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Abstract

In the late 1970’s, Wiggins proposed a minimum entropy deconvolution (MED)
which has become one of the most important deconveolution methods. He gave a varimax
norm V3* and a MED iterative procedure. Fortunately, for the last ten years in the
practical using, the MED algorithm has never failed to reach a maximizer of the varimax
nori:. But so far, no theoratical proof has been given to show the convergence of the
MED procedure. In this paper, we prove the global convergence of a generalized MED

iterative pr:rcedure with respect to a generalized varimax norm V(¢ = 2,p > 2).

-

81 Introduction

The minimum entropy deconvolution {MED) was proposed by Wiggins in the late 1970’s
and is based on the assumption of spiky and sparse appearance of the reflectivity series,
instead of the minimum phase source signals and the white reflectivity series. Because of
its new idea, simple iterative algorithm and weak hypotheses over the components, etc,
it has attracted attention and become one of the most important deconvolution methods
2,3]. The detailed studies about the mathematical theories and multi-maximizer property
of the MED have been given in [4,5,6,7]. Many other varimax norms and generalized MED
methods suitable for various practical applications have been proposed in [8,9,10].

The generalized minimum entropy deconvolution (GMED) norm is

i
Zlyilp
1=1

VP = = max, p,gq>0; p>q, (1.1)

"1 (En:|yi|q)§

1=1

where {y;}7_, is the output of the filtering. when p = 4,¢ = 2, the GMED norm 1s just the
wiggins’ MED. A MED iterative algorithm for solving the preceding problem was given and
experiments evidenced that it worked well. Many tests were made in [7] with different initial
points, and none of them failed to reach a maximizer of V' . But no one could be sure that
there were no exceptions. Hence, a theoretical verification of the algorithm’s convergence 1s
necessary.

In this paper, we generalize the iterative procedure of V! by that of V¥(¢ = 2, p > gq),

and a proof of its global convergence is given.

* Received March 1, 1588.
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§2 The Iterative Procedure (GMED) of the
Varimax Norm V7

In this paper, the underlying field of a vector space is a set R of the real numbers. R™*"

denotes the set of m X n matrixes; ®™ , the set of the m-dimensional vectors. If not otherwise
specified, a capital letter stands for a vector, and the corresponding common letter with a

subscript represents a component of the vector.
Set A € R™*", Ker A is the null of A, and Im A is the image of A. Namely,

KerA = {U € R" | AU = 0},

ImA = {V e R™ |V = AU, for any U € R"},
Suppose Y € R*, a > 0. Then, Y* € ®*, | Y |€ ®". That 1,

u-1|

Y= (y 987 2|y sl 19w VLY

| Y |= (1 Y1 |: | Y2 |:"':| Yn |)"-

The minimum entropy deconvolution filter is a linear filter, where the observed signals are
. T
* W —_ (:El, IEJ"‘"! mm) "

Without loss of generality, let z; # 0. If the filter F' € R (F # 0}, then its output ¥ €
®" n=m+{— 1, and by the convolutional property of the filter, we have

Y = XE. (2.1)
That is, ¥ € ImX, where
Iy
Lo L1
; T, - Ty
X = (2.2)
Iﬂ’l T
Zon ;
Lm 2 x|

Obviously, rank X = {, Ker X = {0}, and X" X > 0 [11].

By convention, we bave

o =

Y|, = (Z |y1|") p > 1 {(the Hblder norm);

|Y{_ = max; |y| (the infinity norm).

