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Absatract

This paper deals with a coefficient inverse problem of a system of ODEs whose coeffi-
cient matrix is the so-called generalized negative definite matrix. To solve the problem,
an initial-boundary value problem of a hyperbolic system of PDEg iz constructed. The
existence anfl uniqueness of its solution and its asymptotic convergence with respect
to one of the variables to the original inverse problem are proved. As a result, the
solution of the inverse problem is reduced to the solution of the direct problem. A few
numerical examples were solved to show the effectiveness of the method.

§1. Introduction

In this paper, the following coeflicient inverse problem of a system of ODEs is discussed;
dz(t)
dt

where z(¢) and F(t) are given, and A is a generalized negative definite n x n unknown
matrix. Here by generalized negative definite matrix we mean the real parts of eigenvalues
of which are all negative and there exists a constant C > 0 such that the inequality

(Az,z) < —C{z, z) (1.2)

= Az(t) + F(t) ' (1.1)

1s valid for all z € R™.

Such kind of problems is often met in practice. For example, coefficient inverse problems
of parabolic differential equations can be reduced to it, if the spatial variables are discretized
or integral transformations with respect to the spatial variables are applied. In this case the
matrix A 1s a strict negative definite matrix. Another important example is the identification
problem of compartmental models, which have been widely used in a variety of areas, such as
medicine, biology, economics, and so on. In this problem the matrix A is the compartmental
matrix with the properties: 1) Its off-diagonal entries are nonnegative; 2) Its diagonal entries
are negative; 3) It is diagonally dominant with respect to the columns.
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It is well known that the real parts of eigenvalues of the matrices which possess the Properties
2) and 3) are negative. Under some additional conditions the compartmental matrices satisfy
inequality (1.2) so that they are generalized negative definite.

In 1983, H.W. Alt et al.!] developed an elegant method for solving coefficient inverse

problems of differential equations. They considered the elliptic equation
V. (aVe) = £, (1.3)

where the solution u(z,y) is given, and the problem is to find a positive definite matrix
a{z,y) to fit (1.3). They have proved that the solution of the inverse problem mentioned
above is the limit of the solution of a certain direct problem of a system of partial differential
equations when one of its parameters tends to infinity (in the rest part of this paper we will
call this direct problem asymptotically convergent to the original inverse problem). In this
way the solution of the inverse problem is reduced to the solution of the direct problem, for
which there are well known methods, thus making the things much easier.

In this paper, a similar approach is used for solving (1.1). Differently from [1], a system
of evolutionary equations is considered here. Instead of discretizing the time variable in
advance (as the authors of 1] suggested), we consider an auxiliary direct problem of a
hyperbolic system of differential equations which asymptotically converges to the inverse
problem {1.1) itself, rather than to its time discrete form. Moreover, in (1], all results are
obtained only for th® finite dimensional approximation of the original problem. The striking
difference of this paper is that we have proved the asymptotic convergence for the infinite
dimensional case.

§2. An Auxiliary Problem

We write the problem which was proposed at the beginning of this paper as follows.

_ Problem (P): Suppose that F*(t) and z*(t) are given. Find a generalized negative
definite matrix A* such that

dz* {t)
dt

Here the existence of the solution A* is assumed.
To solve this inverse problem, we introduce an auxiliary direct problem

dz(t,r) , d=(t, 1)

= A*z*(t) + F*(t). (2.1)

S+~ Alr)a(t,r) - F(8) = © (2.2)
o | - /T[z(t r) — z*(t)| ® z(¢, 7)dt =0 (e Do) (2.3)
dr T Jy ’
z(t,0) = zo(t), t€[0,T), (2.4)
z(0,7) = z*(0), 7 € [0, 00), (2.5)
A(0) = Ao, | (2.6)

where the operation ® 18 defined for two R™-vectors V;,V2 by
Vi V= (Unt‘z;,‘), 1,7 =1,2,---,n€E R,

zo(t) is an arbitrary vector function, and Ag arbitrary matrix.



