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Abstract

In this paper, we develop one kind of method, called self-adaptive method
(SAM), to trace a continuous curve of a homotopy system for the solution of a
nonlinear system of equations in finite steps. The existence of the continuous
solution, the determination of safe initial points, and the test of regularity and
stop criterion corresponding to this method are discussed. As a result the method
can follow the curve efficiently. The numerical results show that our method is

satisfactory.

g ~ §1. Introduction

The homotopy extension method, as a kind of algorithm for finding the solution of

nonlinear systems
F(z)=0, F:DCR"— R, (1)

is very important. Like to the simplicial algorithm, this. method will attract more
attention because both of them are continuation techniques for finding the fixed points
or zeros , and are related with Newton’s method.

The principal idea of the homotopy extension method is to transform (1) into the
following form (2) by homotopy mapping: |
H(z(t)) =0 (@)
for arbitrary ¢ € [0, 1], and to follow the continuous curves of (2). In this respect, many
results have been présented, of which one inmportant result is the local convergence
theorem on “Newton following” given by Oterga and Rheinboldt [5]. But a series of
problems on the existence of the solution, the partition on “Newton following”, the
computer implementability and the regularity of 3:H(z(t),t) have not been solved yet,
and a lot of dlﬂicultles are yet to be overcome for the numencal prncedure of homotopy
extension. i e . .

In this pa.per, we' deve.lop a kmd of method to follnw a continuous curve of the
solutions in finite steps of the homotopy systems by the self-adaptive method. The
numerical rEBult shﬁus"that "fihé a.lgorithm can be implemented on computer.
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§2. Existence of the Solutions

Consider the following nonlinear systems: ,
_F(;-;)=01F:D‘CRH__,R“. | o (3)

The famous Newton-Kantorovich theorem shows the relations between local pionts and
the solution. Our idea is to trace the homotopy path by using the Newton-Kantorovich
theorem, so we need the following facts.

Definition 1. Let f : D C R" — RY be a mapping, and p € R! be positive real.

Ips(p) = {zlf(z) < p,¥z € D} (4)

~ We say that I'p,g is a level set of f on D and p. | | |

Definition 2. We say that D, is an r-interior set of D¢ C D, if D, satisfies
D, = {z|min|ly—zl{ 2 7,2 ¢ Do,Y € 8Do} (5)

where 8Dy is the boundary of Do , and r is posttive.
Theorem 1. Let F: D C A" — R™ be Cy smooth and F' satisfy

1F'(z) — F'()ll < Lilz - vl, 2,y € Do- ' (6)
For = € Do, F'(z) is ifvertible and satisfies -
| , IF' (=)~ < B- (7)
Then there exist solutions if and only if there is a positive £g such that |
- int ([p,) = int (rDu.||F'(:]*1F(r]||(’7)) # ¢ (8)
where 1 satisfy
| n { min —-1—* Eg — l|l—-ﬂLE’i} (9)
e U7 T AR -

and ¢ ts empty.
Proof. If €g and 7 satisfy (8) and (9), then the interior of I'p, is nonempty. Let
29 ¢ int (Tp,). By Definition 2, we have 29 € D,, C Do and 2° satisfies
1P (") P < 9.
By (9): a

a=fLy <

_ % a.nd . ?(.’cn,Eu) C Dy.

Let

* = (1- V1= 2a)n/a.
Then we have T | { |
* __BLt* =n< gy — ZPL £
- { | 23“ n<€o- 2ﬂLEn
Tgus |

om0+ FPE ) 20

So we get €0 2 17, and thus 5(z°,¢*) C Do. Then z° satisfies all the conditions of thé
Newton-Kantorovich theorem, which gurantees the existence of the solution.
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- Let z* € int(Dp) be a solution of the nonhnear systems. Then there isan g1 > 0
such that S(z*,e1) C Dy. - |

We now consider the following estimate:

[F'(z)~ F(z)|| < BIF(z)ll < BlIF(z)~ F(z*) - F’(f-r Nz —z7)]

+ BIF (=")lljz — =°|| < §ﬂLllﬂ= - z"|* + B F'(z")llllz — =*|
1

for Vo € Dy. Let g < 561 and g9 — %ﬁlsg > 0. Then from (9), we have i3 > 0.

Considering the equation
| "“ﬁLf2 + Bl F'(z*)|lt < 9.
We have a pnsutwe solution £, and if 0 < i < 1, we always get
?ﬁw + Bl F'(=")lit < =

Thus we have | _
' $(z*,1) C I, = Ip,, jiFs)-1 Fia)in

This shows that the interior of I'p,  is nonempty.
Remark. I is not necessary that Dy be closed. For z° € int(T'p, ), we alwa.ys

have
S(.’BD,E{j) -

By using the Mysovskii theorem (9) can be rewritten as

7 < min{2/BL,e0 — 5ALed}
For the homotopy system ¢ 3 |
_ H(z,1)=0, H:Dx[0,1]CR"xR'— R", (10)
we have a new exsitence theorem for its solution.

