries of R(A) and Q(A) are
continuous with respect to A € B(Ag).

Proof. A(A) may be read as

»

; dA(A
A(X) = A(Xo) 4 )L " + O(|A — Ao ?Y = A(X) + E. (2.4)
Therefore

HA\) = Q8 A(No) + QFE = Ry + E (2.5)

0 0 0 0 , :

R+ S zcat 5 Ell El? .
where E = Qj E. Partition E conformally as B = | . - . By hypothesis,

Eo1  Egg

we know that Rgl) is invertible. Tagether with (2.4) we deduce tha.t if |)x — A0|
is sufficiently small, then R(D) -+ Eu is invertible. Let P = Egl(Rll -+ EH)
Ct*("—t) 1t is easy to verify that (refer to (2.4) and (2.5) )

1

(I + PEP)™2 0
QN QFAMN) = .
0 (I 4+ PP™*) 2
R+ Eu+ PUE R + Eip + PE(RY) + Esa)
0 (}+E2—P( (]+E12)
Ri1i{A) Hia(A
E( 1;( ) Rial )) . (2.6)
0  Roo(X)
where
1 ' ;
(I+PHP) 2 0 r p*
QN = , . . (2.7
0 (I + PPHY 2 —F



4 | LI REN-CANG

Ru(M\) =+ P*P)” 2(R(U) + B + PHEy), (2.8a)
g ] _,
Rip(\) = (I + PEP) 2[RY + Eip + PE(RY + B, (2.9)

Rys(A) = (I + PPEY3[RD + By — PR + Bu)l. (2.10a)

It follows that, if |A — Ag| is sufficiently small such that ||Pljz < 1, then (from (2.4),
(2.5), (2.7)-(2.10a) )

ndA(N)

Ru(A) = RiY + I Qf ==, Ta—te(h = 2} + O(1A = 2of*), (2.80)

dX |A=Xg
dA(X dA(X =

Ru()) = B + [KTQF ( )L B KIGE )|A N _.R® R(o)]()\_)‘ﬂ)
0

TP X~ Xal®), | (2.10b)

and Aln? 1Q1(A) — I™||5 = Alm}:: | Ri2(A) — (0)||2 = 0. From (2.4)-(2.6), we know

—rAQD — Al

that there exists a nefthborhood B ()Ag) of Ag such that equations (2.7)-(2.10) remain
true for all A € Bij(Mg). On the other hand, by Theorem 2.1 in [9}, it follows by
induction that there exists a neighborhood Ba(Ag) of Ag such that we have QRDs
of R11(A) = Q2(A)Ra(A) for A € Ba(Ag) which satisfy that the diagonal entries of
Ry()) are differentiable at Ag and all entries of QJ2(A) and Rz(A) are continuous with
respect to A € Ba{Ao), and Q2(Xo) = Im=t) Ra(Xg) = Rﬁ). Let

A) 0 A
Q(A) = QoQ1(A) ( on( ) 7(t) ) Bl BAL= ( 2I§ | Roa(A) )

Then QRD(t) A(Q) = Q(A)R(A) for A € B(Ap) = B1{Ao) N B2{Ag) meet the needs of
Theorem 2.1.
From Theorem 2.1 and its proof, we can deduce straightforwardly

Corollary 2.1. Let A()) € C**" be analytic, * € €**" a permutation matrix,
1 <t<nand \yg € C. Assume that the first n — ¢ column vectors of A{Ap)7 are

R0} R(U)
linearly independent, and A{Ap)7m = QoHy, with gy = - o | 15 its any
0 2

QRD(t). - Then there exists a neighborhood B(Ag) C € of Ag such that we have

QRD(t) of A(N\)w,

R11(A) Riz(A)
0 Ras(A)

satisfying that Q(Agy = Qo and R(Ag) = Rg, and that R2(A) and the diagonal
elements of Ry,()\) are differentiable at Ag, |

AN = QAR(A), R(A) = ( ) for A€ B(Xl),
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dA( )
Ryx(N) = KT R(\K: = KF RoK, + [KT QY d; )|A=Mm
dA({ A "
~KFQEIAN  rp (I Rolnt) " T RoKi) (A = o)
+O(1A = Xol?), | (2.11)

and all entries of R()\) and Q()) are continuous with respect to A € B(Ao).

Remark 2.1. From the proof of Theorem 2.1, especially from equation (2.10), it
follows that, under the conditions of Theorem 2.1, there exists a positive Hermitian
matrlx B()), which is continuous with respect to A € B(A) and satisfies T B(\)z >
8z (for all x € C* and X € B(Ag)), such that B(A)™ L Ros(A) = B(A)™ ‘KT R(\) Ky

1
is analytic in B(XAg). In fact, we can set B(A) = (I + PP2)2.

We also have a theorem similar to the uniqueness theorem of QRD in [9].

