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- SCHEMES* |
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Abstract

A class of three-level six-point explicit schemes Lz with two parameters s,p
and accuracy O(th + h?) for a dispersion equation Uy = all,; .. 1s established. The
stability condition |R| < 1.35756176 (s = 3/2, p = 1.184153684) for La is better
than |R} < 1.1851 in [1] and seems to be the best for schemes of the same type.

Any three-level explicit difference scheme for a dispersion equation U; = alzz» can
be written in the form

k | -
Unte =2 biUny; t 2 oeiUni; (*)
j=i J
(#) is referred to as an “N-point” scheme, where N = k—i+ 1 (k > ¢). A class of
six-point schemes L3 containing two paremeters s and p is established in this paper.
Their local truncation errors are O(7h + h?). The optimal stability condition obtained
is {R| < 1.35756176 (R = ar/h3, T = At, h = Az), which corresponds to s = 3/2,
p = 1.184153684. This stability condition is an improvement on the result |R| < 1.1851
in [1] and seems to be the best condition for six-point schemes of the same type at
present. | |

The schenie_s given in this note are as follows:

2
Ls: UM vl + Ut it t A (U;—-j-t-m = U;-j—lfz). (1)
wherea > 0ifd=0,a < 0ifd =1, s =1/2,3/2; Co = 2.5p -3, 1 = —~1.25p + 1,
For s = 1/2 and p = 1, the schemes L3 become H3 in [1]. -
Now we analyse the sta,bility' of sc;hemes Lax by_the"ﬁFnurier'Iﬁéthﬂd. For definiteness,
put s = 3/2,d = Ol(a > 0). Let_'_ - |

- Un = Anem, i = —1, o = mh, ¢-real number, (2)
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Substituting (2) into (1), we obtain the characteristic equation of schemes L3 (see, [3]):

&2 — 2FP(Q)ir—e 9 =0, Q=qh/2, | - (3)
. .
F(Q)=2R Z C;sin(2j + 1)Q + sin(3Q)
=0 |
= Rf(y,p)+ 9(y), y=sin@, 0<Q<7/2 _
fly,p) = 88°(py? — 1) = 883 (y — )y + ©)/c*, p>1,pc =1, (4)
g(y) =3y—4y°, 0<y<L | (5)

From equation (3) and [2,4], it follows that the stability condition of L3 is | Rf (v, p)+
g(y)l < lor _
|R| < ap Og;f{_lG(y,p), (6)

' ~(1+g)/ fy,2), 0<y<eg, o
Gl = -
) {(l—g(y))/f(y,) 02 L. (7)

In order to find inf G(y,p) in the interval 0 < y < 1 for any fixed p > 1, the
properities of G(y, p).ar€ discussed in the following.
1. In the case 0 < y < ¢, we have

8G /8y = 8y*(2y + W (u,)/ f(w:P)*,

W(y,p) = py*(—4y° + 2y + 5) - 3, (8)
W(0,p) = -3, W(e,p)=2(2c+ 1)(1- c) >0,

oW /0y = py(16y + 10)(1 — y) > 0,

3G [dp = 8y°(1 + g(v))/ f(v,p)* > 0. (9)

From the above equalities, we see that there exists a unique zero point z of W(y, p); :
or 8G/8y, and 2 is also a unique minimum point of G(y,p) for 0 < y < ¢ because
G(0,p), G(c,p) — o0, and G(y,p) is obviously a monotonically increasing function of p
for any 'y € (0,c¢) (see, (9)). Thus, for arbitrary numbers 71, P2, €1, ¢z satisfying p; > p2
and plcl = mc% = 1, we have ¢; < ¢2, and

Jnf G(y,p1) = Glam) > Glan,pa) 2 Jnf G(y,p2) = Clens). 0

This verifies that inf G(y, p) (0 < ¥ < c) is a monotenically increasing function of p > 1
2. In the case of ¢ < y < 1, we have

. 8G[8y = 8y*H(y,p)/ f(y,p)",

H(y,p)=pL{y) - 6y+3, 1<p<po, co<y<l,
L(y) = —8y® + 124° — 5y = 49*(2y — )(31 — »)(¥ — 32),
y = (V21 - 1)/4, 1 =-(V21+1)/4,




