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NONLINEAR STABILITY OF GENERAL LINEAR
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Abstract

This paper 18 devoted to a study of stability of general linear methods for the

numerical solution of nonlinear stiff initial value problems in a Hilbert space. New
stability concepts are introduced. A criterion of weak algebraic stability is established,

which is an improvement and extension of the existing criteria of algebraic stability.

1. Introduction

The main goal of this paper is to make further advances on the theories of algebraic
stability for general linear methods (c¢f. [1-4]). In Section 2, we introduce a family of classes
of nonlinear test problems, {K,, : or < 1}, in a Hilbert space. Section 3 is concerned
with general linear methods in brief. In Section 4 a series of new stability concepts is
itroduced. In Section 5 we establish the criterion of (k, p, ¢)-weak algebraic stability, which
15 an essentlal improvement and extension of the criteria of algebraic stability presented by
Burrage and Butcher!4,

t2. Test Problems

Let X be a real or complex Hilbert space with the inner product {- , -} and the corre-
sponding norm || - |, D an infinite subset of X, and f : [0, 4+00) x D — X a given mapping.
Consider the initial value problem

=

{ y'(t) = ft,y(E), ¢ =0, (2.1)

y(0) =+, €D, (2.2)

which is assumed to have a unique solution y(t) on the interval [0, +c0),

Definition 1. Let 0,7 be real constants with or < 1. Then the class of all problems
(2.1)—(2.2} with

2Re (u—v, f(t,u) — f(t,0)) <allu—v|?+7|f{t,u) — f(t,v)I* Yu,veD, ¢>0 (2.3)
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15 called the class Kq y.
From Definition 1 we obtain the following propositions:
Proposition 1. If o < 0, > 0, then K, ; C Ky_¢ r4+eM(0,r), Where

M(o,7) = [(1 +V1—er)/o]’. (2.4)

Proposition 2. If r < 0, > 0, then K, , C Ks4en(o,r),7—¢» Where

N(o,7) =[(1+V1-o071)/7]° (2.5)

Proposition 8. If X is the usual N-dimensional complex U-space and for fixed ¢,
P(t) € X, A(t) is an N x N complex matrix, then the linear system

y'(¢) = A(t)y(t) + ¥(t), t>0; y(0)=:, teD=X (2.6)

belongs to the class K, , if and only if o > sup Aln;x, where A,ax denotes the grﬁat’est
£>0
eigenvalue of the Hermite matrix A* + A — 1A A,

In the literature only the special cases Ko o, Koo and Ko, have been used respectively
as the test problem class (cf. [1-5]).

' 4

§3. General Linear Methods

Consider the general linear method for solving (2.1)~(2.2):

Y™ =Y B AT YY) + Y B, i=1,2,0 s
i=1 7=1

gl =Y A, v + ) D By, =12, (3.1)
1=1 9=1
Yn — Zﬁj‘y}n]l
=1

where h > O is the stepsize, ¢/ and f; are constants in the base field of X, }’;{"},y}"}

and y,, are approximations to y{?}{")}, Hi(tiﬂ}) and y(t, + nh) respectively, Tf"} = tp_1 +

i h, tE"') = ¢, + v;h, t, = nh, 4;, vi,n are nonnegative constants, and each H..-(tE"}] IS a plece
of information about y(t).
Throughout this paper we always assume that each y-["'}

;' is an approximation to y{ti"}}
for © < [ and the following equalities hold exactly:

yt:: =hf(t£ﬂl:yt{ni]: 1= 1,2,,1; ﬂ:{}, 1,2,'*'1 (3_2)

where ! is a fixed nonnegative integer not greater than r/2. _
For any given M x N matrix A = [a,;| we define a linear mapping A : XN — XM such
that for any U = (u;,u2, - JUN) € X% with each u; € X,

AU =V =(u1,uz,--—,vM)EXM,
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with

U£= E ﬂ-{:ﬂj, T = 1,2,"',M-
1=1

Lo

For simplicity, we shall always use the same letter “A” to denote the hnear mapping A
corresponding to the matrix A. Thus, the method (3.1) may be written equivalently in the
more compact form

Y = hC F(Y™) + Crayln—1),
y':ﬂ:] = hCZlF(}/{ﬂ]) + szy[n—i]’ (33]
Un = ﬁy[n}

with the following notational conventions:

3

F{y[n)) = (f (T[ﬂl Y(ﬂ]) f(Ttﬂ] Y{ﬂ]] ,f{T{nj Y,[ﬂ])) c X°.

y{n} (y‘ﬂ]' yé"]' : :yfﬂ}) = Xr' }int = (Y{"'} Y'["u" Y{ﬂ]) S Xﬂ:

and Cyy(I,J =,1,2), B are linear mappings corresponding to the matrices Cy; = [¢//] and
= [B1, Pz, -,ﬁr] respectively. For further details we refer to [6-8].