Definition 2.1. The generalized minimum entropy deconvolution uf varimaz norm V}
15 the following mazimizing problom:

GMED : ;11ax VP = max (H 4 ”p)p p>q. (2.3)
r=xr ? ¥=Xr \||¥ [/’
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For convenience, we will use the following representations

REINY% | XF 7
VP(Y) = E) ,YeR™;, VPR = L}  Fe®,
¥ = (fey2) 20 = (s )
They have the ft;lluwing two characteristics.
Characteristic 1. Set o # 0, then
Vo (aY) =VI(Y), Vi(aF)=V](F). (2.4)

Characteristic 2. Let 5,(¢), Si(¢) denote the superspheres in R™, R' with centers at
the origins and radius € respectively. Let 1, = R" — 8, (¢}, ; = R - G (). For KerX = {0},
when F # 0, we have Y # 0. So, V.(Y) is twice differentiable in (2,,, and Vo (F) is twice
differentiable in (1;.

Let
K= X(X"X)"'X". (2.5)
Obviously,
KK =K, K'=K, (26)
mK = ImX. (2.7)
Hence, K is-an ::rthngnnal projection onto ImX. Solt!l,

| K =1 —= <I| K < .

\/'_

Lemma 2.1. For any Y € ImX, we have

KY =Y, (2.8)
yrEYeE || By, (2.9)
(Yr=lyrgy?» | K¥o? |2 . | (2.10)

Proof. Since K is an orthogonal projection onto ImX, ¥ € ImX, then
BY iz V.

Also,
Y"RYP L= (KY Yy =y yr-ba| V2|, .

From (2.6), we have
(Y RY = = (KY? ) (KYP) = K¥P |3

(2.8)—(2.10) are proved.

Define a map J :
J(¥ ] =l| KyP=* |7 gyP~d, (2.11)

Let D(J), R(J) denote the domain and the range of the operator J respectively. Assume
D(J)={Y €elmX ||| Y [[oo= 1}. (2.12)

From (2.7), obviously R(J*) e D(J).
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Lemma 2.2. For any Y € D(J), there 1s

1
L < k<l Ky Gt n (2.13)

vn

Proof, From (2.9) and the Cauchy inequality,
| KY?~! |l || Y [l22 (KYP™)7Y =[| Y7 [ia -

So,

g ¥
Yp 1 1{: H 2 *
” K ”2 — ” Ye ”1 < '\/E

Then,
| KYP L < vm || KYPh I35 < n

On the other hand,
| KY? ! floo<|| K Jlooll Y24 llo=ll K [lo < v/m.

So, (2.13) holds.
The definitions and corresponding theorems of the boundary and the continuity for a

nonlinear operatot used hereafter can be found in [13];
Theorem 2.1. J(Y) ts a bounded operator in D(J). That s, there exists an L > 0, such
that for any Y1,Y2 € D(J), we have |

| J(Y1) — J(Y2) < L | Y1~ Y2 |lss - (2.14)
Proof.
(Y1) = (Y2l =llll KYP | KYPT = | KYT T IS KY] " |loo

Q0

= (f KYP~' ot - || KYP SOKYP 4 (KYP - KYPT) | EYP ™ |t e

< (I KYP™H It — 1 KYE i) | KV oo + W KYE T = KYP 7 ol BV i
= (| KY" ™ floo — 1| K¥S ™" Jlool) i KYP |2 + || KYP ™ = KV ool KYP™' ||
<2 KYP U2 KYP T = KYP ! o< 2n(p — 1) | K Yool Zo ool ¥Ya = Y2 lloo
where %

| ¥5, ~ | . 0
e
19.93 1

Zg‘: .
0 | v |

By the mean-value theorem

yo: = Y1 + 0(y2zi —vi), 0<8 <1,

where yy,, yz; are the components of Y3, ¥ respectively. For max{| y1: |} = max{| y2: |} = 1,
max{| yo: |} < 1. So, || Zs o< 1, and we obtain

[J(Y1) = I(Y2)lleo < 2n{p — 1)Vn|[¥1 = ¥zl (2.14')
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Let L = 2n+/n(p — 1). Then (2.14’) is just (2-14}. So, (2-14) is proved.
Theorem 2.2. If Y, = XF,, and Y, € D{J) satisfies

o= J{Y.), (2.15)
then F. is a stationary point of V.P(F) 12!, That 4s,
VVI(F.) =0, (2.16)
where — .
av.
2 (F) dfy  8fz 3 fi

Proof. For Y € D(J), F € {}; and V' (F) is twice differentiable with respect to F. So we
have |

e 5 = A
s | Y2 ||‘§+1X (| 7 Jla¥2 " | XP [ly ¥
1 4

Fo— (X X) (| Y2 ||, (X" X)~ 2 XTY?=ic | YP |, F).

