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Abstract

In this paper we present a method for solving initial value problems related to
second order matrix differential equations. This method is based on the existence of
a solution of a certain algebraic matrix equation related to the problem, and it avoids
the increas® of the dimension of the problem for its resolution. Approximate solutions,

T

and their error bounds in terms of error bounds for the approximate solutions of the
algebraic problem, are given.

81. Introduction

Second order matrix differential equations of the type
X2 () + A, XN (t) + Ao X(t) = F(t); X(0) = G, X1y = ¢ (1.1)

where A;,C;, fort = 0,1, and F (t) are square complex matrices, elements of Coxp, and F is
continuous, appear in the theory of damped oscillatory systems and vibrational systems/®l.

The standard method for solving equations of the type (1.1) is based on the consideration
of the change ¥; = X; Y, = X{1) and the equivalent first order extended linear system

31 il e B S I P I B
at/ | Yu(t) Y2(¢) F(t) ~e

and the solution of problem (1.1) is given by

Co ¢
X(t) =[], UJ{EXP(tCL} [ c. ] +[} exp((t — s)CL) [ FZ‘) } }ds. (1.3)

The expression (1.3) for the solution of problem (1.1) has the inconvenience of the increase
of the dimension of the problem and the aim of this paper 1s to present a method for solving
(1.1), without increasing the dimension of the original problem, which provides approximate

solutions and their error bounds in terms of data and a solution of the algebraic equation

X2+A1X+Ag = 0. (1.4)
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Explicit methods for solving equations of the type (1.4) may be found in [1, 4], and iterative

othods for its resolution are given in [9-12, 14].
For the sake of clarity in the presentation of the paper we recall some concept and

properties that will be ased below. If A, B are matrices in Gyxp, We denote by || || the
operator norm that 1s defined by the expression

Al = sup [|Az|
|2lf=1

where for a vector y in G, the symbol |jy|| means the Euclidean norm of y. From [3] and

8], it follows that
|ABY < ||l i Bl

“and

| exp(t4) - exp(¢B)]| < exp(tl|Bl)(exp(t]l 4 — Bl) — 1) (1.5)

where t is a real number.

82. Approximate Solutions and Error Bounds

&+

We begin this section with a result that provides a sequence of approximations that
converges to the unique solution of problem (1.1}, without increasing the dimension of the
problem and under the existence hypothesis of a solution of the algebraic equation (1.4).

Theorem 1. Let Xo be a solution of equation (1.4), and let {Zn}n>1 be a sequence of
matrices in Gxp that converges o X, in the operator norm, and let us suppose that F 13 a

continuous function. The sequence of matriz functions X, (t), defined by

X.(t) = exp(tZn)Cnlt) + (‘/; exp((t — 8) Zn) exp{—s(Zn + Al)}ds) D.(t), (2.1)

Cnlt) = Co — j; '/: exp(—uZ,)exp((—u + s)(Zn + A1) F(s)duds,

t

D (t] =[Oy — Z,Co) + -/I; exp(s(Zn + A1) F(s)ds (2.2)

where n > 1, 13 pointwise convergent to the unique solution of problem (1.1), given by

X(t) .= exp(tXo)C(t) + (j: exp((t — 8)Xo) exp{—s(Xo + Al))ds)D(t), (2.3)

C(t) = Co — j; '/: exp(—uXp) exp((—» + 3) (Xg.+ A1) F(s)duds,

¢
D(t) = C1 — XoCo + [ exp{s(Xo + A1))F(s)ds. (2.4)

0
Proof. It is clear that X;{t) = exp(tXo) is a solution of the homogeneous operator

differential equation

X2 4 A, XY 4+ 40X =0. (2.5)
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Let us suppose that we are looking for a solution of the type X;(¢) = X, (t)U(t), where U(t)
18 a new unknown matrix function. Taking derivatives of X;(¢), it follows that

X3 (8) = X1 (8)(XoU(t) + UM (1)),
- X5NE) = X () (XEU (L) + 2 XU (1) + U g)).
By imposing that X>(¢) is a solution of {2.5), it follows that U(t) must satisfy

(2.6)

X5 14, X0 4 Ao Xy = X ()UD () + (X2 + A, X + Ag) X1 (U (2)
+(2Xo + ANX () U (2) = X, (U (8) + (2X0 + ANX (WU () =0. (2.7)

If we denote by Z(t) the matrix function Z(t) = X, (¢)U!(t), it follows that (2.7) may
be rewritten by the form

ZW(t) + (Xo + A1) Z(t) = 0. (2.8)
Solving (2.8), it follows that the solution of this equation that satisfies the initial condition
Z(0) = I is given by
Z(t) = exp(—t(Xy + A})).

