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Abstract

The domain decomposition method in this paper is based on PCG(Preconditioned
Conjugate Gradient method). If N is the number of subdomaing, the number of sub-

:N e )JN. The condition number

of the preconditioned system does not exceed O(1+log N} . It is completely indepen-
dent of the mesh size. The number of iterations required, to decrease the energy norm

of the error by a fixed factor, is proportional to O(1 + log N )%.

problems solved parallelly in a PCG satep is ::-(1 i

#

§1. Triangulation and Subdomain Selection

Let £ ¢ R? be a bounded polygonal region, and let

{ a(u,v) = (f,v), f € H-1{),v e H (),

u e H}(N) (1)

be the variational form of an elliptic operator defined on it. The bilinear form satisfies

a{u,v) = a(v, u},
o, 0)| < M|l I} )
a(u,u) > M"||u||?,

where || - || is the Sobolev norm in H!{§l). From (1.2) the norm is equivalent to that
introduced by a(-,-) in Hj({1). In what follows, we will consider H3 (1) as a Hilbert spase
with the inner product a(-,-).

We will approximate {1.1) with the finite element method. Triangular partition and
linear continuous elements will be used. The triangulation satisfies quasi-uniformity and
inverse hypothesis.

1.1. Triangulation. T is a triangulation of {} satistying quasi-uniformity and inverse
hypothesis. Divide any triangle 7° of T into four (Fig.1), and we get a partition T! with
the first refinement. Continue the process with 7! similarly. After the m-th reinement,
we get the final triangulation T™, which is the partition we really use for finite element
approximation. The mesh size of T™ 1s A
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Let ™ = S} < H}{fl) be the finite element
gpace. S? ¢ §!' c --- C 8™ are finite element
spaces corresponding to O-level to m-level triangu-

lations. (V¥ represents the set of l-lével finite element

nodes. {¢; € S',1 € {}'} are the usual finite element
basis functions.

PO (ﬂ(¢'£'¢i'))i,;‘eﬁ‘ (1.3)

is the I-level stiffness matrix, A™ = A, = 0,1, 2,
-, m. 0 =0m. .

1.2. Subdomain Selection. {},l=0,1,2, ::,m,k = 1,2,---, N;} is a set of open
subregions of f1. For a fixed | € {0,1,2,---,m},{QL,k = 1,2,---, N;} is the set of l-level
subdomains.

The following requirements should be met.

Al. {30,k = 1,2,---,Ni} is a part of the mesh line of the triangulation T L%
0,1,2,.---,m.

A2. For any fixed I € {0,1,2, --,m}, i.e. on a given level,

N .
e | ) a, =9, (1.4)
| Ir.=1*

{QL,k = 1,2,---, N;} satisfies the quasi-uniformity requirements. Hj is the diameter of

{-level aubregmns He = H.
AS. For fixed {, there is another set of suhregmns (', k=1,2,---, N;} sothat Q% c 0}

and

dist{of \ 80,30, \ 40} > o - H,

where o is a fixed constant. At any point in {}, the number of subregions in {fl'i.,k —
1,2,--+,N;} which cover this point does not exceed a fixed number (if the coefficient of
the function term in the differential operator is strictly positive, this requirement can be

released.) )
(Qf =0 NI is the set of node points in () . From (1.4) we get

U (1 =Y. (1.5)

k=1

It is well known that the relation among the numbers of nodes, triangles and edges of a
triangulation is roughly 1: 2 : 3, and the numbers of triangles nf one refined triangulation
18 fuur times that of the original one. Therefore,

1G4/ =4, 1=12,-,m.

To ensure that the scales of subproblems are roughly equal to each other, we require

Ad,. Ny=4 1=0,1,2,

N = N,, is the number of subregions. 0-level to {m — 1)-level subregions are considered
as auxiliary subdomains. The number of levels m = log, N is independent of the mesh size

h.
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Under this assumption, we have

= H?
- IﬂkIEO(h—ﬂ), E=1,2---,N; 1=0,1,2-,m.

The total number of subproblems is

1
4gm+1

4 4
E(l— )N{EN,

1.e. the number of auxiliary subproblems is less than N/3.

Remark 1.1. We only require that the subregions of a fixed level can cover the whole
region. This requirement is essentially different from that of [1] and [6].

Remark 1.2. There is no ‘hierarchical’ relation between subregions of neighbouring
levels.