84. (k,p,q)-Stability

In this section and the next one, the base field of X is assumed to be complex (the case
of real field can be discussed similarly). Let {{Y(®), y(*}, y.)} and {(Z2(™,2("),2,)} be two
sequences of approximations computed by thé method (3.1) with stepsize h for the same
initial value problem (2.1)-(2.2). The following notational conventions will be made:

wir) = wi™ wiv L witl) = v -z e Xy
win) = (wf"],wg : lwr”l) o y(n] zln) & Xr;
Wn = Yn — Zn € X Q[ﬂ] = {Q{ﬂ] [ﬂ] ' T Q!‘n]) o h[F(Y{n:l) B F(Z[ﬂ}” c X°.

Definition 2. Let k,p, g be real constants with k > 0 and pg < 1. The method (3. 1}' 1S
said to be (k,p, q)-stable +f for any given pmblem (2.1)—-(2.2) of the class K, , with oh < p
and 7/h < q there ezists a nonnegative mapping o : X" — R, which satisfies

p(U) S ep ) llwll, U=(us,uz,-,u) € X

with each u; € X and constant ¢, independent of U, such that the fﬂh’awiﬁg inequalilies

hold:
[wnll < (™) < B /2p(w"1), n=1,2,3,.-. (4.1)

As an important special case, a (1,0, 0)-stable method is said to be AH-stable. Fur-
thermore, for the given space X, if the mapping ¢ depends only on the method (not on
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the initial value problem and stepsize), then we say the method is (k,p, g)-stable for the

mapping o.
Note that from (4.1) we can deduce

|wn i < kﬂjﬁ?—”(w{ﬂ])- (4.2)

For k& < 1 inequalities (4.1), (4.2) describe the contractivity and stability behaviour of the

method. From Definition 2 we directly obtain
Proposition 4. For AH-stable methods, the numerical solutions of initial value prob-
lems of the class Ky o are always stable without restriction on the steplength.

Definition 3. Left a € (U, g—] The method (3.1) s said to be AH({a)-stable of ot 1s

(1,cos® a/q, q)-stable for all g < 0.

Definition 4. The method {3.1) is said to be AH(0)-stable if it 1s AH(a)-stable for
some a € (D, %)

Definition 5. The method (3.1) 1s said to be stiff H-stable 1f 2t 25 AH(0)-stable and
there ezist p, g < 0 such that 1t is both (1,p,0)-stable and (1,0, g)-stable.

Definition 6. Suppose for p < 0 the method (3.1} is (k(p), p, 0)-stable, where k(p) 1s an
increasing function with k(0) = 1. Then the method (3.1) is said to be strongly AH-stable 1f

lim k{p) <1 and LH -stable 3f Iim k(p) = 0.

[t — Q0 p— — o

Theorem 1. The stability region S of a (1,p, q)-stable rmethod contans the region
Sp.. = {z € C: g|z|* —2Rez +p > 0}. (4.3)

Proof. Suppose the method (3.1} is (1,p, g)-stable and S denotes its stability region. For
any A € S, 4, it can be seen from Proposition 3 that the scalar test problem 3’ = Ay, ¥(0) = ¢
belongs to the class K ,. We now apply (3.1) with stepsize 1 = 1 to this problem. Let {yn}
denote the solution sequence and put z, = 0. From (4.2) we have [ynf < o(y'®)). This
means that the sequence {y,} is bounded. Thus hA=24€ S and therefore S, , C §.

Corollary 1. For ¢ > 0,(1,0, g)-stable methods are A-stable; in particular, A H-stable
methods are A-stable.

Corollary 2. AH(a)-stable methods are A(a)-stable for o € ({], g), and A-stable for
i _
g = —,

2 :
Corollary 3. AH(0)-stable methods are A(0)-stable.