Y= ]l
Let VVJ' (F) = 0. We obtain
. | Y= 1 —1 -1
: F = (XF X)L Xy, 2,17
Ve, —
Since Ker X = {0}, there is an equavalent equation of {2.17)
(Nl | P—
¥ = -~ KY?™ " 2.18
V71, gan
where K is determined by (2.5). For
%, = HY) = K% |2 Ky (2.19)
from (2.9) and (2.19) we have
5 o pops  [ X2 s =
Y e Ik Ky?P ™' Y.
| Y& |l | YTKYP™! | ”
L Y2 s

= —1 | Ew:™ lo Y. =Y,.

VI KY? . Y.
So, Y. = XF, satisfies equation (2.18) and hence (2.17). Consequently, F, is a stationary
point of V.

Since KerX = {0}, X is a bijection mapping from R’ onto ImX. For convenince, we also

call Y, = XF, a stationary point of V.
From (2.15), we construct the following iterative procedure (GMED]:

Y.[D} < D(J)r
Yik+1) = J(Yixy).
If ¥(0) is not a solution of (2.15), by (GMED), we can obtain a sequence {¥{x)}52, any

of whose converging subsequences converges to a solution of {2.15). That is, the (GMED)
1s of global convergence. We will prove it In the ensuing section.

GMED : {
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§3 The Proof of the Convergence

Let
(Y] = ¥R || Y= || ¥ [ K (3.1)
Then,
vy avr aVENT p
‘U’V"}Y E(""'ii 2 T 2) = Y). 3.2
2 ( ) ayl 3y2 ayﬂ “ YZ “f‘__'_l g( ) | ( )

Lemma 3.1. For any Y € R" and Y # 0, there 13
Y7glY)=0. (3.3)
Proof. Substituting (3.1) into (3.3), we have
Y7 oY) = Y2 | YYP = | Y? LYY = Y2 Y2 [ = Y7L Y? [j1=0.

Lemma 3.2. Assume U,V € R, uj,v; 20,0 =1,2,..,n For any t € (0, 1], there exist

U V2 2 (U Ve, (3.4)
The equality holds iff
U=aV, a#0. (3.5)
1
Proof. Assume A, B € R", a;,bj 2 0 and — + i 1, p > q > 1. From the Holder
P g

inequality, we have

| A pll B llq= A" B- (3.6)

The equality holds iff A? = §BY, 8 # 0.
Let t = % e {0,1] in (3.6), and let AP = U2 B? = V% Then we have

U2 2 VR, 22 (Y)Y (3.7)

Similarly, let A? = V2, B? = U? in (3.6). Then we have
2 1"% 2 % 2—tyTyst
[ & o 2 VolE2 e (3.8)

So, (3.4) is obtained by the product of (3.7) and (3.8).
Since the condition (3.5) is necessary and sufficient for the equality to hold in either (3.7)

or (3.8), it is necessary and sufficient for the equality to hold in (3.4}.

