Journal of Computational Mathematics, Vol.9, No.1, 1991, 86-96.

SYMPLECTIC DIFFERENCE SCHEMES FOR
HAMILTONIAN SYSTEMS IN GENERAL
SYMPLECTIC STRUCTURE*V
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Abstract

We consider the construction of phase flow generating functions and symplectic dif-
ference schemes for Hamiltonian systems in general symplectic structure with variable

coefficients.
1. Introduction
#
The standard symplectic structure w on R°" is of the form
w=Y Jjdundzg, J=| % | (1)
1] 1 Jt _Iﬂ 0

1< 3
On such symplectic manifold, the Hamiltonian system has the simplest form

dz

T JAH(2) (2)
with the Hamiltonian H(2). The phase flow of the Hamiltonian system {2) preserves the
symplectic structure (1). Therefore it preserves phase areas and the phase volume of the
phase space. Feng Kang et al. in {2-4] developed a generating function method to construct
systematically symplectic difference schemes with arbitrary order of accuracy to approximate
the system (2). The transition of such difference schemes from one time-step to the next is a
symplectic mapping. So they preserve the symplectic structure. It leads to the preservations
of phase areas and the phase volume of the phase space.

Generally, a general symplectic structure on R with variable coefficients

w= E K;;(z)dz A dz;, (3)
1<
which 18 a non-degenerate, colsed 2-form. In this case, the Hamiltonian system of the form

az -1 -
= =K@ VH(), Ky = Koy (4
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where H(z) is the Hamiltonian. As above, the phase flow of the system {4} preserves the
symplectic structure (3). In numerical si:nulation for (4), usual discretization can not pre-
serve the symplectic structure (3). By Darboux’s theocrem, we can, of course, transform (4)
into {2) and then use the method in {2-4]. But (i) it is difficult to find out the transforma-
tion, and (ii) it is also interesting to discretize (4) directly such that the transition preserves
the symplectic structure (3).

In this paper, we try to construct symplectic difference schemes in saine way as in [4].
In 14] the key point s to introduce a linear transformation from the symplectic manifold
- (R™ J4n) into the symplectic manifold (J‘if""“L Jin) which transforms the J4n-Lagrang1an
submamfﬂld into J4,.-Lagrangian submanifold. Of course the inverse transformation trans-
forms the J,,,-Lagrangian submanifolds into the J,,-Lagrangian submanifolds. In fact, we
can also take nonlinear transformations for the same purpose. This was first noted by Feng
Kang and has been used in {5]. For other related developments, see [6-15|. In this paper,
we use nonlinear transformations to reach our purpose.

In Section 2, we give the relationship between the K (z)-symplectic mappings and the
gradient mappings. In Section 3, we consider the generating functions of the phase flow
of the Hamiltonian system (4) and the corresponding Hamilton-Jacobi equation. When
the Hamiltonian function is analytic, then the generating function can be expanded as a
power series In ¢t and its coeflicients can be recursively determined. With the aid of such an
expression, in Sectmn 4 we give a systematic method to construct K{z)-symplectic difference
schemes with. arbltra.ry order of accuracy.

We shall only consider the local case throughout the paper.

§2. Generating Functions for K (2)-Symplectic Mappings

Let R°™ be a 2n-dimensional real space. The elements of 2" are 2n-dimensional column
vectors z = (21, , 2y, Zn+1," " ", 22n )7 . The superscript T represents the matrix transpose.
A symplectic form w on R*" is a non-degenerate, closed 2-form, defined by

Zn
1
= Z K;i(z)dz; Adz;. (5)

1,7=1

Denote the entries of K(z) by K.;{z}, t,7 =1, --,2n. Then K(z) is anti-symmetric. The
non-degeneracy and closedness of w imply that detK(z) # 0 and K,,;(z) is subject to the
condition -

aK,'i(.E) 4 BK_.,-;(z] + BKH(E)

=0 i hi=1,, 20, 6
Jzy 02y 0z; ' e ik (6)

From now on, we always identify the symﬁlectic form w with K(z).