Corollary 4. A stiff H-stable method is stiff stable in the following sense: (i) there
exists a positive constant a such that its stability region contains the half plane {z € €'
Rez < —a}; (i1) there exists a positive constant 7y such that its stability region contains the

disk {z € €: |z + 7| < ~}; (iii) it is A(0)-stable.
Corollary 5. When r = 1, LH-stable methods are L-stable.

Corollary 8. For AH(a)-stable methods, the numerical solutions of initial value prob-
lems of the class K, , with 0,7 < 0 and o7 2 cos? o are always stable without restriction
on the steplength.

Corollaries 1, 2 can be derived from Theorem I; Corollary 3 can be obtained from
Corollary 2; Corollary 4 can be proved by Corollary 3 and Theorem 1; Corollary 6 can be
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deduced from Definitions 2 and 3. We now prove Corollary 5. Suppose (3.1) 1s L H-stable
and r = 1. Then it is equivalent to a one-step method and 1s AH-stable and therefore

A-stable. Applying it to the model problem %' = Ay(Rel < 0}, y(0) = 1, we have

Yn — Rn(ﬁ)yl}: {44]

where R(h) = hC21{I — hCy1)"'Ci1o+ Coo,h = hA,yo = 1, and [ is a unit matrix. Because
this problem belongs to the class Kagea.0 and the method is (k(2Reh), 2Reh, 0)-stable, there
exists a mapping @ : € — K, such that

yal < k*/2(2ReR) (). (4.5)
The relations (4.4) and (4.5) yield
R(R)| < K72 (2ReR)pH™ (410).

Setting n» — 400, Reh — —co, we see that |R(h)| — 0 and the method is L-stable.

e

Theorem 2. Lefi a € (ﬂ, —2~) and p,g < 0. The method (3.1) s both AH(a)-stable

and stiffly H—stgb!e if 1t is both {1, p,0)-stable and (1,0, g)-stable, and satisfies one of thi
following fwo conditions:
(i) pg < 4(1 —sina}/(1+sina); _
(ii) pg > 4(1 — sina)/(1 + sina), and for all v € (g(1 + sina)/2,2(1 — sina)/p) the
method 1s (1, cos o/, v)-stable.

Proof. The conclusion follows directly from the following lemma.

Lemma 1. If p,g < 0 and the method {3.1) s (k,p, q)-stable, then for any positive

number ¢ € [pg,1) and negative numbers v € |{cB.}/p,q/B:] and 6 € |(cBc)/q,p/B:|, the
method is both (k,c/~,~y)-stable and (k,6,c/8)-stable. Here . = (1+/1T—pg)/{1++1 ¢},
end we define (cf.)/0 = —oco.
The conclusion of this lemma follows from Definition 2 and Propositions 1, 2. We,
however, have to leave out the details of the proof owing to the limitation of space.
Corollary 7. If p,g < 0 and pg < 4, then a method 1s both stifly H-stable and

4
A H (aresin " pq)-stable provided that it is both (1, p, 0)-stable and {1, 0, g)-stable.
Pq

Proof. The conclusion follows directly from Theorem 2.

§5. Stability Criteria

We define the inner product {{:,:}) on the space XN(N > 1) as follows:
N s
<(U!V}> :Z{uilui>: [5‘1]
=3

where U = (uj,uz, ,unx) € XV, V = (v,v2,-,on) € XV and uj v € X (2 =
1,2, , N). '
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Proposition 5. If A is an N, x N, matrix, U € XM and V ¢ XN3, then

(U, AV )) = {((A"U, V). (5.2)

Proposition 8. If A is a Hermite nonnegative definite N x N matrix and U € X%,
then

(U, AUY) > 0. (5.3)

These two propositions hold true obviously, but note that the symbols A and A* in (5.2)

and (5.3) denote linear mappings corresponding to the matrix A and its conjugate transpose
matrix A* respectively.