Theorem 2.2. Suppose the first n — t(1 < t < n) column vectors of matriz
C € C**" are linearly independent, and C = Q1R = Q2Ry are its two QRD(t)s.
Then o .
Q= QD and R;=D"R, (2.12)

where matriz D is of form

b |
D = ( Ll D ) €U, where D= diag (dl,' . -?dn_t) € Up_t, Doo c U;.
22
(2.13)

0 R(”

hypotheses, it follows that R(i) - G(""t)x("_t)(i = 1,2) are nomsingularly upper
triangular matrices. Choosing ¢ € € such that R(l) + eI is invertible. Let Ry =

Proof. Partition R;(i = 1,2) as R; = for i = 1;2. By the

1) R(l) ~ ~
i . Then by Qf Q,R; = Ry we know that there exists R € e
rY + &l
22

_ R(E) i
of form Ry = , such that
0 *
H ST o H D p—1 _
s QR =Ry = Q3 Q1= FBaRy " = D €l (2.14)

Because of the form of El and ﬁg,, we deduce that D € U,, must be of form D =
( Dy Dy

0 D ) , where Dy € Up—y C ¢ (m—x(n—t) {5 an upper triangular matrix,
22 |
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and Do € U,. Therefore Dy; must be diagonal and D12 = 0, i.e. D is of form (2.13).
Thus (2.12) is proved.

§3. Algorithms

In constructing our algorithms we were motivated by optimization methods for
solving problems of sums of squares (see e.g. [2], Chapter 6).

Let A, € C be a multiply nonlinear eigenvalue, and rank A(A,) = n—t(1 <t < n)
(we shall deal with the case ¢t = n at the end of this section). Now suppose u is

sufficiently close to A., and

Ri1(p) Ria(p) ) (3.1)

0  Roap)
is a QRD(t) with column pivoting. Then ||Raz(p)|lF < [[(R11(#), Biz(p))||F; more-

Qver

A(p)m(u) = Q(u)R(p), R(p)= (

].il]il | det Ry1(p)| = a positive number .
H—Ax '

Here we need to explain what QRD(t) with column pivoting is: it is commonly

known that computing a QRD with column pivoting of a matrix B € C™"*" by using

Housholder transformations is generally implemented through n — 1 reductions and

before each reduction a permutation of some two columns is necessary. Different

from these, a QRD(t) with column pivoting of a matrix is computed without the

last ¢ — 1 reductions in computing a QRD with column pivoting of the matrix.
From Theorem 2.1, it follows that there exists a QRID(%)

( R11{A) Ri2(A)

" Rs(M) ) for xeB(u) (3.2)

AN(r) = QR(Y), R(N) =

such that Raa()\) is differentiable at u. Now we face a problem: how to improve p as
an approximation to A, to get a new and more accurate (expected) one. Since Hag (A)
can be read as Ryp(A) = Raa(1) + Ra(1)(A — ) + O(|A = pf2), ignoring the second
and higher order terms, we approximately let Roz(X) & Raa(p) + Ria(p)(A — 1) and
the improved approximation f to A, is naturally chosen such that

| F22(p) + R'zz(ﬂ)(ﬁ - m)lF = o | Raa (1) + Ripp () (X — )%

Therefore (assume ||R5(2)||% # 0)

v [ col Rbo(pt) ]H . col Rag(p)
P A0 -
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Formally we have the following algorithm.

Algorithm 3.1. Compute a multiply nonlinear eigenvalue A, of A(A) € C**"
with rank A(A,) = n — ¢ known in advance by some means.
a) Give an initial approximation pg to A*.
b) Compute
dA(N) ‘
dA  1A=p;

c) Compute QRD (or QRD(#)) with column pivoting of A(y;)
Ry} RY, )

A(p;) and = AP,i=0,1,---

A(pi)m; = Q;R;, R; = ( (0
0 R

+ . R -
d) Compute R;(;) = KEQ{IA(;)N,-K — KEQEAEI)WJH_;RE? RSE) € C***.
[ col REMH . col RY
1R I3
f) If the needed accuracy is attained, stop; otherwise go to b).
A pra.ctlca.l and very difficult problem is how to get rank A(A,) at the beginning

of our computing, which is crucial. If u = pp is a good approximation of A« and
A(p)r = QR is a QRD with column pivoting (denote R = (r; ) ), then from the
observations made at the beginning of this section it follows that the diagonal entries

e) CﬂmPutfi Hitl = My

rii (¢ = 1,---,n) of upper triangular matrix R have the property
[Pn—ta—t| = 15?224 risl > [rn—tt1n—t41] = ... 7. (3-4)

Property (3.4) is very important and is often used in the determination of the nu-
merical rank of a matrix (see e.g. [1], [14]). In our concerns, we choose a threshold
¢ > 0, and then find the smallest integer ¢ such that

"rn——t—+—1n4t+1| < E‘Tll‘ < ‘Tﬂ,—tﬂ—t!! (35)

and approximately let rank A(A,) =r =n —t.