On the Relation Between an Inverse Problem for a System of Ordinary Differential Equations ... 137

It will be proved that the matrix function A(r;zy, Ay) in the solution (z(t, 7; 2o, Ag),
A(r; o, Ao)) of {2.2)-(2.6) approaches the solution A* of the problem (P} as 7 — oco. (In
the rest of this paper, we shall omit z5 and Ay in z(t, 7; zo, Aop) and A(7;zo, Ag).}) Before
doing this, we will show the existence and uniqueness of the solution of {2.2)-(2.8).

Certain restrictions should be imposed on the known functions F*(t), z* () and z,(¢):

1) z*(t) € Loo'[0,T), 1.e., there exists a constant M such that

sup ||z*(2)ff < M. (2.7)
0<t<T

2) F*(t) and zo(t) are bounded variation functions on [0, 7], i.e., for any subdivision
O0=1p <& <--- <iy =T, there exist constants Cr and Cx such that

N-1 N-1
D NF (i) - F )< Cr, Y [zoltign) — zolt:)]] < Cx. (2.8)
=0 t=0

As a consequence of 2}, we have

3) F*(t),20(t) € Lo[0, T, ie.,

sup [[F*{t)|| < M, sup ||zo(t)|| < M. (2.9)
0<t<T 0<t<T

(Without lass df generality, the constant M here is taken to be the same as that in (2.7).)

Theorem 1 (Uniqueness). If the bounded solution of (2.2)-(2.6) exists, then 1t 15 unigue.

Proof. Suppose that both (z(¢,7), A(7)) and (y(t, 7), B(r)) are the bounded solutions of
(2.2)-(2.6). Denoting 2 = 2 —y and C = A — B, we can get the following equations by
subtracting the corresponding equations (2.2)-(2.3):

dz dz

il B NI T .

57 3 Az y = 0, (2.10)
dac 1 (7 :

E‘F*j;-/; {z®y+(m—z}®z}dzﬁ-0. (2.11)

Multiplying (2.10} and (2.11) by 2(t,r) and matrix C respectively and integrating them,
and then adding up these two equations, one obtains

T T |
%{/{1 .z%t,r)dr—!—[j z% (¢, T)dt}+%CE(T)
o i
=%fﬂ /; (=7 (t, ) A(r)2(t, ) + [a(e,7) — =" ()T C(r)2(t, r)ddr }.

T pFT T
< K{f f zzdtdr-l—/ C?dr}, for a certain K > 0.
o Jo 0

”
L > 0. Using Gronwalls inequality, we get 0 < ¢(7) < ¢(0)e? . Since ¢{0) = 0, we obtain
¢(r) = 0, and this proves the uniqueness.
Now we are going to prove the existence of the bounded solution of {2.2)-(2.8). To do
this, we will consider a finite-difference approximation to (2.2)-(2.6), and then prove the
convergence of its solution to the (weak) solution of (2.2)-(2.6).

T T T
d
Set ¢(r) = / f zﬂdtdr+f C?dr. It follows that i(f) < Lé{r), where L is a constant,
0 0 0
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Lemma 1. Let the real parts of eigenvalues of A* be all negative. Then the solution

z3,4 =1, --,n, of the follounng finite-difference equations
Tiv1 — %5 4. . . _ T
: ﬁt | A 1+1+F'+1, 'Ir"—].,"',,N_ll &t—ﬁ . (2.12)
zg = z*(0)

i3 convergent to the solution z*(t) of the system of equations (2.1) as At — 0. Here F =
F*(iAt). Consequently, z7, 1= 1,2,---,n, are bounded.

Proof. {2.12) is a consistent approximation to the (2.1). Since the eigenvalues of A* are
all negative, the scheme (2.12) is stable. From Lax’s equivalence theorem, the consistency
and stability imply the convergence. It follows that z are bounded. This completes the

proof.
Consider the following finite difference approximation to (2.2)-(2.6):

1 1 =
T =+ (A F )k

141 1.+1
N—-
A"+1 A — n+1 — x* ® In+1h2
) T z'::' l+1 l+1) 11 (213)

20 = zo(th), A° = Ao, z% = z"(0),
1=0,1,--- ,N—-1; n=20,1, -,

where h = T/’N =1 = F*{(i+ 1)h), and X7, is the solution of (2.12). In (2.13) the same
mesh length in ¢ and 7 directions is taken, i.e., At = Ar = h.