Denocte
0O I, K(2)

7 - 0
Jan = [ —doz: 0 ] Kif 2] = { 0 -—K(2) ]
Evidently they define two symplectic structures on R*":

2n
1= Edw, A dwan i, Q= -;- Z i7(8)d3; A dE; — kij(2)d2 A dzy).
1—1 ' 3=1
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A 2n-dimensional submanifold L C R'Y™ is a Jy,-and K (2, z)-Lagrangian submanifold if
1;{} = 0 and 171 = O, where 1y : L — R*"* is the inclusion. Suppose that in local
coordinates I has the expression

2

L={( = ) e R | z=12(2), 2= %(z), z€ U c R*", npenset}.

Then L is a J4,-Lagrangian submanifold if and only if
(TeL) JanTel = 0,

ie.,

@@ |y B (E) = s - d@ne o

— I, z:(z)

where T_L is the tangent space to L at z. [ is a R(E,z)-Lagrangian submanifold if and
only if )
(T:L)T K(2(z), 2(z))T. L = 0,

AT T Klz{zx 0 23(2)

zz[z)

= 7 (2) K (2(2))3.(2) — 27 (2) K (2(z)) 2. (2) = O.

ile-l

A smooth mapping ¢ :'z — 3 = ¢g(z) from R®" to itself is called K (z)-symplectic if its
Jacobian M(z) = g.(z) satisfies

M™ (2)K(g(2)) M(z) = K(z). (7)

Therefore its graph

L]

| I = {[ 2 ] eR4"|ﬁ:g(z],zER2“}

<

is a K (%, z)-Lagrangian submanifold for
(T )T Klo@), ATE, = (7)) | KEE 2 ] (M)
= M7 (2)K(g(z))M(2) — K(2) = 0.

Similarly, let w — ¥ = f(w) be a gradient mapping from R*" to itself. Then the graph of f

f,: {[ @ ] e R |9 = g(w), weRz"}

w

is a Jyn-Lagrangian submanifold!4l,
Define nonlinear transformation from R*” to itself

()OO
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l.e.,
w = a2, z), E=ﬂ1(tﬁ,w), (0)
9
w = as(%,z], z = o?(d, w)
Denote
do O -
. 8% Bz Ae B,
a.(2z) = = ;
dw Juw C, D,
3z Oz
dz 33 '
E.‘E_l(tfr tU) iz dw ow g A% B-
% ’ dz Oz ce po |’
Jw Adw

where a, is the Jacobian of o,
Let o be a diffeomorphism from R*" to itself and satisfy the condition

QTJ-!IHQH e BH'(E,E), | (1[})

Aa B, 1'[ 0 L,][ 4. B, [&(3) o
g B Bl ol B S A

It follows from (11) that

le.,

A® = ~K~1(5)CT, B~ = K-1(3)4T

12
C*=K~'2)DT, De=_K-1()pT. B

By Darboux’s theorem, such diffeomorphism exists, at least locally.

Theorem 1. Let o be a diffeomorphism of R" satisfying (10) as above. Then o carries
every K-Lagrangian submanifold into a J.;H-Lagta.ngian submanifold and conversely o1
carries every Jan-Lagrangian submanifold into a K -Lagrangian submanifold.

Proof. Let L be a R-Lagrangian submanifold. The image of L under a is af(L). Its
tangent space is

Ti(a(L)) = a. - T.L.
So by (10),

To(a(L))" 14 To (L)) = (T.L) al Jyna . T.L = (T.L)TKT.L = 0,

The converse is similar.
We now introduce a lemma in [4].

A B
Lemma 2. Let | € GL{4n). Denote
C D

ltnear fractional transformation as follows.
M(2n) — M(2n),
M- N = (M) = (AM + B)(CM + i3]

C D

A4 B
C, Dy

A, B
. Define a

(13)
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under the transversality condition

ICM + D| # 0.

