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SUPERCONVERGENCE OF FEM FOR SINGULAR
SOLUTION"

Lin Qun
(Institute of Systems Science, Academia Sinica, Betjing, China)

Superconvergence of the finite element method (FEM]) has been discussed extensively for

the problem having smecoth solution (See Krizek and Neittaanmaki [8]). A typical result in
- this direction is the following (see Lin and Xie [4] for details). Consider the model problem

—Au= fim{l, u=0onadf]
where 1 ¢ R? is a bounded domain with a smooth boundary 38 and f is a smooth function.
In order to keep the mesh varying regularly we impose on {1 a kind of “piecewise almost

uniform triangulation” which can be constructed piecewisely by the vertices of a smoothly
transformed undorm mesh. For any node z in the interior of each piece there exist two

triangles e and ¢’ such that e ne’ = {z}. Then, the average gradient
- 1
Vu(z) = E(Vuh|g + Vutl,)
has not only the usual type of superconvergence
(Vul — Vu(z) = O(h?)

but also an extrapolation type of superconvergence
| 1
EVHHMZ — u")(2) — Vu(z) = O(h?log E)

We are concerned in this paper with the superconvergence for the singular solution due

to re-entrant corners or changing the boundary conditions.

For simplicity we suppose that {1 1s composed of rectangles and the boundary {1} is
parallel to the z-and y-axis and has only one re-entrant corner at the origin 0. Let a be the
interior angle at 0 and 2 = n/a.

It 1s easy to see that

uEHf’,+” for r > 1= 8,

3
(r+1)

lwlls,(r41) = [Z L(|X|’“2+|3"||35"u|)2d‘7{]

|71<3

1s defined using the weighted norm
1/2

where the Sobolev space H

with X = (z, y).
We now introduce a rectangular mesh 7” = {¢}, where (z., y.) denotes the center of the
element ¢ and 2Ah, and 2k, are its widths in the z- and y-direction, respectively. Further,

we set

d. = max(h,, k.), h=max{d., e e T?},
do = max{d.,e € T",0 € e}, r.=min{|X|, X € e}.
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Let T" be split into two parts,
, ﬂg = {E - Th,f’ﬁ < du}, ﬂ1 = {E - Th, dﬂ < 1",5},

where the local meshes are assumed to satisfy the grading conditions
i
dgﬂﬂhq, q}‘és tiz;

1
cihr? < d, £ chrf, Vd, < re, p=1—-q-r-,

where ¢ is the grading parameter and ¢ is the superconvergence parameter. For example, if
0 = (—1,1) x (~1,1)\[0, 1] x {0} (a slit domain}, such meshes can be constructed by taking
nodes

(£(z/n)?, (7 /n)")(1 €5, <0}, ¢> 2

Since a larger t will lead to a larger g, the user has to make up his choice between a higher
accuracy and a less graded mesh. We note that the total number of nodes of the graded
meshes is the same as for a uniform mesh of size k, and that the size of the largest element
is of the order h.
Let
0, ={X e, {X|=p:>0}

,
> be the interior node of {33 and N the number of all interior nodes of {1,:
N = 0(h™?).

For such z there exist two elements ¢ and ¢’ such that e N e’ = {z} and we can define, for
v € §* the piecewise bilinear finite element space, the average gradient

_ g, i
d.v(z) = 3 ramuhn{z) | . AL vle(2),
) s ko
Ayv(z) = W ’Byv|er[z) ke Jayulﬂ(z).

Let u! € S® be the interpolation of u and u¥ € Sh" the Ritz projection of u. It is easy
to see from Taylor expansion the superconvergence of ul after averaging: |

Lemma 1.

(8 — Bu)(2)] < ch®{|ulls.co.01

where the notation 8 means 3, or J,.
Qur purpose is to prove the superconvergence of ufl after averaging:

Theorem. The grading parameter q increases the gradient accuracy from B-order to
nearly gB-order: :

1. B 1/2
5 37 ((8u - au)(=)F| T <k, t<gp
zEﬁg

The proof of our theorem is based on the lemmas as follows (c.f. [1]-{2]).