These observations show that if we truly use (3.5) to estimate rank A(\.), then
it 1s necessary to have a very good initial approximation gg to A,. But 1n some cases
good initial approximations are not available. To deal with such cases, we propose
the following algorithm which is a modified (maybe improved) version of Algorithm

3.1.
Algorithm 3.2. Compute a multiply nonlinear eigenvalue A, of A(A) € C**".

a) Give an initial approximation pg to A*.
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b) Compute

AN - o i® g1,

dA ‘A=#i

A{p;) and

c) Cumpute QRD (or QRD(t)) with column pivoting of A(u;} A{p:)m; = QiR
where R; = (rk ). Find the smallest integer p (1 < p < n) such that |rp_pit1n-p+1]
< glria} < |rﬂ_pﬂ »|, and let t = p; if such p does not exist, let ¢ = 1. Partition K,

R R
0 Ry
~d) Compute R’(') QH A{i)ﬂ';K K TQH A(i)?rifn_ R{t)_ R(t) =& (2

comformally as before: R; = (

Hi)1H (3)
o EEBIER .1 [ col Ry’ | - col Ryg |

f) If the needed gccuracy is attained, stop; otherwise go to b).

In Algorithm 3.2, ¢ is modified for every iteration. But we think 1t 1s not necessary
to do so in practical computations. In fact, the behavior of ¢ in Algorithm 3.2 must
be like this: in the first few iterations ¢ = 1, and then ¢ will increase for another
few iterations, and finally ¢ becomes a constant integer. Therefore we can improve
the estimations of ¢t in Algorithm 3.2 as: first let £ = 1 and do several iterations,
‘and then use (3.5) to modify ¢. With this modified ¢, do several other iterations,
‘and then again use (3.5) to modify this modified ¢, and so on. The threshold ¢ can
also be replaced by a sequence of thresholds €;(¢ = 0,1, .+), where ¢; is used in ¢th

iteration.

We recall that at the beginning of this section we noted the trivial case rank A (A.)

= 0, in which 1111!% A(p) = A(\,) = 0. By the same ideas as in Algorithm 3.1 and
j—> A

3.2, if 1 is an approximation to A, then the 1mprﬂved approximation g to A 1s

7 [ col A'(11)]" - col A(p)

AW 30)

where A'(p) = g A( A)‘

Remark 3.1. In Algorithm 3.1, suppose we do not know rankA(A,), but simply
let it equal n — 1, i.e. ¢t = 1. In Algorithm 3.2 we remove the procedure for
determining t but simply let £ = 1. Then Algorithms 3.1 and 3.2 both degenerate

to Kublanovskaya’s approach (see [11] for proofs).
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4. Convefgence Analysis

Before giving our convergence analysis, we first derive some properties of Algo-
rithms 3.1 and 3.2 and some preliminaries.
For a fixed integer ¢t and A = u, suppose the first n — ¢ column vectors are hinearly

independent and the following are two QRD(¢)s of A(u)7 (refer to Theorem 2.2):

Ry(p) Riap) )1 (4.1aj

A(p)r = Q)R(1) = Q(u)D - (D¥R(n)), R(n) = ( 0 Ralp)

where D is of form (2.13). Denote R(u) = D¥ R(u) and conformally partition it as

Ru(p) Riz(p) )
0  Rax(p)
Then from Theorem 2.1, it follows that there exist two QRD(¢)s in a neighborhood

B(u) of u, say ;‘-1()\)?1' = QN)R(X) = QNR(N), which have properties stated in
Theorem 2.1. Partition R(\) and R(}) as

Ri1(A) Ria(A) ) By = ( Ry (\) Eiz()ﬁ) )
0  Rap) /)’ 0 Rp()) /)

R(p) = ( (4.1b)

R()\) = ( (4.2)

Then from (2.11) and (2.13) we have
Ra3(A) = Raa(u) + Rip{p) (A — p) + O(|A — pf?),
Ilizz(k) = Roo(u) + Eﬁa(#)(f\ — )+ O(|x — p|%), (4.3)
Rys(p) = D3 Roa(p), Rip(p) = D3y Rhy(p).

Hence

Hﬁéz(u)\l% = ||Rf22(!—’f)”2}? (4.4)
On the other hand, from (4.3) we also have (refer to [13, pp.25-28])
col Ryz(n) = (I @Dy5 ) col Roa(s),  col Rgy(n) = (I @D ) col Rog(). (4.5)
Thérefnre |
[ col Rjy(u) 1% col Raa() = [ col Rog() 1¥(I¥ ® Doz ) - (I ® Df;) col Raa(p)
= [ col Ryp(n)]” col Raa(ps). (4.6)

(4.4) and (4.6) show that

Flu,t,m) = | Rop(w)%  and  glu,t,7) = [ col Ryp(u)]” col Roa(n)  (4.7)
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are two functions depending only on u, t and T and for fixed i, t and m, differ-
ent QRD(t)s of A{(u)m do not change their values. So step g{p,t,®)/f(u,t,7) in

Algorithms 3.1 and 3.2 do not vary with different QRD(t)s of A(u)7.
Property 4.1.

flp, t,x7) = f(p,t,w), g, t,7n7) = glp,t,7), (4.8)

where m = diag {m,72); ™1 € (D(“_t)x(“_”_ and 7y € C*** are both permutation

matrices.