Then the followtng four conditions are equivalent mutually:

[CM + Df # 0, (14)
MC, — A | #0, | (15)
CiN + Dy| #6, (16)
NC - A| #0. (17)

The linear fractional transformation defined by (13) can be represented as
N =co(M) = (MC, — A1) (B, — MD,). {(18)
In this case, the inverse transformation must exist and can be repre&cﬁtﬂd as

M = o~L(N) = (A1N+Bl)(CIN+D1)_1, (19)
padl )d{(NC'—A)“’l(B—*ND). (20)

Theorem 8. Let & be defined as above. Let z — £ = g(z) be a K(z)-symplectic mapping
in (some neighborhood of ) R*" with Jacobian g.(z) = M(z). If (in some neighborhood of
R*™) M satisfies the transversality condition

[Calg(2), 2) M(2) + Dalg(z), 2)| # O, (21)

then there exzists uniguely in (some neighborhood of) R>" a gradient mapping w — ¥ = f(w)
with Jacobian f,(w) = N(w) and a scalar function-generating function-¢(w) such that

f(w) = Vé(w), (22)
a1(g(2), 2) = flaz(g(2),2)) = Vé(aa(g(z),2)), identically in z, (23)
N =(AeM + B,)(CoM + Do)~ ', M= (AN + B°)C°N + D)~ (24)

Proof. The image of the graph I'; under o 1s

w

() = {(2) e B0 = anlole), ), w = slole) 13

w

By (21),

dw Jda; 0% Jdaz | |
o e e gl e R Ry

is nonsingular. So by the inverse function theorem, w = az(g(z), z) is invertible. The inverse
function is denoted by z = z{w). Set

& = f(w) = a1 (9(2), 2) s=s(w) (25)

Then

af day 89 Oag\ fBaz dg Jdazy~1 i
& i —— o o ﬂM D{[ .
Sk ™ (3§33+33)(3233+Bz) (AaM + Ba)(CaM + Do)
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Notice that a(I,) is a J,-Lagrangian submanifold. That is, the tangent space T, (a(I;))
is Jgn-Lagrangian. It means

. 0 I, A M+ B,
((AaM +Ba)T,(CaM + Do)T) ;
~L. 0 J]\C.M+D,

= (AagM + B,)T(Co.M + D,) — (CoM + D,)T (AL M + B,) =0,
l.e., | -
N = (A M + B,})(CoM + D,) ™! symmetric.

It shows that ©» = f(w) is a gradient mapping. By the Poincare lemma, there is a scalar
function ¢{w) such that

f(w) = Vé{w).
That is (22). (23) follows from the construction of f(w) and z{w). In fact by (25),
f(w) = a1(g(z), 2) o z(w). | (26)

Since z(w) o az{g(z), z) = 2, substituting w = ax(g{z), z) into (26), we get (23) at once.

Prﬂpﬂﬂitiﬂg 4. f(w) obtained in Theorem 3 1s also the solution of the following implicit
equation

o (f(w), w) = g(o?(f(w), w). | (27)

Theorem 5. Lei a be as in Theorem 3. Let w — @ = f(w) be a gradient mapping
in (some neighborhood of ) R*™ with Jacobian f,(w) = N(w). If in some neighborhood of
R**, N satisfies the condstion

€% (f(w), w)N(w) + D*(f(w), w)| #0, (28)

then there ezists uniquely, in some neighborkood of R*", a K(z)-symplectic mapping z —
2 = g(z) with Jacobian g.(2) = M(z) such that

a'(f(w), w) = g(a?(f(w),w)), ' (29)
M= (AN + B*)(C*N + D*)™ !, N = (A M+ B,)(CaM + D,)" . (30)

Simtlarly to Proposition 4, g(z) s the solution of the smplicit equation

a1(g(z),2) = flez(g(2),2)). (31)

The proof 18 similar to that of Theorem 3 and is omitted here.

