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SOLUTION OF AN OVERDETERMINED SYSTEM
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Abstract

A lot of curve fitting problems of experiment data lead to solution of an
uverdeter}nined system of linear equations. But it is not clear prior to that
whether the data are exact or contaminated with errors of an unknown nature.
Consequently we need to use not only Ly-solution of the system but also L,-or

L,-solution.

In this paper, we propose a universal algorithm called the Directional Per-
turbation Least Squares (DPLS) Algorithm, which can give optimal solutions
of an overdetermined system of linear equations in L3, Lo, Ly (1 € p < 2)
norms using only L.S. techniques (in §2). Theoretical principle of the algorithm
is given in §3. Two examples are given in the end.

§1. Introduction

Let us assume that
ep— T k —— ._l-
X:‘-—(fﬂil-,.'“,fﬂi,,) € R, Y;—f(Xi), 1=1,2,---,m

are the given original data. We wish to find a fitting formula linearly depending on
some parameters b = (b3, -, bﬂ)T

F(b,X) = b;i(X) = [®(X)]"b (1.1)
=1 |

such that
Ir @), = IY = F&, X)ll, = moin (1.2)

* Received September 7, 1988,
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where

Y=(Y, -, Yu) € R™ b=(b;, b}’ € R",
F(b,X) = (F(b,X1), -, F(b,X:))! € R™,
r(b) =Y — F(b, X),

{ di(X )}: : 7 linearly independent given functions on the discrete set {X;},,

e
|- llp : p-norm of a vector [[rlly = (3 [r:l)?, 1 < p < 0.
i=1
Problem (1.2) can be converted to the equivalent problem of solving an overde-

termined linear system

AX =¥ (1.3)

by minimizing the p-norm (commonly p=1,2,00) of the residual »(X) =Y — AX,
i.e, to find a vector b € R™ such that

o |IY - 4bl, = min ¥ - AX], (1.4)

where

[¢'1(X1) e (X)) |
A:. = QAR

» ‘Tbl(Xm) = ‘;bn(xm)

Different norms normally lead to different solution b . If p = 2, it is well-known that

b= ATY

where A7 is the psendo-inverse of 4 obtained by any method, for instance the S.V.D.
method. When rank (A4) = r4 = n, b is the unique solution, and when r4 < n, b is
a uniquely definite minimal 2-norm solution; but if p = 1 or p = o0, the problems
are complicated because the function f(X) = ||Y — AX||, is not differentiable for
those values of p. Indeed , there are several good techniques available for 1-norm
and oc-norm minimization [2]. But those techniques are more complex and very
different from the L.S. Technique. As J.R. Rice ({1} p.371) indicates, “the theories
behind both L, and Chebyshev (L) approximation are too complex and difficult to
present here. The numerical methods that have been developed from these theories
are more complex and require more computation than the methods for least squares,
but one could hardly hope for them to be as simple and easy as for least squares.
On the other hand, these methods are reasonably efficient, and it is practical to use
them In a wide variety of applications. If the problem at hand is such that least
squares might not be entirely appropriate (e.g, one may really want to minimize the
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maximum error or the data might be contaminated significantly with errors of an
unknown nature), then one should try one of the programs discussed later and see
how effective these other two norms are.” These are the motivations which lead to
the proposed universal algorithm using only L.S. techniques. Most of the methods
provided in the literature are divided in two types. One is the ascent method. The
earliest was due to Stiefel (1959), called the exchange method, in which a single
index is exchanged at each iteration to find an extremal subset. Since there is only
a finite number of such subsets, the type is a finite method; based on the linear
programming approach. The other is the descent method; there are a version due to
Cline (1976) and a version improved by Bartels, Conn, and Charalambous (1978).
We describe simply the latter method.

If @ is an initial approximate solution of (1.2), we wish to find a corrective vector
¢ € R" and a small number 4 € R such that ||r(a+7¢)||e < Hr(a)“m The existence
of vector ¢ and number vy is guaranteed by Theorem 2.7 of [2] (p.44).

The directional perturbation method proposed in this paper 1s also a descent
method, but we?always take initial approximate solution »® = AtY = AtY(©)
Using linear dependence of b with respect to Y, we add some suitable perturbation
vectors 6rY to Y such that [|r(AT(Y +6:Y))||oo < [F(ATY)]|oo and %) = ATy (F) —
AT(Y + 6,Y) tends to Lo.-norm optimal solution (or T-solution) of problem (1.2)
when k =1,2,---, kg(< n).