2. Construction of the Preconditioner

2.1. Restriction and Prolongation.

2.1.1. Restriction and Prolongation between levels. For a fixed ! € {0,1,2,---,m — 1}
and 1 € (¥, the nodes shown in Fig.2 are called one level neighbouring nodes of 1; they
compose the set O:‘l.

We define the restriction operator from a function f!*! defined on {¥*! to a function #
on §¥ as

. . 1 ; ;
FEy=F"B g 2, 0 betl,
JeEOH?!
(2.1)
This process is written as

f! i T‘f‘+1.

The operator v can be represented with an |(}| x
{3+ 1| matrix, still denoted by r'. Fig. 2

We define the restriction from {1 to (' as
Rl =4 . fH1 cxmpt® k. el Lovse mosd,
R' alzo represents an (3| x |} matrix.

Let 1 € () be a node. O! is its neighbouring set
O; = (Supp {4{})°[ )0 - {z)-

It is easy to see that, for a function f defined on ﬁ, f! = R'- f is a function on (. For
i € (¥, (1) is only related with the values of f on nodes in O!. From (2.1), we have the
local expressgion of this operator

FE) = (BA6) = 16)+ 2 #:(3) - 13)- (2.2)

JEO;
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For a discrete function f' defined on (I, we define its interpolation function / Ll € St as

I'f'= ) 1) 4
s

I™ will be written briefly as I.

We define the prolongation operator using the above interpolation. From (' to (I we
define f = P! f!, p

f)=FFE),ie, =012, ,m~1

P* represents the {{}] x I{}}| matrix corresponding to the above operators as well

Proposition 2.1. P = (R)T.

This result can be easily deduced from a lemma of [3].

2.1.2. Restriction and Prolongation on Subdomains in a fixed level . For a fixed' ! €
{0,1,2,---,m} and a subdomain (.06 = 1,2 = Ny Jet fi be a function defined on (1} .

We define its extention to the whole {2} as

{(1), iefl,
(Eifi)(i)={ el =t

i,

0, ieft 1.
The restriction from f}! to (1L is defined as
_ (CL1M)6) = £1(),5 € O
C! and E} are [(34| x || and (¥ | x || matrices respectively. It is easy to see that
Ci = (EL)"

with both C? are E} as identity matrices.

2.2. Preconditioner. With the above preparation, we can give the expression for the
inverse of the preconditioner ¢}. In the PCG iteration, only Q! not Q@ will take part in
the operation; the expression for Q is not necessary. As shown in (1.3), the l-level stifiness
matrix is

A' = (a(¢i, 45)): jear-

We may define the stiffness matrix on a subdomain in a fixed level similarly,

A = (ﬂ'(é:l(ﬁi"))i,jEﬁLl i =0, 11-2: eeymyk=1,2,---, N

2
The order of all these matrices is roughly O[f—:i-).

The expression for the inverse of the preconditioner is
" Ny |
Q7' =) P()_ Ei(4)'CIR, (2.3)
=0 k=1

where P™, R™, E?, C? are identity matrices.

Remark 2.1. From the symmeiry of AL and Proposition 2.1 we know Q is symmetric.
The first term in the outer sum symbol on the right-hand side of (2.3) is positive definite
and other terms are nonnegative definite. Therefore, @ is positive delinite.
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Remark 2.2. For a given vector f € RI¥l (it is a function defined on ﬁ), fl = Rl =
0,1,2, -,m—1) can be computed synchronously. This process is fully parallel. The action of
C} does not take any time. All the subproblems {inverse action of AL,I =0,1,2,---,m k=
1,2,---, Ni) can be solved parallelly. P{l=0,1,2,---,m— 1} may act on each level, and
even on all subdomains at the same tizne. Every subproblem amounts to a homogeneous

boundary value Djrichlet problem. What kind of parallel computer is most suitable to this
algorithm, and how to arrange subproblems on processors of a given computer need further
study.