$3. Generating Functions for the Phase Flow
of Hamiltonian Systems

We now consider the general Hamiltonian system

— = K™Y 2)VH(z), z€ R*", (32)
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with the Hamiltonian H(z). Its phase flow is denoted by g*(2) = g(z,t) = gu (2, t). g{z,t) is
a one-parameter group of K{(z)-symplectic mappings, at least local in z and ¢, Le.,

gﬂ = 1dentity, gtrHﬂ — gtl o gtz;

if zo is taken as an initial condition, then z(t) = g¢*(z0) = g(20,t) = gu(20,1) is the solution
of {32) with the initial value 2p; 1n addition |

gl (2, t)K(g(2,1))g:(2,t) = K(2), VieR. (33)

Theorem 6. Let a be as above and z — 3 = g(z,t) be the phase flow of the Hamutonian
system (32) with Jacobian M(z,t) = g:(2, t). If at some point 2,

IC (20, 20) + Dalz0,20)| # 0, (34)

then there ezists, for sufficiently samll |t| and in some neighborhood of R*", a time-
dependent gradient mapping w — @ = f(w,t) with Jacoban N{w,t) = fu(w,t) symmeine
and a time-dependent generating function ¢q m(w,t) = ¢(w,t) such that

f(w:t) = vé[wx t): (35)
a""'g‘f*) — _H(3(Vé(w,b), w) = —H(Vé(w,1), w), (36)
ai(g(z,t),2) =" ¢(az(g(z,t), 2}, t), rdentically sn some netghborhood of zy, (37)
N = (A,M+ B,)(CoM + D)"Y, M=(A"N+B")(C°N+ DEy—t, (38)

where H(®,w) = H(Z) o o’ (1, w).
(36) is also called the Hamilton-Jacobi equation for the Hamiltonian system (32) and
the nonlinear transformation a.

Theorem 7. Let H(z) and o be analytic. Then the generating function bo.m(w,t) =
¢(w,t) can be expanded as a convergent power series wn ¢ for sufficiently small | 1 |

blw,t) =) ¢ (w)t", ' (39)
k=0
and ¢‘“(w),k > 0, can be recursively determined by the follounng equations

¢ (w) :ff(w,ﬂ]d_w+ const. , (40)

!V (w) = —H(f(w,0),w), (41)
k
1 1 o
B w) = — 1Y S 3 DRA(TARI (), T8 (w)
. m=1 Mk k4 km=k
k;>1
k>1, (42)

where the integral of (40) is taken on the curve connecting w and wo = az (20, 20), H(®, w) =
Hoal(h, w). Here we have used the notation of maults-linear forms, e.g.,
D7 H(f(w,0),w)(Ve*1), .-, Vglinl)

2n
= Y Hayin ((,0),0) (V95 - (V85

ili"‘iimzl
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(?cﬁ“‘”)ﬁ 18 the i;-th component of the column vector Vtki),

Proof. Differentiating (39) with respect to w and ¢, we get

V(1) = i V4 )i, (43)

By (35),
V¢(% (w) = Vé(w,0) = f(w,0).

So we can take ¢! (w) = / f(w,0)dw. Expanding H(f(w,t),w) in (f(w,0),w) and

gathering the terms with the same order, we get

H(V4(w,t), w) = (f(w,0)+zt‘=w“=*(w) w)

=fIIf(t:,0).w)+Z Zmi S DRA(f(5,0),w) (VR -, Tglkn),

Kp 4o b k=K
ki =21

Using the Hamilton-Jacobi equation (36) and comparing with (44), we get (41) and (42).

§4. K(z)-Symplectic Difference Schemes

In the previous section, we have established the relationship between the phase flow
g(z,t) and the generating function ¢(w,t). And when H and « are analytic, the generating
function has a power series expansion. With the aid of the expansion, we can systematically
construct K (z)-symplectic difference schemes, i.e., the transition of such difference schemes
from one time-step to the next is K (z)-symplectlc

Theorem 8. Let a be given as in Theorem T and H(z) analytic. For sufficiently small
T > 0 as the tsme-step. Take

Ylm (w,r) = f}aﬁ“’(w)r", m=1,2, -, (45)

1=0

where ¢} (w) are determined by (40), (41)and(42). Then ¢'™) (w, 7) defines a K(z)-sympleciic

difference scheme z = 2% — 25+1 = 3,

ay (25T, 25) = Vuu!™ (as(25 11, 2%), 1) (46)

of m-th order of accuracy.