Proof. Let A(p)w = Q(u)R(i) be a QRD(¢) and R(p) be of form (4.1). Then

Rll il Rl il
Q(w) ()77 = R(u)7 = ( (0“) 1 R;Ei ;W; )

Compute a QRD Rll(ﬂ)ﬂ'l = Ql(#)ﬁll( } and let Q (p) = Q(p:) ( Qilp) 70 ) :

Then the decomposition A(p)n7m = Q(p)R(p) is a QRD(t). Partition R{y) as (4.1b).
It is easy to verify that

Riy(p) = QF (W) R1y ()71, Riz(p) = Q7 () Riz(p)7, Ezz(l—t) = Roa(p)ma. (4.9)
On the other hand, similarly to (4.2), (4.3) and (4.5), by (2.11) we have (with

the same notation) B
(1) = Rhglp2)m. (4.10)

Combining (4.9), (4.10) with (4.7) will lead to (4.8).
Generally, permutation matrices are not uniquely determined by column pivoting

in the processes of decompositions. But we have

Property 4.2. Let 7, T be two permutation matrices which result from QRD(#)s
with column pivoting of A().) (rankA(A,) =n —1t). Then

fAut.x) >0 &  fAt,7T)>0. (4.11)

Proof. Assume on the contrary that (4.11) is not true. Without loss of generality,
we assume that f(Ae, t,7) > 0 but f(A.,t,7) =0

. =E 11 B2 ) 5,
Note that A(A)r = Q*R*, A(A)7 = Q*R” = ( h . ), R* =

"

( i e ) . Therefore (by Theorem 2.1) there are QRD(t}s of A(A)7 and A(A)T
0 0

in a neighborhood of A. |
| AT = QR(ZY), ANT = GEM), (4.12)
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such that (refer to (4.1))

Rll (A) y Ell ()\) invertible .
R2a(A) = Rys( M)A = A) + O([A =A%), Rae(A) =O(A— A2,  (4.13)

JI:"-'.!2(':!“"“) 7é U:
if [A — Ay| is sufficiently small. Let
Ri1(A) Riz(M) i Ri11(A)  Ria( M)
7(n—t) _ 7(n—t)
D(A)=( ),D(A):( " )
Raa(A) Roa(A)

Thus

A(A)m = QA)D(A)V(A),

AT = ?(A)E(A)IT’(A) = A(N) = QDM (A) = QAN D(AM(N),
where M(3) = V(A)xT and M(X) = V(A)#7. From (4.13) we know if [A — A} is
sufliciently small, then M (A) and M(A) are both invertible. Hence

D(A)M(A)ﬂ?(,\)—l = QMNHFQ(ND(N) if [A — A,| is sufficiently small. (4.14)

Let N()) = M(A)A?(A)_l and N(A) = QNHQ()). They are both invertible if
|A — A, is sufficiently small. Partition N{A) and N()\) conformally as

( Ni1(A) Nia()) ) FO ( Nui(A)  Nia(A) )
Na1(A) Noo(A) / Not(X) Nao(A) /°
Then (4.14) becomes

( N11(A) Nia(A) )
Rgg(z\)Ngl ()\) RQQ(A)NQQ(A)

N()) =

=tr—rdarw
-—

( f?n(f\) 1?12(/\)1322(}*) ) (4.15)
Noi(A)  Naga(A)Raza(A)

On the other hand, (4.13) implies Alin}} Raa(A) = klin; Ros()) = 0, combin-

ing which with (4.15) gives Alinj ﬁgl(/\) = Ro2(A)N21(A) = 0 and AliH; N1a(A) =

ﬁlz(k)ﬁﬂ(}\) = 0. Therefore from the continuity of N(\) and N()) follows that
Naa(A) and Naa(A) are both invertible if |A — A,| is sufficiently small.
From (4.15),

Ry2(A)Na2(A) = Naa(M) Raa(A) = Rag(A) = Nog(A)Raz(A) Naa(A) ™}

Rool ) - Rosl X
s, 22( )_NZE(A)AQE(A)

P8 Nao(A) L.
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Rop(A) . 12 Raa(A)

Letting A — A, gives (refer to (4.13) ) 0 # Roa(Ay) = AIEE* % = ;}5}* Nag(A) e X,

Ngz()t)_l — 0, a contradiction, which completes our proot.
Based on Property 4.2, we define

Definition 4.1. Suppose A, is a nonlinear eigenvalue of A(A) € €™ and
rankA()\,) =n —t(1 <t < n). Fort=n define
dA(N)

d}\ A:)g*

0, otherwise .

> 0,

1, if‘

A(N,) =

For1 <t < n, define
1, i f(h,t,7.) >0,

0, otherwise,

v =]

where T, 13 a permutation matriz which results from a QRD(t) with column pwoting
of A(A.). »

From the prcﬂu::f of Theorem 2.1, we can easily obtain (refer to [9])

Lemma 4.1. Suppose the first n — t column vectors of matriz C; € C*"" are
linearly independent, C; = Q1 Ry is a QRD(t) of C1. Let Cs € C***., Then for
any ¢ > 0, there exists a QRD(t) Cz = (QoR2 such that |Q1 — @Q2]l2 < &, and
Ry — Rallz < €, if |JC1 — Caljz 15 sufficiently small.