§3. Estimation of the Condition Number

Since Q is a symmetric positive definite matrix, the condition number of Q1A is de-
termined by the ratio of the maximum and minimum value of the generalized Rayleigh

quotient :
(AQ™"A/f, f)
(47,0 -

3.1. An Equivalent Expression of the Rayleigh Quotient. $™ < Hj(l) is a
Hilbert space with inner product a(-, -), and St = S'nH () c S™(1=0,1,2,---,m, k=
1,2,:--, ) s its subspace. We use P to represent the orthogonal projection operator from
S$™ to S!. P is the orthogonal projection operator from S™ to S'.

f € RIYl is an arbitrary discrete function on {1, and u = If = 3 ()¢ is the finite

138!
element function in S™ corresponding to it. We have the following leemma:

Lemma 3.1.
m N

(4Q 1 Af, £) = a3 Y Phu,w) (3.2

I=0 k=1
Proof. From the expression (2.3) of Q! we only need to prove
(AP'EL(AL) ' CLR A, f) = a(Pru,u) (3.3)
for all [,k,1=0,1,2,---,m; k=1,2---,N,. For any i € (I},
a(u —I(P'EL(AL) 'CLR'Af), $}) = a(u, ¢}) — a(I'(4}) "' CLR' A, ¢;)
= a(u, ¢}) — (R Af)(5) = (Af, 7' 4}) — (R'AS)(x)
=0 (by (2.2)).

Thus
I{P'E(A})'CL R Af) = Py,
i.e. (3.3) is proved. From (3.2) we immediately get

o[ e o
(Af, ) afu,u)
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3.2. The Condition Number. We will prove our main theorem through several
lemmas. In the following, C always represents a constant, and may have different values m
different places.

Lemma 8.2. Therc 13 a constant C independent of H and h such that far arbitrary

ue §™,
m N

G(EZP,‘:H u) < C{m + 1)a(u,u).

1=0 k=1
Proof.
m N 7 N
n(ZZPiu,u) = Za(ZP,ﬁu,u).
=0 k=1 {=D k=1
From hypothesis A.3 and Lemma 3.2 of [6], we know there is a constant C, and for any
le {0,1,2,---,m},

N;

(Zﬂiu u) = r::l,(z:PtF'iT P‘u) < C- (F"u,ﬁ"u) < Calu,u),

k.....

where C is independent of the diameter of subdomains and mesh size. Sum it up with
respect to [, and the proof will be finished. Thus we have got the upper bound of (3.4).

Lemma 38.8. If there 13 a constant C, and for any u € S™ there 15 a sel of functions
{ul €8),1=0,1,2,--- ,m k= 1,2, -+, Ny} such that

m N
= X0 % b (3.5)
=0 k=1
and
m N;
k]2 < € lul]?,
i=0 k=1
then
m N,
(=l s €33 alBlv)
=0 k=1

The proof of this lemma is just the same as that of Lemma I.1 of [5].
We will finish the lower bound estimation of (3.4) by looking for the constant in Lemma
3.3 and the decomposition (3.5).

Lemma 8.4. Let T < R? be a triangular region, unth diameter H. After 3 times
refinements, we get the triangulation of T. Then , there ezists a constant C independent
of H and j, such that for any finite element function u corresponding to this triangulation
on T, the following inequality holds:

Iu‘lﬂmT C 2||“||L=[T]+J |“| T]- (3.6)

This is a direct deduction of Lemma 3.3 in [4].
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Let [ be the linear interpolation operator on vertices of the triangle T. Then!3l, for any
finite element function u in the above,

7 ulfr <2 |“|g,m,':r-
From (3.6) we get

- ufir <Clem ||“||L={r) + 3luli,r)-

By adding an arbitrary constant and Pmnca.re’s inequahity we get
I ulfr < C(1+7)uli 7 | (3.7)

For any u € S™, we use I'u to represent its interpolation function in S'. Then (3.7)

shows !
Puff o <C-(14m=Dullg, 1=0,12,m. (3.8)

Since both I'u and u are zero on the boundary of {1, from Poincare’s inequality, we have

1Fu|fq < C(14+m—||ulli g (3.9)
u 18 decomposed in the way
i - M '
u=Iu+) (I'-I')u (3.10)
=1
Let u® = IPu, u! = (II ' 1)u !=1,2,---,m. v represents the dmcrete function got
from the restnctmn of u! on ﬂ‘ ||v‘“g represents the Euclidean norm of ¢'.
Note that o' vanishes on {¥~!. From Poincare’s inequality and Lemma 3.4, on any
triangle 77! € T'~1, we have
)P < C R s, (3.11)
eQinTi-1

To sum on all triangles in T/~ 1, we see
1
W18 < LOW R < CllIEa (=12 ,m. (3.1

We will define the decomposition required by Lemma 3.3 by the above {¢',{ =0, 1,2, ---,
m} for any function u € S™,

ul = Yy,
iy = Z v'{t)gl, 1=1,2,---,m k=12 ,N
iefy)!

