Journal of Computational Mathematics, Vol.10, No.4, 1992, 339-347.

OPTIMAL INTERPOLATION OF SCATTERED DATA ON A
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Abstract

Optimal interpolation problems of scattered data on a circular domain with two
different types of boundary value conditions are studied in this paper. Closed-form
optimal solutions, a new type of spline functions defined by partial differential op-
erators, are obtained. This type of new splines is a generalization of the well-known
L,-splines and thin-plate splines. The standard reproducing kernel structure of the
optimal solutions is demonstrated. The new idea and technique developed in this
paper are §inally generalized to solve the same interpolation problems involving a
more general class of partial differential operators on a general region.

§1. Introduction

The “thin plate” splines were first introduced by Duchon!® over an unbounded
domain Q = R2. A multivariable interpolation problem relating to this type of thin
plate splines was also studied by Meingnet!3. Based on basis functions including
thin plate splines, a numerical method for the interpolation problem of scattered data
over a finite domain without boundary conditions was presented by Dyn and Levin'®.
A closed-form solution to the interpolation problem of scattered data over a circular
domain with boundary conditions, which leads to the so-called “biharmonic spline”
(a second order thin plate spline), was given via the variational technique by LillZ,
Other related results may also be found in, for example, Dyn and Wahba [7}, Freeden
[9, 10], Li [11], Utreras [15, 16], and Wahba [19]. Some interesting applications of the
biharmonic spline to state-constrained minimum-energy optimal control problems with
steady-state distributed harmonic systems were shown in Chen [1, 2, 3], where explicit
closed-form optimal control and state functions were obtained from the reproducing
kernel Hilbert space approach.

In this paper, we will study two optimal interpolation problems of scattered data
oft a circular domain with two different types of boundary value conditions. Closed-
form solutions to the two correspondmg problems posed below will be obtained. The
- optimal solutions will be defined as, in a minimum-norm interpolation sense, a new
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type of spline functions defined by certain partial differential operators with buﬂn—dary.
value conditions, which is a natural generalization of the well-known L, and thin plate
splines. Moreover, the eleigant reproducing kernel structure for these two different
types of splines will also be demonstrated. Finally, the idea and technique will be
generalized to solve the same interpolation problems involving a more general class of -

partial differential operators on a general region.

§2. Statement of Problems

Let  be the open disk of radius a and centered at the origin in R? with a boundary
I. For a nonnegative integer k, let H k¥ = H*(Q1) be the usual (real) Sobolev space of

order k on §, endowed with 'the inner product and norm defined respectively by
aﬂ.1+ﬂr2 aul +-crg

(f 9 ux = Z / 3"’1:.:8“?3; o maﬂ'?yg) dzdy

t‘.'.!;l +ﬂfg{k

and

o e = (Y)Y,
32 02
3&:2 3y
m real- valued continuous functions {c;b,}r_ﬂ defined on I', and a set of scattered data
{z;}!_,, the main objective of this paper is to solve the following two constrained
minimization problems: |

where ay, o2 > 0. Denote by A = the Laplacian operator as usual. Given

inimize : A™w)dzd 2.1
hfaiens (Am el -
subject to -
*IU(E,', yi) = Zi, (-"I,', yi) €fl, =1, :‘ (22)
and either
‘H?'[‘ =i ¢'01r ﬁﬂ?l]“ — t)\‘{}1'.1 RS rﬂm_lwlr = d’m—l; (2.3&)
or .
Sw " lyw

= Pm-1, (2.3b)

where {(z;, ;:,‘r,)}'*_1 are [ distinct interior points in ! and 8/8r is the outward normal
derivative on I'. For convenience, we will call the problem with boundary conditions

(2.3a) Problem A and the one with (2.3b) Problem B.

‘IH|[‘=¢0, E o ¢1:”'1_6rm_1 |F

- §3. Construction of the Optimal Solutions

In t]ns sectmn, we will show tha.t the crptlma.l solutions to Problems A and B ha.ve

the same fnrm | . B
e =1 | . . ol e

w* = u +Ew’”
k=0
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with the same u*, where for each k, k = 0,1,++-,m— 1, w; is in N(A**1), the null space
of the operator A**1, and satisfies certain boundary conditions, and u* is the optimal
solution of a reformulated minimization problem. It will be shown in the next section
that u* has the standard structure consisting of the reproducing kernel of a Sobolev
space.