Combining this lemma, Theorem 2.2 and (2.11), we will have

Lemma 4.2. Let A(X) € €™*™ be analytic with respect to A€ D C €, where D
is an open connected set of C, and m a permutation matriz. If the first n —1 column
vectors of A(A)w are linearly independent for A € D, then f(A,t,m) is continuous
with respect to A € D.

Theorem 4.1. Let A(A) € C**" be analytac, and m; = 7, independent of ¢ for
u; sufficiently close to As. If A(A) =1, then Algorithm 3.1 is locally quadratically

convergent.

Proof. Suppose we have decompositions (4.1a) with 7 = .. From Theorem 2.1,
it is reasonable to let (refer to (4.3) ) Raa(A) = Rgg(pi)—i—R&z(M)()\—pi-)+0(|)\——pi]2).
Let A = A,. Then |

0 = Rao(pi) + Rha(s) e — i) + O A — il)
= 0= colRaa(u:) + col Rhg(ps)(Ae — i) + O(|As = il

Multiplying the two sides of the last equation by [col Ro{ps)]™, we get

0 = [col Rhy(pi)]™ col Roa(pi) + 1 Roo () |2 (An — i) + O(Ae — pil®).  (4.16)
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Since A(A,) = 1, by Lemma 4.2 and Property 4.2 we know that | Rho ()| >
1 .
o f(As,t,m) > 0 for p; sufficiently close to A.. Therefore by (4.16) we have

0 = || Rhg(pi)l| [ col R (p2:)]¥ col Raa(pas) + (An — i) + O(|As — pil®)
= —(pas1 = i) + s = ) + O(IAs = i) = A — iy + O A — pil®)
= Ax — Hit+l = O(‘A* = ouilgj'

Remark 4.1. For the trivial case £ = n, 1.e. A(A,) = 0, similarly to the above
proof, we can prove that, if A(\,) = 1, then the iteration algorithm (3.6) is also
locally quadratically convergent.

Remark 4.2. Choosing € appropriately in Algorithm 3.2 can also guarantee its

local quadratic convergence if A(A,) = 1.

s §5. The Condition A(A,.) =1

A()) = (ai;(N)) is analytic; so is det A(A). Let A, be a nonlinear eigenvalue
of A()). Then the algebraic multiplicity of A is finite, i.e. there exist an analytic
function A(A) and a positive integer, say m(A.), such that

det A(X) = (A — A)™PIR(N), A(A,) # 0. (5.1)

For convenience use, we define the algebraic multiplicity m(A) = 0 for A € € which
is not a nonlinear eigenvalue.
The main results of this section are two theorems below.

Theorem 5.1. Let A()) be analytic and rankA{Xy) = n —t(0 <t < n). Then
there ezist matrices M(\), N(X) € C"*" which are continuously invertible in a
neighborhood of Ag, such that

I(n—-t)

AR = M() i il N, . (52)

()‘ — AQ)H‘

where integers k; (1 < k1 < -+ < Ky < +00), called partial multiplicities of Ag, are
unigque. |

If A(A) is a A—matrix, i.e. aij(A) are all polynomials in A, Theorem 5.1 is just
the well-known represertation theorem of local Smith form (refer to [3, pp.330-333}).
To the best of our knowledge, there are no similar results for cases when a;;(A} are
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analytic functions, so we will give a proof of Theorem 5.1. We see that, if Ag 1s a
nonlinear eigenvalue, then k; + - - - + k¢ = m(Ag) (refer to (5.1) ).

Theorem 5.2. Let A()\) be analytic, A\« a nonlinear eigenvalue of it and
rankA(A) = n — #(1 < t < n). Assume also that the partial multiplicilies are
kit =1,---,t. Then A(A) =1 x3 = L. |

Proof of Theorem 5.1. We shall first prove the existence of (5.2} by induction
in m(Xo). To this end, we see that if m(Ag) = 0, then choosing M{\) = A(X) and
N =1 (7) completes the proof.

Suppose for all Ag € € which satisty 1 < m{Ag) < m, an integer, we have
representation (5.2). Then it suffices to prove that, when m(Xg) = m, we also have
representation (5.2). To this end, by Theorem 2.1 and Remark 2.1, we deduce that
there is a QRD(#) (n — t =rankA(Xg))

. ( Rii(A) Ria(A)

AN)7 = QA)R(A), R()) = g Bl ) for A€ B(Xo) (5.4)

satisfying that @(A) and R()) are continuous, Ry1(}A) is continuously invertible, and
moreover there is a positively continuous Hermitian matrix B(A) such that Roa(A) =
B(A) "' Ra3()\) is analytic. Since Rj2()g) = 0, we can find an integer, say £1 = 1, such
that Rea()\) = Raa(A) /(A — Xo)*! is analytic and Rao(Xo) # 0. Thus the multiplicity
m(Ag) of Ag, as a nonlineareigenvalue of ﬁgg()ﬂ), is Mm({Ag) = m(Ap) — &1 < m. Hence
by the hypotheses of induction, there are matrices M (A), N()\) € €*** which are
continuously invertible in a neighborhood of Ag such that