where ﬁil c Q4. For fixed [ € {1,2,---m}, {;*, k = 1,2,--- N;} does not intersect each

other and
Ny
211
U " =

k=1
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It is obvious that the functions constructed above satisfy u} € S} and

Lemma 3.5. There exists a constant C independent of H h and m, such that for any
u & S™, the above decomposstion satisfies

m Ny
Z Z ”“’L”f,ni <C-(m+1)?||u|lf a. (3.13)
=0 k=1
proof. For a fixed term ”uL”iﬂL’! > 1,
(W2 g = [kl 0

By the inverse inequality,
llfin < C- @™ 'R)luidlsa < C ) V6,
iyl
hence »

; *
O ukli o <ClIFE < Cliv|fa  (by (3.12)).
je==1]

Therefore, the left-hand side of (3.13)

C-(IIllfa+ 2 _llWliia) =C (Iullfa+ D N(F = I')ulff o)
i=1 i=1]

SC- (030 + D IIFulf o <C- ) _(1+m—1|lL®]|1,Q (by (3.9))
i=1 i =1(}

< C - (m+1)%|uf]f 0.

The lemma has been proved. The idea of this proof is from [2].
From Lemmas 3.1, 3.2, 3.3 and 3.5, we obtain

Theorem 3.1. There exist constants C, and Cy independent of H and h such that for
any u € 8™ = 8§, the following estimate holds

rr N;

| u:(;; P,‘:u,u)
Cy (m + 1)2 = a(u, u) S Cz(m + 1),

that 15, there 35 a constant C independent of H and h such that
Cond(Q 'A) £ C(1+ m)® = C{1+ log, N)°.

Remark 3.1. The hypothesis A.4 was based on the idea that capacities of processors
of the imagined parallel computer are roughly the same. If one of the processors is stronger
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than the rest, the scale of the 0-level subproblem can be increased properly. In this way, the
number of levels m will be decreased, and the condition number will be improved.

Remark 3.2. The domain of each level, except the O-level, is decomposed into a number
of subdomains, which overlap each other slightly. From the proof of the theorem we see the
scales of subproblems do not affect the condition number; therefore they may be arbitrarily
small or large, and should be determined by the concrete computer.

Remark 3.3. If subdomains of 1-level to m-level
are selected to contain only one node in its interior.
(As shown in Fig.3, the selection of I} will assure
the hypothesis A.3. At a fixed point, the number
of overlapping subdomains will be limited by a con-
stant, which only depends on the smallest interior

angle of the initial triangulation.) Then the expres-
sion for Q! will be

1 % ™ (E)(E) Y o
Q! = P°(4Y) 1£°+§P (,ezﬂ.: ﬂ(fi’iréi))R _
-

where ¢€; is the unit vector corresponding to node 1 in R!/9'l. In 2 PCG step we need only to
solve the subproblem on the 0-level domain. The estimate for the condition number 1s still
true »

Cond(Q™'4) < C(1 + m)3,
where C is independent of & and h.

§4. Numerical Experiment

10 —© —t R S ~t e 3D
0 2 4 6 8
Fig. 4. Convergence history in the case of 4 subdomains
1 1 1 1 1
X A=—-, ¢ h=—, 00 h= — @ h=— o: h=

8’ 16° 32
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E
1 "\
10 = T . \
10 ~* 4 g
10 =6 4 ; : ' PO : - step
O 2 4 6 8 10 12
Fig. 5. Convergence history in the case of 16 subdomains
1 1 1 1
* h==,: h=—, 00 h=—, < h= —, 0 h= :
8 » 16 32 64 100

)

E

10 % < ; e s e} ¢ s : p step
0 3 6 9 12 15 18
Fig. 6. Convergence history in the case of 64 subdomains.
1 1 1
x: h = — h = sy OF h=—
48 72 96

We select the Poisson equation on the unit square region as the model problem. Uniform
triangulation and linear continuous elements are used to discretize it. PCG method is used

to solve the finite eJement equation.
We tested the preconditioner when the number of subdomains are four, sixteen and

sixty-four, respectively; the number of levels 1s 2, 3 and 4, and the number of subproblems
solved parallelly in a PCG step is 5, 21 and 85. All subdomains are rectangular regions, and
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are selected to ensure that the scales of subproblems are roughly the same.

The computation results are shown in Figures 4-6. In the figures h is the mesh size,
E is the A-norm of error. From these figures we see that the PCG convergence rate is
independent of the mesh size, and the number of subdomajns 18 reversely proportional to
the rate convergence. All these facts are in keeping with our theoretical analysis.
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