Let 7 be the set of integers not less than zero, and Iy the set of integers 0,1, ---, N — 1.

N
Lemma 2. For everyi1 € Iy andne I, A" and Z(z:‘ — z})?h are uniformly bounded,
1=1
t.€.,
N
|47 < M, a2t —a)?h < M. (2.14)

=1

Here M i3 independent of h. [ Without loss of generality, here we take the same M as that
n (2.7) and {2.9).)
Proof. Discretize (2.1) corresponding to (2.13)
I:-{-l — I: +(A*I:+1+.F.‘:+1).h, T:-—.O, 1"*‘}N_ 1- (2.15)
41

Subtracting (2.15) from the first equation of (2.13), multiplying the equality by z; ", —z{,,,
and employing the inequality

1 1
k * * = *
(Ii.:f T $i+1)[$f-"‘ z;) < E(-Tf:: = Ii+1)2 + -é-(:z:f — % )2
1
we have (mf-fll — 25 ) < E.(mi e+ (Eﬂ? — I;E'-|-1)T(Aﬂ':+1 A*)If-:'llh 5 (I::-:ll
1+1)TA"(:::°_|"_"11 — g}, )h. Taking k = 0,1,---,nand i = 0,1,---, N — 1, adding all these
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inequalities tngether, and then dividing the obtained inequality by T, we get

1 1
1 < s
2T Z (=78 — 2l ) + — 5T Z(mfﬁf ~zn)? < e Z (z9 — 22)2
N-1 n

5 L L(‘"‘ffll az :+1)T(Ak+l 2 A*]I:c:fh (2.16)

1=0 k=(

N-1 n

k * k *

o L L(It-:-ll o 1+1 A (3:1-:.11 = Ii+1)h‘

1-.-0 k=0

Smularly, from the second equation of (2.13), multiplying it by ARl A% and taking
k=0,1,---,n, we can obtain

1 1 1
AT AP L oA - A - 2 5 Y (AR - A - i) @ A2 (2.17)

Adding (2.16)xA and (2.17), we have

N-1 n
1 i ri 1 - 1 &
gL A s Z (I=-|-|_11 zi41)°h+ (Ii' —zxn)?h < (A% - 4 )4
2 2T 2
1 N-1 N—-1 n
+ﬁ (=) — 2})?h + = Z: Z(If-:f E I:+1)TA*(E:T11 —zi)h%
1=0 1=0 k=0
Since the mgenvalues of A* are negative,
N-1
(A%~ 47)2 ¢ Z (&5 =10 ) "Rt > (ks — i) h < C'{(A° -4+ 3 (a9~ 27)%).
3=0 =1 =0
From the assumptions, the right side is bounded. It follows that
A = i Z (3:?:11 - 2i41)*Rh < C.
' 1=0
N-1
But A* is bounded. It follows that A"+1 1s bounded. And Z (27 — 2}, )%k is bounded,
i=0

which proves the lemma.

Lemma 8. For any n > 1, there exists a constant C independent of h such that the
solution z' of (2.13) has the property

Z- lzfys — 2| < C (2.18)

- 1=0
f h < 1/M, where M is the bound given in (2.14).

Proof. Denote z* = :':,_{_1 . From the first equation of (2.13),

T =27+ (A2l + F )k, 2P = ol + (AR + FR)R
Thus :
(I — A™R}XP = X0 + (Ffy, - FY)h.
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If h < 1/M, the coefficient matrix I — A™A is nonsingular. Then
= (I - A®RY X2 + (1 — AR U(FL, — B,

1 h
1XPh < 5l XiS I+ Tl P — Bl i= 1,0, N
By using the induction, for the case of n < N,n > N, respectively, it 1s easy to get
N-1 n—1 —3 N-—-1
1X5 " X all
XM <
2, W= 2. Mh)**,ziuﬂm)“
n—1
+ E Z (1 i Mh)j ”F* 7+2 *—;--1-1“
g==] ye=]
N—-1 n
T L L 1 - Mh]J ” i—Fj+2 _1+1|| {2.19)
i1=n J—].
n, 1” N-1 1
; ”X“ | o Z ( Mh) i 124 L (1 — Mh ” Bt O —:.t+1“ (2'20)