(A— o)™
RN =M | N, (5.5)
()t - /\g)ﬁ )

where0=11 = =T <1 < Tpy1 £ -+ S 71 Let

I(ﬂ-—ﬂ Rll(/\) Rl‘;‘:(}-) )'}TT

M(}‘)zw‘)( BOYM() ) NW:( o NN

and k; = K, +13, 1= 1,---,t. Then together with (5.4), we get a representation (5.2)
of A(A).

.~ Now we are in a position to prove the unigqueness of k1, - -, Kt- The case n -t =
rank A(Ag) = n (i.e, t = 0) is trivial. In the following ¢ > 0O is always assumed.
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Suppose there are two representations

=)
A(N) = M(N) ke il N(3)
| (.-X s AU)FH
F(n—1)
= M()) (A= 20)" : N, (5.6)
(’)‘ . AD)Tt

where 1 < k1 < <K < 4o, 1< <--- <1y € +00. Let N
Wll(ﬁ) ng(..}ﬁ) )
Wa1(A)Waz(A)

Wi (A) Wiz()‘) )
War (M) Waz(A) |

’

W) = M(A)"1M()) = (

—~ o
W) = NN = (

Then by (5.6),

( Wii1(A) Wiz(A)A42(X) ) _ ( i Wzti*) i I’Tﬁi&)\) | ) | (5.7)
War(A) Waa(A)Ax(A) Az(A)War(A)  A2(A)Waa(A)
where
(A — Ag)™ (A — Ag)™
Az(A) = , Ax()) = .
(A — Ag)™ (A — Ag)™

Let A = A(] in (57) We see ng()t{]) — ﬁ;;lg(.lg) = ) = WQQ(AU) and WQQ(AO) arc
both invertible. Thus by the continuity of M(X), N(A) and M(A), N()\), we deduce
that Wag(A) and Waa(A) are invertible if |A — Xg| is sufficiently small. |

Suppose K} = -+ = Kp < Kpt1 < -+ - < K. From (5.7) we have
e Aa(A) = .. -1 Az(X)
Waa(A A) = As(AW A = . (5.8
22(A)A2(A) = Aa(A)Waz(A) = Was( )()‘ ~ ) Waa(A) O = ag) (5.8)
, : - Az(A)  —~ -1 .
Since lim Wss(A) Wa2(A) = a constant matrix with rank p, together

A—Ag (A e }(G)Hl
with (5.8), we get

T1="*=Tp:ﬁl(Tp+1g---<1‘t. (59)
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Hence (5.8) becomes

7w
(A— }\(})"‘PJ‘“J‘*”M
ng()x)
()t — Ag)”"‘ﬁ’l
I»)
(}t = )\ﬂ)TP'H-"Hl e
= . Wag(A).
(}« — )\U)T*‘H‘l
If p = t, then the uniqueness of x; 1s proved; if p < t, then by similar arguments,
we can also prove that, if kKp11 — Ky = - = Kg — K1 < Kg41 — Kl < «+- {g > p),
then Tp41 — K1 = -+ = Tg — £1 < Tg1 — K1 < ..., from which and (5.9) follows
Tptl = .0 = Tg = Kpp1 = **° = Kq < Tg41 < .--. After several repeated procedures,

we finally obtain w; = 7 (1 <1 < 1),
A proof of Theorem 5.2 may be given by combining the first part of the above
proof with Property 4.2. We omit the details here. Theorems 5.1 and 5.2 enable us

to deduce the following interesting corollary.

Corollary 5.1. Let A(}) € €™*" be analytic, A, a nonlinear eigenvalue with
the multiplicity m(A.) = 3. If rankA(As) < 7 —2, then Algorithm 3.1 (3.2) is locally
guadratically convergent. | |

Proof. Since m(A.) = 3 and rankA(A,) < n — 2, the partial multiplicities of A,
must be {1, 2} or {1,1,1}. Thus by Theorem 5.2, A(X,) = 1 together with Theorem
4.1, we know that Algorithm 3.1 (3.2) is locally quadratically convergent.

§6. Numerical Tests

To demonstrate the behavior of our algorithms in §4, numerical tests were made
on IBM-PC/XT. Double precision arithmatic was used throughout.

Consider the following problem: A(A) = Ag + 4 A+ AoX?%. n = 4, with

—16. 16. 0. 32 12. —12. 0. —24.

—32. 34. 4. 66. 24. —26, —4. —50. |
Aﬁ': ; 5 A].: : ;

16. —18. 8. -34. —~12. 14. 5. 26.

—48. 2. —4. 101. 36. —40. 1. -T78.
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Ao

E LT
i

—-12.