A Class of Three-Level Explicit Difference Schemes - ' | 303

po=p(z) = min (6y—3)/L(y)=3.510857143, z=15/8,

0.5<y<n
co = ¢(z) = 0.533605352 > 1/2, pc=1,
dG[8p = —8y°(1 — g())/ f(y,p)* < 0, (12)
imG(y,p) =0, y—1/2 forany p> 1. . (13)

From (11)-(13), with no loss of generality, we may assume that ¢ > ¢p or p <
po. Under this assumption, there are H(y,p) < 0, 8G/dy < 0 and so G(y,p) is a
monotonically decreasing function of y for c < y < 1, Consequently,

uéﬂf{la(%?) = G(1,p) = 1/(4p—4), 1<p< po. (14)
From the a.bove discussion, we see that if we choose a parameter p such tha.t
G(1,p) = jinf G(y,p) = G(2,p), (15)

then stability condition (6) will be the best.
In order to ca.lculate the minimum point z, solve for p from the equation W(y,p) = 0

(see (8)):
' p=3/(5y"+2¢° —4y%), y== (16)

Substityting ('16)'i'ntc: (15), we obtain
(v +1)*(y — 102y + 1)A(y) =
Alp)=4y" -8y +3=0, 0<y<ec. (17)

From A(-1) = -9, A(0) = 3, A(1) = -1 and A(2) = 3, it follows that there exists a
unigue zero point z of A(y) in the interval (0,1). The following numerical results are
calculated by the formulas (17), (16), (14), (4), (5) and (6).

z = 0.7859966342, A(z) = 2E - 10,

p* = p(2) = 1.184153684, ¢* = ¢(z) = 0.918958638, pc? =1,  (18)
G(1,p) = 1.357561766, G(z,p) = 1.357561765,

|R| < 1.35756176. (19)

Up to now, we obtained the stability condition (18)~(19) of L3 with s = 3/2,d = 0.
Using the same method, it is easy to prove that (18)-(19) is alsn the stability condition
ofLamths- /2 d=1.

By repeatmg the above pmcedure, we can show that the best stability condltmn of
L3 in the ca.se “of 8= 1/2 isp=1|R|< 1.1851, that is the result of [1].

Example. Use a. dlﬂ'erence method to sulve the 1mt1al—boundary value pmblem for

o mnaelT aE R s '-.:U(E!t) e CDS(E ﬂt),, 0 5 & E .1.1 o g . S & (20)

- The 'n'ﬁj:iigﬁt:’él éoﬁiﬁtaﬁti&n was carried out on a pocket computer PC-1500. At the
mesh point, U® denotes the approximate solution computed by difference scheme L3
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(5 = 3/2,#=001,p= p*, M= lfh)_, ‘n the orderof m = 0,1,2,...,M fora > 0 aﬁd |
m=MM-1,...,1,0fora <0. The necessary boundary values .and initial values in

computation were calculated by (20). Some data of errors UZ — U(X m. Tn) are listed
in Tables 1-4. From the tables, we see that the data in Tables 1-2 are of numerical
stability and in Tables 3-4 are of numerical unstability. These results all coincide with

the stability condition (18)—{19).
Table 1. a = 1, R = 1.357561
m n l 2 202 402 602
31 | 43E— 11 4.80E—09 1.09E-08 ‘1.73E-08

51 | 9.5E—11 7.83E-09 171E-08 2.71E-08
21 | 1.94E — 10 1.18E-08 2.35E—08 3.78L—08

Table 2. @ = —1, R = —1.357561

m n | 2 202 0 402 602
25 TOF — 11 —4.66E—09 —692E-09 -182F - 08
50 | —94E*11 -103E-08 -1.72E-08 ~-2.07FE - 08
75 | —1.42E — 10 _163E —08 -—3.40E —08 —4.97E 08

Table 3. a =1, R = 1.36

mn 2 202 402 602
a1 | 55E — 11 —4.53E -07 -5.60E—03 —67.79
£1 | 1.11IE—10 -1.08E—06 —9.98E—-03 —125.33
-1 | 295E—10 -947E-07 -118E-02 —150.12

Table 4. ¢ = —1, R = —1.36

m n 2 . 202 402 . 602
25 | 2E-11  —535E-07 -581E—-03 -75.49
50 | —6E—-11 652E-07 5.17E-03  63.89

75 | —2.23E-10 —8.89E -G8 —211E-03 -24.96
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