To facilitate our discussion, we will use the polar coordinates. We will first discuss
Problem A. For each k,k = 0,1,---,m — 1, let w; be the (unique) solution of the
following boundary value problem |

{a“lw,, =0,

wkil" e &wkll" =... Ak lwkll" = 0, ﬁkwklf‘ = §;.
It is clear that w; isin N (AH‘I) CN (A™) and can be obtained by solving consecutively
the following simple boundary value problems:

(3.1)

ﬁtﬂg p— 0
{ (3.2a)
| wolr = ¢o
and fork=1,---,m— 1,
ﬁ‘!h = 0, ﬁﬂz =", ﬂt?j: = Vk-1, &wk = Uk,
{ { { { (3.2b)
vilr =¢x, vz = vkr = 0, wilr = 0.

As is well known, each of these pmblems has a unique solution which can be explicitly
expressed via the Poisson formula as follows: The first one is a Dirichlet problem with

the solution
. 2 ﬂ2 _ 1"2

o1 .
1= ox Jo ¢kai—2arcos(ﬂ~t)+r2 e

by this result, the second one has the solution

V9 =.j H(r,0;s,t)v1(s,t)dsdl

where ) (6 1)+
rscos(d — 3
H(r, Bidut) = 111 {sz(r"’ 2ar cos(@ — t) + ag)}’
and so on. i N |
On the other hand, let ¥* be a solution of the following constrained minimization
problem: | | |
| L e
uEH,}",""(ﬂ}./(al ‘I.I'-)
,ﬂ.'i.'.'.l .
u(ri,6)=2- Y wk(n,e ), (ri,8) = (ziy3), i=1,1,1, (33)
A3 Q) = (n: A € Ly(®), ulr £ Aulp = -+ = A™lulp = 0}.

It will be seen from the ngxt section ‘that ¥* is unique and has a closed-form in the

standard reproducing kemel structure Fma.'l]y, set
1-,@" 'E "-."“ P s m"'l

o w” --u + E wk (3-4)
Co¥n g et el Fh=0 .

3‘1'3
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as mentioned above. Then, it can be easily verified that w* is the nptimél solution to
Problem A. | | |

As to Problem B, we let wy be the (unique) solution of the following boundary value
problem instead of (3.1): | | '

&k"'lwk = 1,

Oy, 3"_1'&?;‘
w"‘r = or 'r‘ =TT Tkl ‘I‘

O*wy, . et 0T (3.5)
=0 Bk |F=¢k_z ork lr‘ |

g={1

k=0,1,---,m— 1. Clearly, wy € N(Ak1) C N(A™). It can also be verified that the
solutions of (3.5) may be obtained recursively as follows:

1 a2 —r?

2x G
= —— d :
= ox Jo %ai—-2arms(ﬂ—t)+r2 t (36)

and fork=1,---,m -1,

wy = (r? = a®)F v

with vi satisfying
Avp = 0,

Wl | k-lakw"
Pl (m)*k!{¢*'z i F=bonm-L

Again, this is a Dirichlet pmblem so that

(r2 — ﬂz)k fzx k=1 gk, a? — 72
= 21(2a)ck! Jo (¢k E drk |1") a2 — 2ar cos(@ — t) + 12 at, 1)

k=1, --,m— 1 It is also clear that the function w* given by (3.4), with {wi} T
satisfying (3.5) and obtained in (3.6) and (3.7), is the optimal solution to Problem B.
Hence, what is left now is to solve the minimization problem (3.3).