Definition 3. Let D C R™ be open and f:D — R" be sméath. We say that
y € B" is a regular value for f if |

Rannge Df(z) = R" forall z€ f~'(y)

where Df denotes the matriz of partial derivatives of f(z).

The following two principal lemmas can be found in [4].

- Lemma 1. Let f: DCR“+1—+R“ be a Ci(l > 1) smooth map, and y € R™ be a
regular value of f. Then f~1(y) is a one-dimensional C; smooth manifold. |

Lemma 2. A one-dimensional mmpact C; smooth manifold cantams onIy a finite
number of mnnected arcs and. cm:les B |

Now we prove an ex.tstence thenrem for the continuous curve.

" Theorem 2 (Contmubﬁs clitve existence theorem) Let H : D x [0 1]CR*"XR—
R™ be C; smooth and’D"be bbtmdﬂf and closed, H~(0) C int(D) x [0,1],and for all
(z,t) € H'l(ﬂ),ﬂxﬂ'(z,t) ezlsts Then there is a smooth curve x(), for t € [0,1],
satisfying H(z,t) =0 and ’z(%}*'_E**:ﬁt(D) I)" z(0) = zo; then the curve is unique.
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Proof. By the assumptions, 0 is of cours a regu]a.r va.lue. By Lemmas 1 and 2,
H-1(0)is a one-dimensional manifold. For ) closed and bounded, it is easy to prove
that H~1(0) is bounded and closed, so H~1(0) is compact. By Lemma 2, |

L;: (=z,t):]0,8] X pl., gl §=1.92,v 1
Since 8, H~! exists on L;, 1(s) is monotonic on s. So we can rewrite L; in the following
form by the inverse function thenr'em: x
L;: z:[a;,b] C[0, 1] -+ R" | (11)
where the interval on t is closed, for H “40) ‘s closed. If @; # O,then the point
(z(a;),ai) € int (D) x (0,1). By the condition, 8. H(z(a;),ai) exists. By the im-
plicit function theorem, there will exist ¢ > 0, for t € (ai — & ai + e), z is uniquely
expressed by . But L; as a component cannot be extended, This is a contradiction.
So a; = 0. |
By the same argument, we can obtain b; = 1. This shows that there are no circle
and that arbifrary on the arcs leading from D x 0 to D X 1 are of C;. So if a point and
that arbifrary the arc is given, the arc can be determined uniquely.
This theorem shows that if, the conditions are satisfied, then the solution curve of

the problem. ; &
H{z,t)=10, z(0) = zo (12)

is unique and smooth. _

On the basis of Theorems 1 and 2, we can obtain another theorem from which the
algorithm in our paper comes.

Theorem 3 (Chain level set existence theorem). Let H : Dx{0,1] C R" X R' - R"
satisfy the condilions of Theorem 2. Then there exists a chain contructed by a finite
number of level sets I'1,1'2,- - Ty which cover the projection of the solutein curve on
D, and |

(i) T:NTip1 # ¢ i=1,2,---,-1

(i) T';s C int( D), i=1,2,--+,1{;

Gii) int(T)# ¢, i=120 |

(iv) there is a t; with respecl to T;; for all z? € int(L;),z is a safe initial point on
~ the systems H(x,ti) = 0. - '

Proof. By Theorem 2, there is 2 uniqué curve z : [0, 1] C R! — R™ satisfyiny (12);
we denote it as L. Define the projection map P: L — Das follows:

| P{z,t) = z, for all (z,t) € L. |
By the continuity and compactness of L, the projection PL1s compact for L C int (D)X
[0,1]; thus PL C int (D). . T = _

Since 8, H exists by the condition, using the continuity of 0o H and the compaciness
of L, we have l6-H™ || < B. By the Banach.lemma there exists a ¢ > 0, such that
16 H|| < B-0n Ss(L,6), where s B8 Al ; . | |

(-S_)E = FS(L*&E) = {(z;1) | [(:r,t) = (fai)l 5:'61V(f=ﬂ € L,(w,t] € D x [0, 1j}.



On the Numerical Method of Following Homotopy Paths . 249

Using Theorem 1 on PS; (the projection of S5 on D), for each t € [0, 1], the system
H(z,t) = 0 has a unique solution. Then there exists a level set I';' whoses interior is
nonempty. For arbitrary z € PL, there exists at least one t, such that (z,t) € L, and
z € int (). This shows that int (T';) must cocer PL. By the compactness of PL, there
exists a finite number of level sets which can be ordered as I'y,I'g,- -+, T, satisfying (i),

and we can obtain (ii), (iii), (iv) by using Theorem 1.