Hence, UM (¢) = le(t])“‘IZ(t) = exp(—tXo) exp(—¢(Xo+ A1)), and by imposing U(0) = 0,
one gets that

Ult) :L exp(—3Xo) exp(—s(Xo + A1))ds

and

Xaft) = X, (YU (t) = /(; exp((t — 3) Xo) exp(—s(Xo + Ay))ds (2.9)

is a solution of (2.5), such that X;(0} = 0, Xél}({}) = ], because Xé”[t} = exp(—t(Xo +

£

A ))+ an exp((t — 3) Xo) exp(—a(Xo + A;))ds.
0
Let us suppose that in an analogous way to the scalar case we choose matrix functions

C'(t), D(t), such that

o X)) X)) ] i [ (g ] . [ 0 ] | | -
o xVe x| | DN (2) F(t)
If C(t), D(t) satisfy (2.10), then the function
X(t) = X (t)C(t) + X2(t) D(¢) (2.11)
e xWe) = X,V (o) + x5 (1) D(e),
X2 () = X;7 (t)C(t) + X3P (1) D(e) + F ()
and thus

X2 t) + A, X3 () + Ao X(2) = (XI* + 4, X + 4. X)) C(t)
H(XS + A XY + A0 X2)D(2) + F(t) = F(2).
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in easy mm]?utatiﬂn yields that V(¢) = X:_f.l](t) — X{”(t](Xl(t)]"ng(t) = exp(—t(Xo +
1)) is invertible, and from lemma 1 of {5}, it follows that W (¢) defined by (2.10) satisfies

(W.(s))*l _ * —'/; exp(—uXu)exp([—u+3)[Xg + Al)}du | ( )
: 2.12
[ ey + Arf) /
From (2.10) and (2.12), it follows that
Cli =010}~ ft f& exp(—uXp) expl{—u+ s} (Xo + Ay)) Fis)duds,
i (2.13)

¢
D(t) = D(0) + f exp(s(Xo + A1) F(s)ds.
0

By imposing that X(t) given by (2.11) satisfies the initial conditions X (0} = Cy, XUN0) =
C,, it follows that the matrices C (0}, D(0) must satisfy

X(0) = Cy = C1{0),

(0) = Co = C(0) (2.14)
XUHo) =C, = X, C(0) + D{0).

»

Solving (2.14), one gets that
co ] [ 1 o Tl [ Co
D(O)__LXD I _C], _I#__Cl—XDCD_'

Hence the result is established.
Now we are interested in finding an error bound for

given by (2.1)-(2.2), in terms of the approximation error || Zn — Xo
7 of the solution Xg of equation (1.4).

i

From (2.2) and (2.4), it follows that

C,(t) —Cl(t) = /; ‘/: {exp(—uXo) exp{(—u + s){Xo + A1)

the approximate solution X (t),
||, of the approximation

— exp(—uZ,)exp((—u + s)(Zn + A )} F(s)duds. (2.15)
Let b be a fixed positive number and let f be the constant defined by
f =sup{||F(t)]; 0<t<b) (2.16)
and let us consider the decomposition
exp(—uXo) exp({—u + s)(Xo + A1) — exp{—uZ,) exp({—u + s){Zn + A1)
— exp(—uXo)}{exp({—u + s)(Xo + A1)} — exp({—u + s)(Zn + AL)}}
+(exp(—uXo) — exp(—uZ,)) exp((—u + 8)(Zn + A1)).
(2.17)
If ¢ is a positive number satisfying
|1Za|| £a, n21 (2.18)
from (1.5) and (2.15)-(2.18), for 0 < s < t € b, it follows that |
(2.19)

1Ca(2) — C(B)]] < 2£¢% exp((2a + [ A1]])E) exp{(tfZn — Xoll) — 1)
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From (2.2) and (2.4), it follows that

. D, (t) — D(t) = (X — Z,)Cy —|—/; {exp(s(Z, + A1) —exp(s{Xo + A1)} F(s)ds. (2.20)

From (1.5), (2.18} and {2.20), it follows that
1D () ~ D()]| < |IColl 1120 — Xoll + £f exp(t(a + || AL]])) (exp(t]| Z, — Xol) — 1). (2.21)
From (2.1)—(2.4}, one gets '

Xo(t) —X(t) = exp(tZ,)Cn(t) — exp(t X} C(t) + (/Dt exp((t — S]Zn)laxp[—s[zn

+41))ds ) Dn(2) - ( f exp((t — ) Xo) exp(—s(Xo + A1))ds) D(¢)

= exp(tZ,}(Cua(t) ~ C(t)) + (exp(tZa) — exp(tXo))C(2)

+(/ﬂ exp((t — S)Zn] Exp(—s(zn ‘3 Al))dﬁ) (Dn(t) - D(t))

Y

— exp{(t — 5) Xo) exp(—s{Xo + A1))}ds ) D(t). (2.22)

From (2.2), (2.4), (2.16) and (2.18), it follows that ||D,(¢)|| and || D(t)| are bounded by
1]l + al[Coll + ¢ exp(e(a + [| A [).
From (2.4}, (2.18), one gets
[CEN < IColl + ¢ exp((2a + | A [)1). (2.2
Hence and from (1.5) it follows that
|{exp(tZ,) — exp(tXo))C )| < (exp(t]|Z, — Xol|) — 1) exp{at)
X{[1Coll + ¢2 f exp((2a + | Ay ])2).