84. Reproducing Kernel Structure of the Optimal Solution u”

In this section, we will obtain a closed-form optimal solution u* for the minimiza-
tion problem (3.3), and show that u” has the standard structure consisting of the
reproducing kernel of the Sobolev space HZ (). | "L

First, we recall the following old, yet useful, result which may be found in Vekua
[17] or [18]: | | -

- Lemma 4.1. The function defined by

() = 22n—1x((n —1)!)? () . bk
is the fundamental solution of the equation (-1)"A™w = f; nemely,

(~1)"A"Ga(r) = &) N C
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Secondly, for the positive integer m defined in the previous sections, let G(r) be the
(unique) solution of the following boundary value problem: ‘

{ AmG = 0,

Glr = sz! ﬁélr = ﬁsz,“ .I,&Em—lélr i &Em—lczm'

As has been seen in (3.1) and (3.2), this'pmblem is equivalent to the following
system of simple boundary value problems:

{ Agy = 0, {AQQm-—l = J2m-2, &é = 92m—-1,
QIII‘ — &Em-lGEm’ gﬁm—lll" = '&sz! é‘[" e Gﬂms

and each of these problems has a unique solution which can be expressed via the Poisson
formula as usual. Hence, G(r) is uniquely and explicitly determined.
Furthermore, let the space HJ'({:) defined in (3.3) be endowed with the inner prod-

uct and (semi)-norm

(4.3)

(4.4)_

([, @) Hm = fn (&"‘f)(ﬁ’“g)

and
1;2

I g = ([ am)

' 4

respectively. Set
K(r) = Gam(r) — G(1) (4.5)

with Ga,,(r) and G(r) being defined in (4.1) and (4.3), respectively. Then, we have the
following:
Theorem 4.1. H* is a Sobolev space with the reproducing kernel K(r) given by

(4.5).
Proof. First, it follows from (4.3) that
&kK|r = ﬁk(Ggm - G')Ir =0, £=0,1,---,2m ~ 1.

Applying these homogeneous boundary conditions to the Green identity, i.e., integrating
by parts m times, we have

(K(r — 3),f(r,9)}3;n — fn .&"‘"K(r - 8)A™ f(r,8) = ]ﬂ[&me(r — 8)]f(r,8)

. fn §(r — 8)f(r,0) = f(s,6), ¥ fe HIR).

This implies that K(r) is the reproducing kernel of Hg'(§). Moreover, it can be easily
seen that the semi-norm || g Hy" deﬁned a.bﬂve is actually a real norm since || f|| g =0
~ implies | |
| {amf 0, |
flr=Aflr==- = A" flr =0
which yields f = =0 (cf (3 1) and (3.2)). Hence, HZ(Q) is a Sobolev space endnwed
with this norm. Thls.cumpletes the proof of the theorem.
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Consequently, we have the- following standard result. We include a proof for com-

pleteness.
Theorem 4.2. The optimal solution u* to the Problem (3 3) is uniquely determined
by | *
u*(z,y) = Zﬂ.K(z -2y Y = Vi) - (46)
=1
where K(z,y) := K(r) with 1 = Vz? +y?, and |
by K(0) K(z: -z, —y2) - K@:—zun—-w)]”
B K(z;—z1,;—w) K(@i—z2,u—v2) - K(0)
B 2:01 wi(Z1,%1)
% i : | : | (4.7)

L 21 — E?;ﬂl wk(ﬂ:h y!) .
Proof. Since by Theorem 4.1 Hg'(Q) is a reproducing kernel Hilbert space with

# “““H; = (‘/]ﬂ(ﬁ;’""‘t,;)ﬁ.g;{:m::ly,)1!21r

the minimization problem (3.3) is equivalent to finding u* € such that

[0 g = min lullfg

where

m—1

I; = {tt € HSI(Q) . u(:c,-,y;) =z Z wk(m;,y;), ) = 1,2,---,3}.

k=0

Because the set I, is closed and convex in HO (Q), the above minimization problem has

a unique solution u* in I,.
It is clear that the functions {X (:c — 2;,¥ — ¥i)}\_; are linearly independent. Set