83. Step Selection

By Theorem 3(iv), for each I, there exists a t; with respect to Iy, and if z? €
int (T;), z? is a safe initial point on the nonlinear system
.H(a:,t;) =0.
This will offer us an algorithm for fo]lWing the fixed points or zeros, so we will
discuss how to obtain the step ¢; in the sequel.

Theorem 4 (Estimation of the initial step). For problem (12), let H be F-
differentiable, and let 8, H~'(z°,0) ezist and satisfy the following Lipschitz condition:

10 H(Z,t) ~ 8- H(§,t)|| < || - gl| forall 2,5 € D,¢ € [0,1], (13)
N H(3,t) — B H(§,3)|| < =|t—s| forall € D,s,te€l0,1], (14)
|H(z,8) - H(z,t)|| <w|s—t| forall ze€ D,s,t e {0,1]. (15)
Let 6° = Dist{z°,0D). Then we obtain an ezpression of t,:
= nun{uglaax (26 — py6*)[2Pw, 1/23%w} for = =0,
2
h = mn{oﬁaéxﬁu(% By6°)/(268 = + 2fw),
- (B + B2y — /B2 + 282 2w) /B2 22} for = # .

If0 <t < t; and z° is an initial point, then the following Newion iteration
z(k + 1) = z(k) — 8. H Y (z(k),)H(z(k),t), k=0,1,---
will converge, where § = |8, H~'(2°,0)||, Dist (A, B) = min{j|jz —y|| | z € A,y € B}.
Proof. We first have the following estimate:
| W — 8 H(2%,0)0: H(z°,t))|| < B||8-H (=° 0) ) H(:: t1)|| < Bzl
If ﬁ 2t < 1, usmg the Banach lemma, we have '
| |6, H(° t1)|| < ,3(1 ﬁmtl)-l = f
thus e el B
0. HX(a% ) (&, )} < IS, 1) ~ H(2,0)] < S,
If 20 is a safe 1n1tlal pomt there must hold |

.y - ?-',
R 1.'-: .l ['.- i } - : +
& eyt EL g =
e TR I
o g .

thus 1

ﬂnﬁ’?tl(l_ - ﬂﬁifl)“2 S ?-'
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Hence we have

{tl = 1/28%w7 fore =0,

ty = (B2 + ﬂzw"y S + 2P mwy)/ B 22 for 2 #0.
So we obtain | |

t* = E(l — /1 = 2a)1.
If S(z%,t*) C D,i* should be less than 59 For 0 < § < &°, we have
n<é- —ﬁ'yé?
thus
But1[(1- B=t) <& "'513‘75?/(1 - f=ty).
Hence we have | |

b < (26 - BYE) /2B + Be).

So we can choose

26 ﬁ'yﬁz &

h < u]‘e::n&?‘::xsﬁ (2(576 + ﬁw))
Then the statment above shows that, if 0 < # < 41,2 20 is a safe initial point on the
nonlinear system H(z, t)

Theorem 4 says: that 1f we obtain the message near (z°,0), we can construct the
first level set which contains z°. In fact, the level set covers z(t) for t € [0,1], and
we can easily find that the set ccmstructed shouled belong to the level set I', if T'y is
constructed by z°. Next, we will construct in a similar way all the level sets. |

Theorem 5. Let ||H(m(t,),t M < &, where f; € [0,1], and g; 15 @ small control
number. Let &' = Dist ((£(8:),%:),8D), 0: H-Y&(;), ) ezist, and (13)—(15) be satisfied. I
Then, -

; 1 — 25 €; | :
t; = min {§ ﬁfwj 1), ma (06 - pod? = 20/200} ife =0

t; = min {((B17 + fi2®) - Ve B+ Pim ) = fR (1 - 28776:)) Bl =%,

01253&7%‘ (26 — ~ Biy8* - 2f;e:) [ 2(Biw +6ﬁ1 33)} _ | . if 2 # 0

where
1027 (@), 1)l < Bi-
If ¢; is small enough such that t; > 0, then for all ¢ € [0, t,] #(3;) is a safe initial point
on the nonlinear system H(z,t; +1)=0. J
Proof. The prmf of Theorem 51is slmllar to tha.t o_f Theorem 4, so we need only to #
-estimate ~ ¢ % S _

|6-H 'l(x(t') i+ t,)H(z(t,),t, Fl
& [(1 | IEGE, &+ )~ HEE)E + ||H(=e(t.) 2L

[(1 t,)](“’t Fol=%
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By the same argument as in Theorem 4 we can obtain the EJ{presglonE of t;.

Theorem 5 says that, if we obtain the message near the approximate solution :z:(t,)
of the nonlinear system H(z,%;) = 0, we can construct the set which must belong to
the level set I';.. In fact, this set covers z(t) for all ¢ € [t 6 + 1]

§4. SAM Algorithm

Theorem 4 and 5 guarantee that our algorithm below is practical.