Lemma 2. For the function F(z) satisfying F{z. £ he) = 0, we have

Te+he 1 Xethe
/ FPdz = —] PF'dz,
Te—HNe 2 2.—he

where P(z) = (z — 2 + he)(z — 2. — he).
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Proof. Note that
Plz.+'hy} =0, P'z)=2.

Integrating by parts leads to Lemma 2:

Zethe Lethe Zethe
/ PF”dﬂ:=-f P’F'd:r:/ 2Fdzx.
i I

e—he e—he Te~Hhe
Lemma 8. For u € H>(e) and v € S*, there holds
ae(u! —u,v) = ——%/(Payaiuayu + Q8,83ud,v) +/[P+ Q)88 (u" — u)d,8.v,
where P(z) 1s defined asein. Lemma 2 and Q(y) = (v — v. :— ke )y — ve — k).
Proof. Since

ae(u’ —u,v) = fﬁm(u! — u)B,v + /ay(uf — u)d, v :
4

e
we need only to expand, say, the second integral. Let {; and l; stand for the two edges of

element e parallel to the z-direction. Integrating by parts we obtain

feay(uf —u)d, = ['/; . /{ (! - u)a, vz

»
Setting F' = (u! — u)3,v in Lemma 2 we have _
B2F = —2uByw + 28, (v — u)d,8,v
and hence, by Lemma 2,

/‘I(uf — u)d,vdz = *%/: P(m]aiuayudz +[ P(I)am(uf — w)8,8,v.

Thus
Lay(uf — u)dyv = —%-/;P{m)ay(aiuayv) +/P(z)6‘y(am(uf — u}d, O, v)

£
and Lemma 3 follows.

Since u becomes singular in {1g we need the following

Lemma 4. Forr=1-t/q,

laqy (4" — w,v)] < ch{lulla,n) 1.

Proof. Since u € Wt e nW2?° for

2<a 2 < 4 b < -
= r’ 1+ 7
we have, by the Holder inequality,
1-2 -
Iu s ufll,ﬂn < Cdﬂ !ﬂlu £ uIlLﬂ,ﬂﬂ < Cdé 2ﬂml’“"’lluﬂ.ﬂ'izl' |

An mmbedding theorem implies that

u)1,0,00 < elleflz.0, + cdy %160,

and the Holder inequality implies that

2/~ 1— I — (7 —
lullz.0,00 < cdg ™ T lullar)y  luliome < eda/ P )y oy
and hence,

v — ! |10, < edy 7 ||ullz,(r) < chtliullz, (-
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LEII]IIIH i ”UI =t H-Rlll -C_: Cht“u”&“_}_l].

Proof. For v € 8%

a(u! —uf,v) =aly’ —u,v) = Z ae(ul — u,v) + ag, (v —u,v).
ecily
For e € {1, we use Lemma 3 and the following estunates:

Iamay(uf — t)]o,e < ﬂd6|“13,h |a:r:ay”|ﬂ~ﬂ < Gdie_l“"’ultﬂ-

Since
4 22—t t 1471
ds < cd‘erﬂ < ekt v,

we obtain
|‘1E(“I — U, ""” < ch ““HS.{r-bl},EHVHLﬂ-

Thus, combining with Lemma 4 we obtain Lemma 5.
We now prove our theorem as follows.
Using an inverse inequality and noting r. 2 p we have

B(u’ — w®)(2)] < ed7 fluf — uPlle < ch7 ot llu! = e < ehTh TPl — w Tl
Thus, | |
1 _ 1/2
o [FBI80 - M) EP] T < eflud - uTl

&

Combining with Lemma 1 we obtain our theorem.
A 2t-order accuracy can be achieved for the finite element solution after extrapolation

(see [2], [5]-[6])- A similar result holds true also for the finite element gradient (see {3]).
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