K = span {K(z — 21,y - %), K(z — 21,9 — y1)}
and let.IC-J* be the orthocomplement of X in HF*(£2). Then, for any v € K, we have
(v,K(:l:-—a:”y y,)) _ﬂ(z,,y,), i=12---,I.
Hence, u* + v € I,. However, by the mlmmum -norm property of u*, we ha.;n;el B
llu* |7 < llu” + ”“H"‘ ||“*||Hm +2(“ ”)H + ||‘U‘||Hm-
This implies that (v*,v)gp = 0 Indeed li (u v)Hm = a # 0, then

llu* — Bollgm = ||“"||Hg"-—“2ﬂﬁ + BlvliFip
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By choosing an appropriate nonzero f, it is possible to make —2a8 + BH|v|lfm < 0,
so that ||u* — ﬁvlle < ||u* ”Hm where u* — Bv € I,, contradicting the minimum-
norm property of u*. Hence, (u ,v)gm = 0; that is, u* is orthogonal to K+, so that

it = Z B: K(x — :r,-,y — 4;). The proof of the thec:rem is completed.

§5. Generalization of the Results

The idea and technique developed above can be generalized to the same problems
with a more general class of partial differential operators in the form

[l Li = L1 -+ - L,

where each L; is a linear partial differential operator on a general region with bound-
ary value conditions. More precisely, we will consider the following two constrained
minimization problems: |

, hilh 7 ] L; 5.1
wEHE‘l(ﬂ) Q (L__]'-‘E w) ( )
subject to '
w(r;,0;) = z, (r,',ﬂ.:) e, i=1,---,1, (5.2)
and either
- m-—1
wle = g0, Liwlr =1, -, ] Liw|. = ém- (5.3a)
=1
or .
ow Im w
wlr e ¢0: _5'; r _¢1! el grm-1 |r = Pm-1- (5'3h)

For a general region {1, the second boundary value problem may not be well-defined and
explicit closed-form optimal solutions may not exist. But the same idea and technique
can nevertheless be carried out. In the following, we consider only the case that €} is
a disk. In this case, we will call the problem with boundary conditions (5.3a) Probiem
C and the one with (5.3b) Problem D. For the most general case where even the time
variable is also taken into account, the reader is referred to de Figueiredo and Chen [4].

For Problem C, let wi be a solution (if it e:uats) of the following boundary value

problem:

HLW;;-—I

=1 W . . | (5.4)
w&lf‘ Ll‘lﬂkll‘ | e H L:tUkl H L w;,l

=1 | =1
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Then, for each k, k = 0, 1. com—1,wi isin N([]i%y Li) a.nd can be obtmned by sc:lvmg
successively the following boundary value problems:

{ Ll‘lDo = 0, : (
3.5a
wolr = o .
and fork=1,---,m -1, |
Lk+lﬂ1 — 0: Lk”? = 1, Lkﬂk — Vg1, Llwk = Vk,
s - (5.5b)
nlr = &, v2|r =0, % vklr = 0 wklr = 0 -
For Problem D, we will let w; be a solution (if it exists) of the following:
k+1
H L;wk = 0, o
i=1 '
2.6
' | Jm ST o, TR = B, s I -
Pklp T Tor Ir T gr¥=L Ir 7 Ork Ir : =4 Or%

k=0,1,---,m— 1. It is also clear that w; € N([]:Z, L;). Simila.rly, for both Problems
C and D, let u* be a solution of the following constrained minimization problem:

.
i [ (T Ew)’

1i=1

m-—1 .
u(r;,ﬂ,-) = Ry = E wk(rhai)a (Ti,ai) € Q'.r t=1,-- 1 (5.7)
k=0
m | | m—1
H Q) = {u : H L;u € Ly(9), ulr = Llulr‘ = e = H L;ulr - 0},
=1 =
and set 3
w"‘ = 'H‘.* + z 0L - (5.8)
k=0

Then, it is easily seen that w* will be a required optimal solution. Obviously, w
generalizes in a natural way the well-known L,-splines defined by ordinary differential
operators. | |

- Note that if the operator (TT%2, L;) is a general uniformly elliptic operator with
a smooth (not necessarily circular) boundary 84, under appropriate assumptions the
above boundary value problems (5.4) and (5.6) always have solutions (cf. Fink [8]).
We finally remark that a very general situation, where even the time variable is also .
considered, has been taken care of in a joint paper of the author [4]. "
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