On the other hand, we shall give some suitable perturbation matrices T(¥—1)

depending on the residual r*—1 such that

X% = Aty (1, S-solution)

where

AR = ylk-1) 4 Y& — sy (1.5)

which tends to an Ly-norm optimal solution of the system (1.3) (i.e, of problem
(12)) (k=1,2,-- ‘).

§2. D.P.L.S-Algorithm

Given a system
AX =Y, AeR™™" Xe€R", YeR™ (2.1)

where
r = rank (A) < n < m.
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1° Calculate AT and
X© = Aty = ATY O,
2° Calculate |
r=1) —y — AX*-1 and ||'r(k_1)ﬂp, p=2 & L
If |r(*1|| < €, then stop; else go to 3°.

3° Determine the set

M(k_l) — {f ‘ Irgk_l)‘ = d(k_hl),'i = E} — {ilaiﬂs e !iPk-l}

where d(*~1) = Hé%x ‘r(k 1)‘ = {11 2, :m}'.r 1 < pp-1=m,
4° Calculate the perturbation vector
k k
a® = (af,--,af) )T = pa® = p(ay”, -+, 0D )T

where of*) is the sofution of the following system of order pg_;:

&&(H —_ F(k—l}

where
[ B, e B
A= | .
l_ 8ip i 5 O B j
Oi i) = ?AA+Eih (g h=1,--+,pr-1),
=(k—1) _ (T(k 1) _— (k—l))T

’Fk 1

where ¢; is the i-th basis of ™.

The perturbation parameter p is determined by the following condition:

P
ma.x [ el —p Z &Elk)ﬁﬁh| =(1- p)d(k_l}, 0<p<l

k—

where

i, = E?AA_'—E,'H re B — M(k_l), ip € k=1,

5° Add the perturbation vector to ¥

Pk—1

y® = y®&=1 1 5™ oPe;,
. h=1

(2.2)

(2.3)

(2.4)

(2.5)

(2-6)

(2.8)
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and calculate the perturbation solution
Pk—1
X® = gty = xk-1) L Y o8 gte, (2.9)
h=1
6° If pr > n (or rank(A)) or k > n (or rank(A4)), then X*® is the L,.-solution
of the system (2.1), go to step 7°; if pp < n (or rank(A)) or k < n (or rank(A)) and
det(A)=0, it means that X‘%) is a degenerate Lo-solution, then go to step 7°; else
k:=k+ 1, go to step 2°.
7° In order to obtain an (approximately) optimal L,-solution (1 < p < 2) of the
system (2.1), make use of the residual vector (9 of the system (2.1) with respect

to La-solution X0 (+(@ =¥ — 4X©) to get

1 X
T
o Vg T (2.10)
~, il Ipr e
and form the pérturbation matrix
(Jgk—l))uz 0 :
p=D = | . (2.11)
0 (Jg:—l))l/z

8° Multiply both members of the system (2.1) by T(*—1)
RE-UAX = mib=by

and denote it by
AR x — Yy

9° Calculate X*¥) = (A¥N+Y (k) and ||»(8)),,.

10° If | X — x(k-1)) < ¢ then we shall take X*) as an (approximately)
optimal L,-solution and stop; else £ := k + 1 and go to 7°.

93. Theoretical Results

The steps 1° — 2° of the algorithm are shared for L, Ly, and L, norm solution,

but steps 3° — 6° serve only for L-solution, and in this case we have

Lemma 1. If the system of vectors {®(X;, }} (h = 1,--- pr—1) is linearly

independent, then the systemn of linear equations (2.5) has one and only one solution
(k)
a\¥/,
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Proof. It can be proved that the matrix A is symmetric positive definite (see
[4]).

Theorem 2. For X*~1) which satisfies the condition (2.4), if we select per-
turbation parameter p satisfying the condition (2.7), then for X'*) obtained by the
expression (2.9), we have

dF <« k-1 =12 - ko(< n)

and the number of elements in the set M*) will be strictly greater than that of
M(k_l), i.e. MK o M'(k_l}, (o pr > Pr—1)-

Proof. see [3|, Theorem 1.3.

Theorem 3. There exists one and only one value p which satisfies the condition

(2.7).

Proof. see [3], Theorem 1.4.