Definition 7. Let k,p,q be real constants with k >0 andpg <1,G @ Hermaite nonneg-
ative defintte r X r matriz, D an s X 8 nonnegative diagonal matriz, and furthermore, for

[ > 0,D and D denote | x | nonnegative diagonal matrices. The method (3.1) 4s said to be
(k, p, q)-weakly algebraically stable (for the matrices G, D, y(D), ¥(D)) if the matriz

[ ké = 0525022 ” CIED ‘" 525021 ]
~pC1,DC 2 + ¢(D) —-pC1,DCyy
M = M(k,p,q) - - . (5.4)
. DGLE_CE*IGCQQ CLD‘l‘DCll —'CEIGC:_:;[ i
| —pC1 DCa -pC1, DC11 — ¢ '
1s nonnegative definite. Here 1,&(5] and G are r X r matrices given by
. [-#D D_ 0" "
p(D) = D —-pD O ifil>0, (D)=0 f (=0 (5.5)
0 0 0 _
and ”
G=G+p8"8— (D) (5.6)

As an important special case, a (1,0,0)-weakly algebraically stable method is called

weakly algebraically stable for short. When (D) = $(D) = 0, a (k,p,q)-weakly alge-
braically stable method is said to be (k, p, ¢)-algebraically stable.

Theorem 3. If the method (3.1) 1s (k, p, q)-weakly algebratcally stable for the matrices
G,D,1p(f}] and rf)(f)], then it is (k, p, g)-stable for the mapping © defined by

o(U) = (max{0; (U, GUNYY* YUeX". 6

Proof. Suppose the method is applied to a problem (2.1)-(2.2) of the class K, , and
ch < p,7/h < q. Then it follows from the assumption about G, D, D and D that

((w'™, p(D)w'™)) <0, <(w‘"’,w(5)w‘"]>> <0, n=0,1,2, (5.8)

and

l2RE{(W‘"]:DQ{“’)) - P((W{"'}: DWy) — q((@'™, DQ™)) <0, n=1,2,3,---. (5.9)
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Using Propositions 5, 6 and relations (5.6), (5.7) and (5.8), we get
p(w!™) = (0™, GuM)/2 n=0,1,2,-
and furthermore
A (™) = (W, Gu™) + (W, £ pul™)) — (), y(B)w™) > fun®  (5.10)
and
©? (wt™) — kp? (WD) — (w1, $(D)wi"~1)) — 2Re((W(™), DQH)Y)
+p((W™), DWM)) + q((QM™), DQI™)) = ((C Q™) + Craw!™=1), G(Cyy Q1M
+C2u!" V) + ({71, —kCGuw(*=1)) 4 ((wn 1), —y(D)w(»~1)))
F2Re((C11 Q) + Ciguln=b), - DQIMY) 4 (€1 QW
+C12w! ™Y, pD(C1Q™™ + Craw!™~1))) + ((QIM, gDQ(™)))
= ("1, @), M(win-1),Q())) < (5.11)

Inequalities (5.8}-(5.10) and (5.11) lead to inequality (4.1) immediately and therefore The-

orem 3 follows.
Choose k.= f and p = g = 0 In Theorem 3 so that we have

Corollary 8. Weakly algebraically stable methods are A H-stable.

It should be pointed out that the theory of weak algebraic stability introduced in this
paper is an essential improvement on that of algebraic stability presented in [4]. On the
one hand, if we use the definition of algebraic stability in [4], then not only is it impossible
to obtain a result similar to Corollary 8, but also we may claim that even some explicit
methods, such as the Euler method, are algebraically stable. In fact, the Euler method is
equivalent to the general linear method

[ O 1 0
C = 1 1 0
1|1 o0
Let |
1 -1
e[ 1 1], b

Then it is easy to verify that this method is algebraically stable in the sense of [4]. On the
other hand, the matrices G used in the examples of 4] are actually restricted to the case that
they are all positive definite. As a result of this, though the aforementioned drawback seems
to have been overcome, it has to be claimed that even some AH-stable methods, such as
trapezoidal method, are not algebraically stable. Using the theory of weak algebraic stability
introduced in this paper, we can overcome all the disadvantages. On the one hand, weakly
algebraically stable methods are necessarily A H-stable; on the other hand, it is easily seen
that the trapezoidal method and some other AH-stable methods are weakly algebraically
stable though they are not algebraically stable in the sense of [4].

Corollary 9. If the method (3.1) is AH-stable and Cy; nonsingular, then it is strongly
A H-stable for p(C322) < 1 and LH-stable for p(Cz;) = 0, where p(C22) denotes the spectral
radius of the matrix Cop 1= Con — Cgy Cﬁl Cia.
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This corollary is parallel to the relevant result in |4].
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