Letting ¢ = 0 in th® first equation of (2.13), we have

| 1
(I — A*R)z* = 251 4+ Frh= 2 (0) + Fih, 28] < btk
e e (2.21)
' M(M + 2)h '
X§ = b — o = (Akak + Fp)n, | xE| < PR o,
From (2.19), (2.20), (2.21) and (2.8), we obtain that for n < XV,
”E“l X7 < M(M+2)h  M(M+2)Nh = Cx NCrh
4 = 1 - Mh (1 - MAa)V (1 — MAh)N (1-Mh}N
1

< =L {M(M +2)h+ M(M +2)T + Cx + XrT}

<eMTIM+2+ M(M+2)T+Cx +XpT} =

and for n > N,

Z 1X7]| < M[M + 2)h M(M+2)Nh i NCrh
e . ' (I — MR)N (s — MR}V
<eMTIM+2+M(M+2)T+ XpT}=C"

which completes the proof.

Corollary. For every ¢ € Iy and n € I, there exists a constant Mindependent of h such
that ||z7| < M.

Proof. From Lemma 3,

N-1
1= — =*(0)]| = [j=" — zall < Z |23 —25_yll € ) Mz —sfl S C
j=0 |

' J_Ll
Therefore, ||27| < |z*(0)|| + C = M. Since C is independent of &, so is M.
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We are going to prove the convergence of the difference approximation. To do this, we
construct families {z,(¢,7)} and {Ax(7)} defined on 0 < ¢t < T,7 > 0 from {z?} and {A"}:

st v} = 27, if th<t<(t+1)h, nh<r<(n+1)h,
Ap(r) = A™, if nh <7< (n+ 1)k
We now show that these two families of functions are convergent.

- Lemma 4. There ezists a sequence {hi} such that {As, } converges to a certain matriz
function A(r), and {zp,} converges almost everywhere to a certain vector function z(t, 7),
that 1s,

[ An (1) = A()]| =0, kg =0, (2.22)
T
I f |zn, (¢, 7) — 2(2, 'r)]dtH -0, hg—0, (2.23)
0
where || - || tn (2.22) and (2.23) are matriz and vector norm, respectively. The Himit function

A(r) 1s bounded, and z(t,7) is bounded almost everywhere.

Furthermore, for any fized real number R, the convergence is unsform with respect to 7,
1f 0 <7< R, |

Procf. The approach to the following proof is similar to that of Lemma 16.8 in [3].

From Lemifa 2, the set of {A4(7)} is uniformly bounded on any line r =const. >0. So
we can find a subsequence { A} } which converges on this line. Let {r,,} be a countable and
dense subset of (0,00). By a diagonal process, a subsequence {A4;,} can be selected from
{AL} so that {A,, } converges on every iner =1,,,m=1,2,---, as ke — 0.

For the sake of brevity, set Ay = Ap,. we show that { Az} converges at each 0 < 7 < 0.
To do this, we first show that for every r{A;} is a Cauchy sequence, i.e.

IH(T) — ||Ak('r) gz Al(f)" *—l' 0, as k,l — 300 (2.22)1
For any 7, we find a subsequence {r,,,} C {7,} such that 7,,, — 7 as s — co. Write
Ty = Tym,. Lhen
Li(7) < [|Ak(7) ~ A (7))l + | A (7a) — A7} + Ai(r) — A7)l = L + B2 + .
Since {Ax} is convergent at 7 = 7,,l, — O as k,I — oo. For I; we have
|7 /]

# £ ” A _ -
ho= k([ ]h) = A2 TR = A/ = alrefmel = 5T an - gney
hic hi
From the second equation of (2.13) and the equivalence of the norms of matrices,