12,

I[ts three multiply nonlinear eigenvalues are

Nonlinear eigenvalue A Multiplicity m(A)

1.
3+ /7

2
3 -7

2

3
2

2

0 8.
0. 16.
3. —8&
-3. 25.

Partial multiplicities

w1 =1,k = 2;

] =1,Hz=1;

K1 =1 K= 1.

1T

Moreover, rank A(A.) = 2 for any of the above three multiply nonlinear eigenvalues.
In our tests, QRDs with column pivoting were performed throughout. And in

tables below numbers |r§t3)| and \ri?l are listed as the absolute values of the last two
diagonal elements of upper triangular matrix R; in each iteration. |

. Table 6.1. pug = 1.5 — 0.5

Algorithm 3.1 Kublanovskaya’s Approach

No.i) [ s =1 | P& [ b3l [lesi—1f [ WPE] | 2
0 71E-01 | 3.0E-01 | 2.4E-01 | 7.1E-01 | 3.0E-01 | 2.4E-01
1 1.9E-01 | 8.4E-02 | 1.9E-02 | 2.8E-01 | 1.2E-01 | 4.2E-02
2 1.6E-02 | 7.5E-03 | 1.5E-04 | 1.3E-01 | 6.1E-02 | 1.0E-02
3 2.9E04 | 1.0E-04 | 2.7E-08 | 6.6E-02 | 3.0E-02 | 2.5E-03
4 2.5E-08 | 1.2E-08 | 1.1E-11 | 3.3E-02 | 1.5E-02 | 6.2E-04
5 1.2E-15 | 7.7E-15 | 1.8E-32 | 1.6E-02 | 7.6E-03 | 1.6E-04
6 ‘ 8.2E-03 | 3.8E-03 | 3.9E-05
10 5.1E-04 | 2.4E-04 | 1.5E-07
15 1.7E-05 | 8.0E-06 | 1.7E-10

+

19 21E-06 | 9.9E-07 | 2.7E-12

Table 6.1 displays the computational results of Algorithm 3.1 with ¢ = 2 and

Kublanovskaya’s approach, both with starting point pup =

verging to A, = 1.

1.5 — 0.5¢ and con-
From this table, we see Algorithm 3.1 is indeed quadrati-

- cally convergent while Kublanovskaya’s approach converges linearly (approximately

5541 — 1] = 0.5|p; — 1|) and to reach less than half the accuracy secured by using
Algorithm 3.1, it needs, however, roughly 4 times iterations needed by Algorithm

3.1.
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Tables 6.2 and 6.3 also display the computational results of Algorithm 3.1 with
¢t = 2 and of Kublanovskaya’s approach. With starting point pg = 1.5 + 1.5¢ and

3+ V7 .

11

converging to A, = Table 6.2, the two algorithms need approximately

the same number of iterations to reach approximately the same accuracy. The
author has also constructed several other tests, and got the idea that, when the two
sequences obtained by Algorithm 3.1 and Kublanovskaya’s approach respectively
converge to the same nonlinear eigenvalue with all partial multiplicities as 1, then
the two algorithms behave similarly.

Table 6.2, po = 1.5+ 1.5¢

Algorithm 3.1 Kublannvskaya.‘é Approach

No.G) | s — 352 | @1 [ 181 [ =300 [ ) | 1rdd)]
0 1.8E01 | 7.5E-01 | 4.3E-01 | 1.8E-01 | 7.5E-01 | 4.3E-01
1 1.1IE01 | 5.4E-01 | 27E-01 | 3.6E-02 | 3.8E-01 | 7.9E-02
2 52E-02 | 4.4E-01 | 1.3E-01 | 2.2E-03 | 2.9E-02 | 5.1E-03
3 1.1E02 | 1L.AEOt | 25E02 | 7.7E-06 | 1.0E-04 | 1.8E-05
4 39E04 | 5.1E03 [ 90E04 | 9.3E-11 | 1.2E-09 | 2.1E-10
5 788 08 | LOE06 | 1.8E07 | 2.2E-16 | 2.9E-15 | 7.1E-16

6 "38E-15 | 4.9E-14 | 9.6E-15
Table 6.3. po = 10 — 104
Algorithm 3.1 Kublanovskaya's Approach
No.() [ lws—10 | Ir$¥)] AR ey |