Proof. By hypothesis,
' IC(E{),E{}] -+ D(Eﬂ, Eﬂ” ;‘,é 0.
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So by Lemma 2, [C*N + D*| # 0 where N = (A, + B, )(Co + D) = dyw(we,0) =
(m]{wo 0), the Hessians of cf,:(wg,ﬁ) and ¥!™)(wg,0) respectively, and wg = az(zg, 20).
Thus for sufficiently small r and in some neighborhood of wp, |C*N'™ (w,7) + D*| # 0,
where N(™)(w,7) = ¢hw)(w,7). By Theorem 5, V¢{™) (w,7) defines a time-dependent
K{z)-symplectic mapping whlch is expressed by (31). It means that (46) is a K (z)- symplectlc
difference scheme.
Since ¥{™){w, 7) is the m-th approximate to ¢{w, 1), so is fl™H(w,r) = V¢!™H{w; 1) to
f(w,t). It follows that the difference scheme (46) iz of m-th order of accuracy.

Example. Take n =1 and

0 p

l, 2 2
K= oo H(p,q) = 5p" —¢°). (47)

-

The corresponding Hamiltonian system 1is

d 0 -p p P'q
&2 _K-lvyg = - ,
dt pt 0 1 —9 | 1
- l.e.,
dp _1 dqg .
» i - B 48
. The phase flow § = g1(p, q,t},§ = 92(p, g, t) is
pP=p°+2t+1t", =g+t (49)
Take the transformation o as
- 1 " ~ 1, .
[ 2] & 5 P=-p"+§-¢q Q= p"+§+yq,
4 4
L v ‘- P=—EP2+§—Q: Q=EP2+§+Q1
where © = (P,Q)T,w = (P, Q)7. Its inverse transformation a~? is
.« A L1
Y 5 6] F=2AP+Q@-P-Q), §=7(P+Q),
— =a ! 1 (51)
wl L= vl poap-¢-Pra), ¢=3@-P
The Jacobian of « is 5 i .
6 1 -p -1
3P~ 2P
5 1 0 1
a, = | (52)
F 1 0 -1
1 1 -
-5 1 - 1
561 5p 1

By direct computation, we can immediately know that « satisfies (10), o also satisfies (34)
a8

1
|CH+D{.‘=-—~§p#G for p # 0.
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It follows from (50) that

x " - P
H(P,Q,P,Q)=P—Q“P+Q-*%(P—'Q)2, V¢{ﬂ}(W]=f(w,ﬂ)=( Q )

S0 40(P.Q) = 5(Q - P?),
¢ (P,Q) = ~A(V4)(P,Q), P,Q) = 2P + 3(P + Q)?,

- 2+;P+Q)
‘l?é“)(P, Q) = ¢
'4'(P+ Q)

" The first-order scheme is
1 1 | 1
2 P g egtien - g rp e SlPE Y,

1 1 T
» ;
i.e.,
(Fk+1)2 2 (pk)z I 2qu+1’ qk+1 — qk +r (53)

Referfing to (49), we have seen that (53) is indeed its first order approximation. Its transition
[ (pF+1) 15 r(pr+1)-t |

matrix 1s [ " i . Direct computation gives that it is K(z)-symplectic.

Discussion. The difficulty of this method is to find out nonlinear transformations «

satisfying (10). It in fact is to realize Darboux’s theorem in 4n dimensions. It seems as

difficult as to directly transform K (2) into J7,,. But in our case, we have more parameters
to select. Hence we hope the problem will be easier than the original one.
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