1 {r/h] N-1
I = T Z | Z (z1 — 2i41) © I?+1hi||

ﬂ:[f.fhh]ﬂ-l 1=0

N-—1
1 1 i n E 3
< T E :|| E :(I£+1 = Ziy1) ® (24 g — @i ) hi
() =0

N-—-1

1
i

3 =0

N-1 1/2
< Chy E { Z (I?+1 = '-'5:+1)2hk} :

=0
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By using Lemma 2, [; < C'lr—r,| -0 as s — oo.similarly, I5 — 0 as s — co. Therefore,
if € > 0 is given, choose 7, so that C'|r — 7,| < £/4. For this fixed s, choose k and { so large
that [, < /4. Then we have I (7) < ¢, which proves (2.22);.

It follows that the sequence Ax(7) has a limit A{7) for each fixed 7. The convergence is
uniform in 7 if we consider a bounded interval 0 < r < R, where £ 1s any fixed real number,
In fact, in this case, for given & we can choose a finite set S C {7, } with the property that
if 0 < r < R, there is a 7, in S such that C'|r — 1,| < €/4. Then we select & and { so large
that I, < €/2 for all 7, € S. For these k and ! we have Ij(7) < ¢ uniformly in 7.

Next we prove (2.23). The procedure of the proof is similar to that mentioned above
for (2.22). From Lemma 3 and its corollary, the set of {zx(¢,7)}, considered as functions of
¢, are uniformly bounded and have uniformly bounded total variation on [0, 7| on any line
r =const.> 0. By Helly’s theorem, we can find a subsequence {z} } which converges at each
point on [0, T'| of this line. As Eta.ted above, we can select {r,,} and a subsequence {z;}

which converges on every liner =7, m=12,---,as hx — 0.
Instead of (2.22);, we consider
4 5
B(r) = 1 [ lanlerr) = me )l (2.23);
D ;
Correspondingly,

- f (o [2]) — (e [2]00) o
S L e [ - ([ me) ]

;u':—1 - N—-1  |[7/hy]
[ B =[S ]
=0 i=0 n=[r,fhi]+1

hy

{Z”Z Z = Hhk*"ZHE(A"'E"'+F Vhi + x)~ 1__,5;—1
5Z(M2T+MT+2M]M£C|T-TH|_,0 e o oo

As in the proof of the first part of this lemma, finally, we obtain the existence of a limit
function z(¢, 1) of {zx, {t,7)} in the sence that

T
|/ {zn, (t, T) — ={t, f}]dt” —0, as hx —0
]

and the convergence is uniform on any finite interval
The boundedness of A{r) and z(t, 7) is a consequence of the boundedness of A™ and z;,

which completes the proof.

Lemma 5. The functions z{t, 7} and A(r) in Lemma 4 are a {weak) solution of problem
(2.2)-(2.6).

Proof. From the first equation of (2.13),

.+ 1 i 5 i 1L

L aadiod it ofl i S
i _ L :+1h L (AP 4 ) = 0. (2.24)
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Take any ¢(t,7) € Cg. Denote ¢ = ¢(ik, nh). Multiplying (2.24) by ¢! and summing,
changing the subscripts and superscripts, we obtain

x N—~1 iy
$; " — @7 i

N-—1 oo N “
Z Z h zip 1’ — Z 3z h + Z Z ‘l_lh—_ it z: h?

- n=1 1=8 1=0 n=03i=1
oo oo o MN-—1
ri n+l1l_n+l 2
—Z¢3$3h+ § :‘f’NI?:h" E E Pr(A™T Zioy +FL )R =0,
n=>0 n=0 n=0 =0