Algorithm. 1° if 8, H(2°,0) is invertible, compute 8 = ||8:H (2%, 0)||,6° =
Dist (29, 8D). - |

20 Calculate t; by Theorem 4. If t; > 1, goto 7%; otherwise goto 3°.

3% Choose an initial 2%, and run the following iterative procedure.

49 Let k:= 0
z(k + 1) = z(k) — 8, H *(z(k),t1)H(z(k), t1).

50 If ||H(=z(k),t1)|| < &, goto 6°; otherwise let k := k + 1, goto 4°.

6% If t; > 1, goto 7, otherwise if . H(z(k + 1),t,) is invertable, calculate §; =
|6 H = (z(k 4 1),4:)], §* = Dist(z(k + 1),8D), and obtain ¢; by Theorem 5. Let
20 = z(k + 1),t1 = t1 + &, k := 0, gota 3°, otherwise GOTO 8°.

- 79 Let z° := z(k + 1), and do the following iterartion:

z(k + 1) = z(k) — 8. H Y(z(k), I)H(i(k); 1), k=0, i, e M.
8° Stop.

It is easy to find that the algorithm above is a calculation and test procedure, so
we can not only trace the continuous curve, but also test the regular value.Meanwhile,
we can obtain the following theorem. |

Theorem 6. If the algorithm can proceed to i, then there ezists Cy smooth curve
z :[0,f] — R™, satisfying z(t) € int (D).

Proof. By the algorithm we can obtain #),%;,---,#; of the approximate chain
f‘l,f‘g, Ty of Theorem 3. Aga.m by the procedore and the smoothness assump-
tion, there exists a unique solution of the nonlinear system H(z,y) = 0 in I; (for
t € [, % + t;]), so z can be uniquely expressed as a function of ¢ in T;(i = 1,---,I).
- For all the sets connected with one another, z can be uniquely extended from Ty to T
Using the implicit function theorem, we have z(2) € C;.

Since we! ‘have: bmlt the a.lganthm ‘we should see to it that the conditions can
guarantee ﬁmte extentmn, such that we can obtain an approximate solutwn of the

nonlinear system H g 1) 0.

Theorem 1.. Let the mnd:tmns of Theomm 2 be satisfied, and suppose that (13)—
(15) hold. If & 18- smau enough the ertension is finite. -
 Proof.. H there eXistit; >0 for all §; > §t, by the compactness of [0, l], the
extenswn can be ﬁmshed by a finite number of steps. If this is not true, then }_{; < < 1.
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Thus, there exists a positive integer M., such that, for 1 > M, t; is sufficiently small.By

Theorem 2, we have

||3$H#1($(t)1t)" < 8.

Since z(t) € int(D) and z(f) is continuous, we obtain
0 < § < Dist (z(t),dD).
Fort € [t;,1;+1:], the Newton-Kantorovich theorem goarantees that there exist a unique
solution curve z(1) € §(z™,1}) satisfying H (z,t) = 0.where | |
. a1 15 . 1
= [1"‘ 1"2‘1'] /BiT; a < ﬁi'}'ﬂﬂa;

Bi = . g:;;;’. n= ﬂi(@ti + &)/ (1 - Bi=t;).

By the Banach lemma, we have

_ B: < B/(1-B=ti).
For i > M,1; is small enough, Let.t; < 1/8ﬂae. Then 8; < 28 and ff < 28, and
'  § = Dist(z™,8D) > 86— 1}, '
If &; can be kept small eflough, then ™ is fairly near to z(#;+1). Let |lz™ —z(t;+1)]| <
-1-6. Then &' > -1—6 . Using the value above, we can obtain a common 5t > 0 which has

no relation with i but 8,8, 2 ,w. This gives a contradiction.

§5. A Numerical Exmple

We know that for some concrete problems, there are various ways to contruct the

homotopy mapping. And we often get the regolarity of the mapping by using Sard’s
sversality theorem. If D'= R",in general we get the local Lipschitz
nstead of the Lipschitz condition. The following
al Lipschitz condition on an IBM PC-XT. |

theorem and the tran
continuity of the homotopy mapping i
sroblem is an example of using the loc
Consider the following system: =
zy + 22 + 23 = 0,
z1Z2 + :1:1:1:3 +. 2923 = 11,
T1zexa=6.
We know a solution of the system above is (1, 2, 3), and we can constru

mapping as follows:

ct the homﬂtnpy

. HEH=F@-0-9FE)

where z° = (1.5,2.5,4). e W, ;
-‘The following graph shows-that the procedure of following the path is very satis- b
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1; z(t)
(1,3)
2.5 —
: - . (112)
1.5 e
- — (1,1)
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