P
Theorem 4. Let AX =Y be an overdetermined linear system of order mXn and

suppose that Lemma 1 i3 satisfied up to py—_1 > n or k > n (note that this condition
for A is weaker than the Haar condition which requires that arbitrary n row vectors

of A are linearly independent), then X%) = A+TY(®) of (2.9) is the L.o-solution of
the system (2.1).

Proof. see [3]|, Theorem 3.9.

Note. Suppose that Lemma 1 is satisfied up to px_; =r or k =r. If rank(A) =
r < n, then X¥} = A+Y (%) ig the L..-solution which has minimal 2-norm.

For L,-norm solution of the system (2.1) (steps 7°—10° of the D.P.L.S-Algorithm)
we have |

Lemma 5. X® = A®TYK) i5 the solution of the minimization problem

—~ _|r(X)° .
Z D) = uin . . (3.4)
i=1 ]T;‘ |2 - Sl

Proof. Because AT (Z:-D A)* is the pseudo-inverse of the matrix A with
weighting (Z(F—1)2 g0 X(k) — AETY(E) s the minimal 2-norm solution of L.S-
problem (3.4) with weighting 1/|r;(X{*-1))|2-2 :

Theorem 6. Let X %) be an Ly-solution of the system (2.1), rB) =y AXk) =
r(X %)) and assume that.

(i) if V1 < 1 < m, |'r£k)| > e > 0, let X511 pe g solution of the minimization
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problem
ri
s (X)[*9 : (k)
= 2 = |8 . N, < 20). .
; o = g, o=l QEN, 0<p<2Q (3.5)
(ii) if there exists a subset My = { j1, -+, 4 } € FE such thatV j € M;, lrﬁk)l < g,
X, i3 a solution of the problem
i |TJ(X)|2Q — min U.? _ £, i - Mj, (3 5’)
2 o 'ﬂ.? " :
1 JjQ P XeER |‘:r‘_§k)[, = E—M;

and X5t is o Lmit point of {X.} ase — 0.
Then we have

10

it

(Z ,r§k+1)‘p) 1/p < (i |T£k}\p) 1fp‘ (3._6)
' i=1

1=

If AX = Y -has only a unigue Lo-solution, then X (%) = [A(k}]+Y(k) 18 also unique
fork=0, 1, --- and we have

2'3!
(kD) p\ P em (k) )\ 1P
L2 < (3 ). (3.7)
1=1 i—=1 .
Proof. In the case (i), since X(**1} is the solution of (3.5), so

) rgk+1)|2Q m T*(X}'ZQ
VX € R" | : < :

=1 g1
The equality is achieved if and only if X = X*+1), Set X = X*). Then

T£k+1}|2Q m

. (k) 1p
< P 3.8
; rgk)FQ'P Z |T'I ' ( )

=1

On the other hand, making use of the inequality of H 6 lder, we have

i ITEk-I-I)lF S ( m |r£k+1)l2Q)P12Q ” (i |TEk}|P)(2Q—p)/’2Q'
1=1

k

1=1
From (3.8) we have
— | — /2Q Ay (2Q-p)/2Q &
> 1O < (L IrPEYE < (T Rp) P < S @
| 1= =1 =1

Then (3.7) is proved.
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In the case (ii), without losing generality, we assume that M; = {1}. Then (3.8)
is replaced by

71 (X )|2Q i ( Xe )F p = (k) p !
555 Z e <e +§|r.--,1 IP. (3.8")

On the other hand, we have

i Iri(XE)‘p < (lrl(XE)‘ZQ | z |T‘(XE)|2Q)I}{(29 (EP 4 i |T£k)‘p) (2Q-p)/2Q

= | B EEQ_F 1=2 I (k) IEQ P
= 2Q - (2Q-p)/2Q _
< (2 + L OR) x (2 + L pOP) T ek 3
gz 2 g—2 gr—2
(3.8")

It follows that there exists at least one limit point of {X.} as ¢ — 0, denoted by
X*+1) and there exists a subsequence of {X,} denoted by {X ) H=1,2,-. such that
{XE{:}} e X(k+l} as E(” — {).