Since ¢ € C3,¢4? = 0(1 =0,1,--- , N — 1),¢5 = ¢% =0(n =0,1, --). From Lemma 4, z!
and A™ converge boundedly and almost everywhere to z(t, 7) and A(7), respectively. By the
limit process, we get

co  pT
d d
/ / {z(t, T)-—i + :::(t,'r)_"b + [A{r)=(t, 7) + F* (t)]¢}dtdf = Q. (2.25)
0o Jo or dt
n+l _ 4n N—-1
me the second equation of (2.13), s 7 A + % E (m?-r-'-ll _ :r;'+1) ® z?_;"llh — B
1=0
Take any ¢(7) € Cj. Denote {nh) = ™. We have
’ 5
v & N-—1
’1_A"+1-—J4“ 1 . . .
z 4 [ h i T Z (mi-:—ll —2711) @ 5'-""-:_11}1] h =0,
' n=0 t=0
o o N-1
wn—l__¢n a 1 - ) "
Z h T T Z ¥R (2 - 2i) © kR =1,
n=1 =0 1=0
By the limit process,
s T
f { = *a—tpA(T] + 2/ [z(t, 7) — z*(t)] ® =(t, r)dt}d&- = Q. (2.26)
0 or M

(2.25) and (2.26) show that z(¢,7) and A(7) satisfy (2.2) and (2.3) (in the weak sense).
Take the limit process also in the initial and boundary conditions of (2.13), which shows
that z(¢,7) and A(r) satisfy (2.4)-(2.6). So z(t,r) and A(r) are a generalized solution of
(2.2)-(2.6). This completes the proof.

The following theorems are obvious consequences of Lemma 5.

Theorem 2 (Existence). The solution (z(t,7), A(7)) of the initial-boundary problem
(2.2)-(2.8) exists, where A(r) is bounded, and z(t,7) bounded almost everywhere.

Theorem 3 {Convergence). The solution of the finite-difference equations (2.13) con-
verges to the solution of problem (2.2)-(2.6) as h — 0.

Proof. Let z' and A™{t = 0,1,---,N;n = 0,1,---) be a solution of (2.13). we know
from the proof of Lemma 6 that all convergent subsequences of {z?} and {A"} tend to the
solution of (2.2)-(2.6). But from Theorem 1, the solution of (2.2)—(2.6) is unique. So the
whole sequences {z"} and {A"} are convergent, and the limit functions (z(t, 1), A(7)) are
the unique solution of (2.2)-(2.6), which completes the proof.



144 SHAO XIU-MIN AND YUAN ZHONG-MIN

§3. Asympt(}ti(ﬁ Convergence Theorem

Lemma 6 (A priori estimate). The solution (z{t,7), A(r)) of the problem (2.2)-(2.6)
satisfies the following inequality: -

7.3 oo
sup A%(r) + sup/ z2(t, 7)dt + sup / z(t, 7) — =" (t)]*dr
>0 r>0J0 0<t<T JO

oo pT
+/ / [z(t, 7) — z*(¢)]*dtdr < C,
o Jo
where the constant C > 0 13 only related to the initral datia.
Proof. Define |

(3.1)

y(t, ) = z(t,7) —z7(t), B(r) = Alr) — A7,

where (z{t, 7), A(7)) solves the problem (2.2}-(2.6).
Subtracting (2.1) from (2.2) and multiplying the obtained equality by y, and then inte-
grating over [0,t} % {0, r] where 0 <t < T,7 > 0, we get

1 T 4

1 1 7 f*
Rt 2 2 1 T
0 r)dr+ — [ et f [ (¢, 1) B()elt, )dedr

_,_..f / (t, r) A% y(t, T)dtdr = —f y*(t,0)dt.

By a similar method, we can also get
1 L 7 J° 1
LB e f f JT (¢, 7) B(r)a(t, r)dtdr = = B?(0). (3.3)
2 T J, J, 2
Adding (3.2) to (3.3), we have
1BZ(‘r) + % /T (¢, )dTr + — L ¥ y*(t, 7)dt — ifr /“ y! A*ydtdr = C' (3.4)
2 2T 2T ’ 2T |, 1, ' '
Since A* satisfies inequality (1.2), we can draw from (3.4) a conclusion
T T t
Bz(f)—t—/ y* (¢, r)dt-]—f yz(t,-r)dr—i-/ f y2(t, r)dtdr < C”. (3.5)
0 0 0o Jo

It is clear that (3.5) gives (3.1). Here the constant C' > 0 only depends on z*, A*, z°, A°
and T'. This completes the proof.