Lemma 8.3. For any Y € ImX and a > 0, we have
~Y'glaKY* ' +Y) 20 (3.9)

The equality holds iff .
Y = BKYP™!, S #0. (3.10)
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Proof. Note W = a KY?~! + Y. Then

Y7 g(W) =-Y"(| W? ||, wr—i || WP ||, W)
= W? |1 (Y " KYP"1 4+ Y'Y)— | W2 |, Y WP
=IW# (el Y? i +{ Y2 1)~ || W? ||, YWwr-2

| Y2 |
I YP i,

=j W 1]l ¥* [j3 (e J= A W e R, (3.11)

In Lemma 3.2,let U =| W |7,V =|Y %, and t = E We have
4

WP YP [z (Y 7AW P2 Y PO (WS (Y )W pr-tye-yw
=Y D)W )rta | KY?~L 2+ | YP ||4] |

(3.12)
Substitute (3.12) into {3.11). Then
YW 2 (Y7 IW P (@ KV B+ v e+ L
Y VAW el | KYPL g 42a || Y2 i + || Y2 )
v ; g (HY 3] KVP=LIE o
=af| Y ) (w i ( T h¥e ). (3.13)
From Lemma 2.1 and the Cauchy inequality, we have
|'Y {iZ]| KYP~* j2=>( v* |13 . (3.14)

Substituting it into (3.13) and noticing a > 0, we obtain (3.9).
In deducing inequality (3.9), the condition (3.10) is sufficient for all the equalities to
held; it is also necessary for the equalities in some inequalities such as (3.14) to hold. So it

is necessary and sufficient for the equality to hold in (3.9).
From the previous results, we can conclude the following theorem.

Theorem 3.1. Forany Y € ImX, Y # 0, and o > 0, we have
V3 (aKY?P™ ) > VX(Y). (3.15)

The equality holds iff (3.10) 1s satisfied.
Proof. From Ker Y = {0} and Lemma 2.1, f Y # 0, then K¥?~! £ 0. From (2.9),
YTKY?~! > 0. Then the line segment Joming Y to KY?! is placed in 0,,. Thus by the

mean-value theorem, we have
V7 (eKYP™ ) = VP(KY?P ™) = VP(Y) + (KYP~! - Y)TVVP(Y,),
where Yy = 0Y + (1 -0)KY?"1,0 < 6§ < 1. From Lemma 3.1

(KY"= — ¥y VVE(Y) = [ - =5 Y] [ Lo
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By Lemma 3.3, we have proved the theorem. _
Corollary 3.1. Suppose {Yx+1)}r=o 13 & sequence produced by (GMED) procedure
with initial point Y{oy. Then

VE(Yiea1)) 2 V2 (Yiky)- (3.16)

The equality holds iff ¥, 1) = Yx).
Proof. As {Yi1)} € D(J) € ImX, from Theorem 3.1 we obtain {3.16). Since

“ Y'{k] "m: 1, k= 0, 1,2,

condition (3.10) implies Yix 1) = ¥(x)-

Theorem 3.2 (Global convergence of GMED iteration procedure). Suppose {Y(x)}ieo
is a sequence produced by GMED with initial point Y(5). Then any of its converging subse-

quences {Y(x,) }oro converges to a stationary point of V3 (F).

Proof. Since || Y(x) [loo= 1, the converging subsequence {Y[kn)} of {Y{x)} exists. Set

’ {Yik,y} — ¥ey n— oo
As D(J)is a complete set, 80
‘ Y, € D(J).

Let

and suppose {¥(k. +1)} has a converging subsequence {Y(;.+1)} which has a limit Y! € D(J)
and satisfies

Obviously, {Y{;,)} is a subsequence of {Y(x.)} - As the operator J is bounded, and hence
continuous,

¥ig 1y~ Y,, Jn+1— 00 J(Y(5n)) — J(Y.), 3o — o0

From (3.18), o = )

As {Y(;.+1)} and {Y¥{;,)} are subsequences of {¥{x)}, from Corollary 3.1 we have
V;(Y:) = V7 {Y.).

Hence

Y. = Y:!

and then
Y. = J(Y.).

By Theorem 2.2, Y. is a stationary point of V;'(F).
According to the theory of mathematical prngramminglml, the conclusions of Theorem

3.2. imply the global convergence of GMED iteration procedure.
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