»
From (3.8") we have

ZIT(HI)\P = lim i Ir (X )P < lim (Z]r( )lp—i- (E(I))p)

im1 (i)—:- —1 el 10 o

= S 1P < Y1 Pp.
1=2 t—1

Then (3.7) is also proved.
Corollary 7. Let @ =1, 1 < p < 2, in Theorem 6. (3.7) may be written as

(X * )l < e (X))l (3.9)

Then {||r(X*))|,} is a strictly monotone decreasing bounded sequence (say %),
> 0, V k), with the limit m
lim ||lr(X®)]|, = . (3.10)

k—oo

Because

(X)) flp = (Z Y — Zamx )77

=1

is uniformly continuous and convex over K", we know that there exists at least a
solution X of problem (1.4) such that ([2],p7)

”y

r(X)llp = gmin, (X,
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From (2.10) and (3.10), we can know that
x (k) _ (TR )ty k) — (2R 1)t k) y(0)

is a sequence of bounded vectors, so we can make a closed sphere § C R™ with
the center X(*) a5 any approximate solution to X and a sufficiently large radius

d > | X*) —X|| (Vk). Then
Yk XM es Xes

Now, because S is a compact convex set, the functional |7{X)||, has one and
only one minimal value which can be achieved over S. When &k —- oo, we have

lim [|r(X*) ||, = |+(X)||, =

and

(X)) - Xes

o SRR B R R e e o
Jim (XN ; i (X)2P ; r: (X)|P = i ; P XI5

Consequently, X is one solution of problem (1.4).

84. Numerical Examples

1. For data
X; 0.0 1.0 2.0 3.0 4.0 5.0

Y; 1.52 1.025 0475 0.01 —0.475 —1.005

we require a fitting polynomial of order 1 (Y = a + bX) in the sense of Ly, Loy, Ly
and Lj s-norm. The results are given in Table 1.
2. Solve the system of overdetermined linear equations Az =Y, 4 € B Vi

R®, where

[1 1 1 ] [ —3.0

i 3 —i ~1.0

1 1 2 7.0 |
A= ] ;P .

|2 2 4 l | —11.1

5 2 1 ~6.9

83 1 | -T2 |

The solutions in Ly, L1 5, L, Lo-norm and the corresponding error vectors are ar-
ranged in Table 2.
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Table 1
Norm Lo y - Ly Ls

Solution | a | 1.5147619048 1.5000000000 1.5200000160 1.5200054875
b |-0.5025714286 —0.5000000000 —0.5033333515 -0.5038001340
ri] 0.52381 x 16(-2 | 0.20000 x 10¢-1 [ —0.16040 x 10¢-7' | —0.54875 x 10(—>)
ro] 0.12810 x 101 |[+0.25000 x 100-D | 0.83333 x 100-2) | 0.87946 x 1002}

Residual [r3 | —0.34619 x 10— [ —0.25000 x 10-1 [ —0.38333 x 1017 [ —0.37405 x 10{-1)

vector 7 |r4] 0.29524 x 100—-2) | 0.10000 x 1001 | 0.38468 x 10C-7 | 0.13949 x 1002
re| 0.20524 x 100-D | +0.25000 x 10~ | 0.18333 x 101 | 0.20195 x 100D
re | —0.69048 x 100-2) [—0.05000 x 1001 —0.83333 x 100-2| —0.60048 x 10{-%

|1

0.83048 x 101

0.11000

0.73333 x 101

0.73800 x 101

)
()l

0.42316 x 10~1

0.48990 x 101

0.44096 x 1071

0.43844 x 101

b ()leo

0.34619 x 10~!

0.25000 x 101

0.38333 x 1071

0.37405 x 10!

|lm{ Mli.5 0.50790 x 101
» Table 2
Norm Lo Lise L, | Lis
| z, | —1.0370588235 | —1.0000000000 | —1.0451977992 -1.0441741413
Solution | zo | -1.0370588235 | —1.0000000000 | —1.0451977992 ~1.0441741413
x| —1.8078431373 | —2.0000000000 | -1.7298022008 -1.7400826620
ry | 0.88196 +1.00000 0.82080 0.82843
ro | —0.73373 —1.00000 —0.63941 —0.65173
Residual | r3 | —1.31020 —1.00000 —1.45000 —1.43149
vector | rq | 0.27961 0.90000 0.17764 x 10-1%) [ 0.37027 x 10(— 1
rs | —0.94392 —0.90000 —0(.98941 T —0.98322
re | 0.83020 0.80000 0.80099 0.80513
L Lo Ly Lis
()4 4.97961 | 5.60000 4.70000 4.73703
17{ )2 2.16592 2.29347 2.19193 2.18553
Ir( Mlew | 1-31020 1.00000 1.45000 1.43149
7). 2.80480
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