(3.2)

Theorem 4 {The asymptotic convergence theorem). Let (z(t,7), A(r)) be the solution
of the problem (2.2)-(2.6). Then the matriz function A(r) has a limit as 1 — oo:

lim A7) =

T—+ 00

which satisfies equation (2.1). That is, it 1s the solution of the problem (P).

Proof. Since the matrix function A(r) is uniformly bounded, there exists a sequence
{7m} with 7,, — oo such that

im A(r,)= A

L — 00

We are going to prove that A, satisfies equation (2.1).



On the Relation Between an Inverse Problem for a System of Ordinary Differential Equations ... 145

For an arbitrary vector function £(t) € C2°(0, T) (which means that its every component
is in C§°(0,T) ), consider the following 1dent;1ty

/ﬂ { a”"gj L 3:"’;’ s BT F*(t)}TE(t}dt - Q. (3.6)

Integrating (3.6} from 7,, +s— 1 to 7, + s with 0 < s < 1, we obtain

./“rmn'-i!I / aIT(t’T) €(t]dtdr + / {m(tme o 3) = I(t: Tm + 8 — 1)}T€(t)dt

m+a—1
Trmt3 T (3'7)
f / eT (t) A(r)xlt, r)dtdr —/ F*T(t)¢(2)dt.
Tmta—1 0
Now let us estimate the three integrals on the left-hand side of (3.7) separately.
To 1+ 8 T *T :
The first integral = -—/ / [z(¢t, ) — m*(t)]Tﬁdtdf+'[ - (t)dt
Tmnt8—140 d
Tm+3 i d€ Ten+ 8 f
/ / |z(t.7) — = [t]]T—dthI < C(E) / / [z(t, 7) ~ z (t)]zdtdr}
rmts—1J0 dt -
Ten +1 T {;
< C(g){ f (z(t, 7) — m*(t”?dtd?‘} ;
& Tm—1

which tends uniformly in s to zero as m goes to infinity by (3.1). Here C(€) > 0is a constant
related to £(t). Therefore

T+ 8 Y IT ¥ o _q;*T
/,- / . a(:, )E(t)dtdr—rfﬂ d_ dt(t)E(t)dt

m+a~=1J0
uniformly in s when m — oco.
The third term of (3.7) can be written as

/ ET(t]A(rm)a: dt+[ /Tmﬂ (t) A(rm)(z(t, T) — z*(t)]drdt

Tmt+s8—1

_I_'/; fT(t){ *m+ 8 [A(T) B A(Tm}]z(trr)dT}dt = I + Ir + _13.

By using Schwartz’s inequality and (3.1), one can obtain the following result easily:

Tm+38
Iy "—“/ / ET(6)Alrm)|z(t, 7) — z*(t))drdt — © uniformly in s as m — co.
0 T

mta—1
Consider
T+ 9 Tm 1 8 T dA
L = / |A(7) — Alrm)]z(t, 1)d7|| = f [f d(n)dn]z(t,'r)d'r
Tm+e—1 rm+8—1 m Lf]

2 T+ 4 T :
<z [ [T [ teten) — = O sl )l Note, ) dndrat

m+a—1 41

By using Schwartz’s inequality, and because of {3.1) and the boundedness of z(2, 1), we have

N5 < C' f [Tm+1[m(t T)— % (t)]gcti"rdt}u2

m_l
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which also approaches zero uniformly in s as m — oo. Hence, I3 — 0 as m — co.
Now integrating (3.7) from s == 0 to 5 = 1 and letting m — co, one gets

j: d:c*;(t) dt—f ETlt)Amm t)dt+mqu j’ Bl )

—x(t, T + 8 — 1)}T £(t)dtds = f F*T(t)¢(t)dt. (3.8)

0

1
It can be proved that lim { f |2(t, Tom + 8) — 2{t, 7 + 5 — 1)}T E(t]dt}ds = 0. In fact,
0

FrE == D0

the above expression is

T prm+1 -
-/'; /T | [:’.E'(t, 'T) == m*(t)]Tf(t)det = /{; f _III(tIT) i I*(t)]TE(t)det 10, a8 m — oo.

So we can conclude the following result from (3.8):

f =W - Fe) =0, for Ve e D).

d .
Thus Idt{t) = A z*(t) + F*(t).