From (2.18) and (2.19}, we have

| exp(t2,)(Ca(t) = C(E))]} < 2¢% exp((3a + | A1 [)¢) (exp(t] 2, ~ Xo) — 1), (2.24)

< texp(t(2a + || A41]])). (2.25)

“ /; exp((t ~ 3)Z,) exp(—3s(Z, + A;))ds
Taking into account the decomposition
exp((t — s)Z.) exp(~s(Z, + A1) — exp({t — 5) Xo) exp(—2(Xo + A}))

= exp((t — s) Zn)(exp(—3(Zn + A1) — exp{—s(Xp + A1)} + (exp{(t — s)Z,.)

—exp((t — s} Xo)) exp{—s(Xo + A1)
(2.26)

and the expressions (1.5), (2.18), it follows that

|| f {exp((t — 5)Z,.) exp{~s(Z, + A,)) — exp((t — ) Xo) exp(—s(Xo + A;))}ds

< 2t exp(t(2a + [| 44 ) (exp(t]) 2. ~ Xof)) - 1)
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Hencé and from (2.15)-(2.26}, it follows that
1 X (t) — X ()] < Ki()]|Zn — Xoll + Kz(t) (exp(t]| Zn — Xoll — 1) (2.27)

where

K1 () = t[|Coll exp(t(2a + [ A1]})),
Ka(t) = 6£t% exp((3a + [|A1]1)¢) + 2t(|C1]| + a[|Coll) exp(t(2a + A1)

+[1Coll explat). (2.28)

Note that the scalar functions K;(t), for ¢ = 1,2, defined by (2.28), are continuous and thus
they are bounded on any finite interval [0,b]. Hence and from the previous comments the

following result has been established:

Theorem 2. Let us suppose that Xo 1s e solution of equation (1.4), and let {Zn}n>1 be
a sequence of matrices norm convergent to Xo and let X, (t) be defined by (2.1)-(2.2).

(i) The sequence of matriz functions X,.(t) fs pointwise convergent, on the real line, to
the unique solution X (t) of problem (1.1). For fized real number t one has || Xn(t) — X{t)] =
O(|Z. — Xol}), when n — co.

(ii) On any finite interval [0,b], the sequence of matriz functions X, (t) is yniformly
convergent to the solution X(t) of problem (1.1). Also, if t € [0,b], it follows that X (E) —
X(t)|| = O{||Zn — Xol|), when n — oo, uniformly for t € [0,6]. ;

Remark 1. It is interesting to remark that the method provided by Theorems 1, 2 18
useful independently of the procedure for obtaining the approximate solutions of equation
(1.4). Theorem 2 means that the approximation error for the approximate solutions X, (t),
of the differential problem (1.1), has the same order as that of the approximate solutions of
the algebraic problem (1.4}. Also, our inethod only is applicable when a solution of equation
(1.4) is available. Unlike the scalar case, equation (1.4) may be unsolvable; for instance, if
Ao and A; commute, and the minimal polynomial of the matrix A? — 4A¢ has a double
root at the origin, then equation (1.4) has no rootl?). In order to compute the approximate
solutions X, (t), given by Theorem 1, it is interesting to recall that in [15] useful methods

for computing the integrals appearing in (2.1)-(2.2) are given. Also, a numerically useful
method for computing the exponential exp(tZn), avoiding the computation of the eigenvalues

of Z,,, is given in [13].
Example 1. Let us consider the problem
X2 4 A X 4 4o X = F(t); X(0)=Co, X'{0)=Cy, F continuous (2.29)
where A4, is an invertible matrix such that
d=(1-4]A7") A7 4o])!/2 > O
and let a,b be defined by the expressions
a=(1-d)/ 24T, b= IATNT

Then starting from any matrix Zj, satisfying |Z1]| < a, where a < & < b, the sequence of
matrices {Z,},> defined by

Z..1="F(Z,), F(Z.)= —ATIZZ— AT Ay n 21 (2.30)
converges to a solution Xo of equation (1.4}, such that

12, — Xoll < {{(f'(a))*/(1 - f'(a)) 22 - Zill, n=22
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where f(s} = ||A7 [|s® + ||AT  Aol|, and one has 0 < f'{a) < 1; see | 2, p.476] for de-
tails. Hence and from Theorem 2, on any bounded interval, the sequence of approximations

Xn

(t), defined by Theorem 1, where Z,, are defined by {2.30), satisfies || X,,(t) — X(¢)|| =

O((f'{a))™), when n — oo, where X (£) represents the exact solution of problem {2.29).
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