0 1.3E401 | 5.4E4+01 | 1.1E+401 | 1.3E+01 | 5.4E4+01 | 1.1E+01

1 6.9E+00 | 1.4E+01 | 5.5E+01 | 1.0E+00 | 5.0E-01 | 4.3E-01

2 3.6E4+00 | 4.28+00 | 2.5BE+00 | 3.4E01 | 1.5E-01 | 6.2E-02

5 1.5E+00 | 7.3E-01 | 4.6E-01 | 3.9E-02 | 1.8E-02 | 8.8E-04

10 | 1.1E+00 | 4.3E-01 | 4.1E-01 | 1.2E-03 | 5.6E-04 | 8.5E-07

11 74E-01 | 3.5E01 | 2.7E-01 | 6.1E-04 | 2.8E-04 | 2.1E-07

12 | 5.5E-01 | 2.4E-01 | 1.5E-01 | 3.0E-04 | 1.4E-04 | 5.4E-08

13 | 8.7E02 | 4.0E-02 | 4.3E03 | 1.5E04 | 6.9E-05 | 1.3E-08

14 26E—03 | 1.2E 03 | 4.0E-06 | 7.5E-05 | 3.5E-05 | 3.2E-09

15 2.3E-06 | 1.1E-06 | 3.2E-12 | 3.7E-05 | 1.7E-05 | 8.1E-10

16 2.0E-12 | 9.2E-13 | 3.1E-15 | 1.9E-05 | 8.7E-06 | 2.0E-10

In Table 6.3 a bad initial approximation gy = 104107 was chosen. Algorithm 3.1
needs about 16 iterations to make |p; — 1| ~ 1012, while Kublanovskaya’s approach
needs about as many to make |u; — 1| ~ 107°. The reason for the large number of
iterations is that, in quite a number of iterations at the beginning, Algorithm 3.1
converges very slowly, and only if u; comes sufficiently close to 1, does the quadratic
convergence of Algorithm 3.1 begin to show; but on the other hand, Kublanovskaya's
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approach needs few iterations to get a u; close to 1, and then g; moves slowly to 1.
As we noted 1n §3, Algorithm 3.1 needs good initial approximations, not just for the
estimation of rankA(A,). Tables 6.4 and 6.5 below display the computational results
of an improved version of Algorithm 3.2 called Algorithm 3.2(r), which means that
the first r iterations are Kublanovskaya’s approach, i.e. Algorithm 3.2 with £ = 1

and then back to Algorithm 3.2 with £ = 2(=rankA(A,) ).

Comparing Tables 6.4 and 6.5 with Table 6.3, we can find that, when no good
initial approximation is available, we’d better use Algorithm 3.2. From Table 6.5
we can also see that choosing r appropriately often could reduce the number of
iterations.

Table 6.4. g = 10 — 105 .

Algorithm 3.2 {1) Algorithm 3.2 (2)
No.() | Ipi—1] | %] AT T
0 1.3E+01 | 5.4E+01 | 1.1E+01 | 1.3E401 | 54E+01 | 1.1E+01
1 1.0E+00 | 5.0E-01 | 4.3E-01 | 1.0E4+00 | 5.0E-01 | 4.3E-01
2 4.1E-01 | 1.8E-01 | 87E-01 | 3.4E-01 | 1.5E-01 | 6.2E-02
3 ,| 24E-02 | 1.1E-02 | 3.3E-04 | 1.0E-02 | 47E-03 | 6.0E-05
4 3.0E-04 | 1.4E-04 | 5.3E-08 | 8.8E-05 | 4.1E-05 | 4.5E-09
5 1.5E-08 | 7.1E-09 | 1.0E-15 | 3.2E-09 | 1.5E-09 | 4.1E-15
6 2.3F-15 | 5.2E-15 | 1.5E-15 | 4.3E-15 | 6.1E-15 | 4.6E-15
Table 6.5. Algorithm 3.2(7)

rl mo vl -1 gl | I

3| 10+10i | 7 | 84E-15 | 7.7E-15 | 1.0E-15

4| 104108 |7 | 9.2E-13 | 4.3E-13 | 4.1E-15

51 10+10i | 8 | 2.3E-15 | 5.2E-15 | 8.6E-17

1| 10108 |6 [ 2.3E-15 | 5.2E-15 | 1.5E-15

2| 10-10i | 6 | 4.3E-15 | 6.1E-15 | 4.6E-16

3 10-10i | 7 | 84E-15 | 7.7E-15 | 1.0E-15

1 | 100+100i | 6 | 5.4E-15 | 6.1E-15 | 8.5E-16

2 [ 100+100i | 5 | 6.7E-14 | 3.1E-14 | 8.6E-16

§7. Remarks About Real Cases

It is commoniy known that, if a complex variable function, is differentiable at
every point in an open connected domain in the complex plane, then it must be
analytic 1n that domain. But unfortunately, we have no counterpart for a real
variable function. We recall that in the above sections A(A) € C**" (A € C) is
always assumed to be analytic; therefore one may ask how to modify the conditions

of results in §§1-6 for real cases. When A(A) € IR"*®(A € IR) is real analytic,
all our conclusions remain true just by replacing symbol € by IR. That A()\) €
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IR**"* (X € IR) is real analytic is an extremely strong assumption and generally it 1s
not necessary. Slight modifications are

(i) In §2 and §3, that A(A) € IR™*"(\ € IR) is differentiable is necessary. In
such cases all terms O(JA — A.|?) must be replaced by o(|A — A.]), but if in addition
A()\) is second order differentiable, then all conclusions remain true just by replacing
symbol € by IR.

(ii) In 84, if A(X) € IR™™™(XA € IR) is differentiable, all conclusions remain
true except Theorem 4.1 in which it suffices to assume that A()) is second order
differentiable.

(iii) In §5, it suffices to assume that A()) € IR®**(X € IR) is real analytic.
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