Next, we prove that A., is independent of the choice of the sequence {Trn}. The way to
do this is the same as in [1].

From (3.4),
d 2 2 1 1 [T T a4
df{ =Br] + 3 _/(; y{tﬂ)d} ST (Tr)+2T y' A'ydt <0

But the expression in the bracket is > 0. So its limit L exists, when 7 — co. Hence, for any

T

rm+1 T
{tm} we have mlﬂnm {Bg( ) + f (¢, r)dt}dr = L
rm+1
From (3.1), lim / f (¢, 7)dtdr =
Tm+1 Tm+1
It yields lim B?*(r)dr = lim [A(r) — A*|?dr = L. Therefore, || Ay —
m— o0 Ton L — 00 T .

A*||? = L. If there exist two limits A}, and A2 , both satisfying (2.1). Thus (AL — A2 )z* =

0. It follows that A* + e(AL — AZ) also satisfies (2.1), and it is a generalized negative
definite

matrix too if £ is small enough. Hence
| AL, — A% —e(AL, — AL )I? = ||AZ, — A" — (AL, — 43)|%.

From (3.9) we can get (Al — A*)(AL — A%Z) = (AZ, — A")(AL, — AZ,). Consequently,
|AL, — A2 || =0, i.e,, = A2 . This completes the proof.

84. Numerical Examples

All our computational work was conducted on a micro-computer IBM PC/AT,
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Example 1. Two-compartment model. The input F(t) and the “measurements” z*(t)
are

Flt] S -7~ ), &)= {7 ™ e,

respectively. The initial values z°(t) and A® for the auxiliary problem (2.2)-(2.6) were
selected as follows:

%! 0 E t i _2T'_rl'
z)(t) =
t T
ot L KILT
27 2
£
Ig(s)_—_z—g, 0<t<T, T=38
a}; =—0.9, aly =15 a3, =0 ol =—25.
In computation, it was taken that At = A7 = 0.4. The results are listed in Table 1.
Table 1
T a11 G192 o1 azn Time for comput.
200 -1.0928 1.0763 0.0000 -2.0993 34
. 400 -1.0192 1.0478 0.0000 -2.0990 1’077
600 -0.9996 1.0402 0.0000 -2.06990 1’42”
Exact sol. -1.0000 1.0000 0.0000 -2.0000

Example 2. The
are

same example with a¥, = a

0

- oy g
12 = Qg7 = Qny = 0,

T = 6. The results

Table 2
T ajyy Gio aoq Qoo Time for comput.
200 -0.9463 1.0195 0.0000 -2.0990 o
400 -0.9888 1.0360 0.0000 -2.0990 53
600 -0.9944 1.0382 0.0000 -2.0990 1’187
Exact sol. -1.0000 1.0000 0.0000 -2.0000

Example 8. In Example 1, z° was given as 2°(t) = z*{¢). We obtained

Table 3
T 11 212 a2 ann Time for comput.
200 -1.0626 1.0646 0.0000 -2.0992 34"
400 -1.0108 1.0446 0.0000 -2.0990 1’077
520 -1.0008 1.0407 0.0000 -2.0990 1’307
Exact sol. -1.0000 1.0000 0.0000 -2.0000

Example 4. In Example 1, the data are disturbed by five per cent, i.e.,
z*(t) = z*(¢t) + 0.05.

The results are
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Table 4

T a1t a1z aa1 d22
400 -1.4821 1.3068 0.0000 -1.8311
1200 -1.5817 1.3517 0.0000 -1.8311
2000 -1.5961 1.3581 0.0000 -1.8311
2800 -1.5984 1.35%2 0.0000 -1.8311

They show that A(r) tends to a matrix A, which is different from the matrix

-1.0 1.0
0.0 20/

Conclusions. The numerical results exhibited above show that: It has a fairr accu-
racy; its computational speed is extremely satisfactory; no information about the solution 1s
needed in advance for applying this method. That is, the initial values z°(t) and A° can be
given completely arbitrarily. This is a conspicuous advantage compared with other existing

methods.
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