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RECURRENCE RELATIONS FOR THE COEFFICIENTS
IN ULTRASPHERICAL SERIES SOLUTIONS OF
ORDINARY DIFFERENTIAL EQUATIONS*

E.H. Doha
(Dept. of Math., Faculty of Science, Cairo University, Giza, Egypt)

Abstract

A method is presented for obtaining recurrence relations for the coefficients in ul-
traspherical series of linear differential equations. This method applies Doha’s method
(1985) to generate polynomial approximations in terms of ultraspherical polynomials
of y(zz),-;l <z <1l,z€ §,|z| < 1, where y iz a solution of a linear differential

equation. In particular, rational approximations of y{z} result if z is set equal to unity.
Two numerical examples are given to illustrate the application of the method to first

and second order differential equations. In general, the rational approximations ob-
tained by this method are better than the corresponding polynomial approximations,
and compare favourably with Padé approximants.

§1. Introduction

The truncated Chebyshev series has been widely used in numerical analysis as a good
numerical approximation to y € C[—1, 1] using the supremum norm

l¥]lo = sup |y(z)].
2€]—1,1]

Lanczos!t! and Handscomb/2? have compared the performance of truncated Chebyshev se-
ries with truncated ultraspherical expansions, Light(®~4l has investigated conditions under
which approximation to continuous functions on [—1, 1] by series of Chebyshev polynomials
1s superior to approximation by other ultraspherical orthogonal expansions. In particular,
he has derived conditions on the Chebyshev coeflicients which guarantee that the Cheby-
shev expansion of the corresponding functions converges more rapidly than expansions in
Legendre polynomials or Chebyshev polynomials of the second kind.

As candidates for the efficient representation of mathematical functions by easily com-
puted expressions, rational functions are often to be preferred to polynomials. Indeed it
has been found empirically that, in general, rational approximations can achieve a smaller
maximum error for the same amount of cumputatmn than polynomial approximations; see
for instance, Ralston and Rabmowmz[ﬁl

* Received March 30, 1988.
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The well-known effective means of producing rational approximations to a function y(z)
in a complex variable is to develop elements of Padé table from its Taylor series. This table

is a two-dimensional array whose {m, n) element is defined as that rational function of degree
| oo

m in the numerator and n in the denominator whose own Taylor series expansion, E gz’

r=10
say, agrees with that of y(z) up to and including the term in zm+, Discussion of Padé table

and its convergence is considered in Bender and Orszag [6].

In Doha [7], a'method for obtaining simultaneously polynomial and rational approx-
imations from Chebyshev and Legendre series for functions defined by linear differential
equations with its associated boundary conditions has been described.

Our principal aim in the present paper is twofold:

(i) to give an extension of Doha’s method, but the function y(z) and its derivatives are

expanded in ultraspherical polynomials C,.[f]. This extension, however, could be useful In
applications.

(ii) to compare computationally the performance of the rational approximation obtained
from Chebyshev series of the first kind and those obtained from the ultraspherical series for
varying &.

The ultraspherical expansions are defined by

y(@) = 3 anCl(3)

=0

*

where the coefficients a, are given by
1 1 1 1
o= [ (=) o/ [ (1-21)T O @) s (1)
- —d
and Cp, )(..'-:) satisfy the orthogonality relation

1 1
f (1—z?)*"2C*) (z)C{ (z)dz =0, m#n, a> —%-.
—4

For our present purposes it is convenient to standardize the ultraspherical polynomials
so that
cle}(1) = T(n + 2a)/T(2a)n!

In this form the polynomials may be generated using the recurrence formula

(n+ 1)‘1&?1 (z) = 2(n + {I):IC}I“}(:I) —(n+2a - I)Cfll(z), n= 1,2:3;

starting from Cé“] (z) = 1 and Ci“}(m) — 2az, or obtained from Rodrigue’s formula

(=1)"D(n + 20)T(n + 1/2)

1 1
C[u} s 1 — 22— *p"i(1 — 2ynta—35
w (2) 2nn!l(2a)(n + a + 1/2) (L—&) (1 =2 |
where D = —&‘i Certain values of o correspond to more familiar sets of orthogonal polyno-
z

mials, the Legendre polynomials given by C,{,” 2)(:1:) = P,(z), the Chebyshev polynomials of
the second kind by C};”(:r) = U, (z) and the Chebyshev polynomials of the first kind by

Tniz) = ; lim 101,{1“](::].

ax—0 0y
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It i1s to be noted here that the usual powers of z are given by

n! i (z)

21'1 X~k O aﬂ.

which enables one to obtain the Taylor series expansion to y(z). _

Further details of the properties of these polynomials may be found in Abramowitz and
Stegun [8]. From the orthogonality of the ultraspherical polynomials, the coefficients a,, of
(1) takes the form

Ep =

nrt g ot i) | (-2 5o @ye)ds. (2
vaT{n+ 2a)T(a+ 5) =

In general, it is not possible to evaluate the integral occurring in (2} explicitly, and to
find a,, recourse has to be made to a suitable quadrature technique.

The present method enables one to find these coefficients directly, provided that the
function y(z) should satisfy a linear differential equation with appropriate boundary condi-
tions. The solution of linear differential equations in series of Chebyshev polynomials T}, (z)
has been given by Lanczos!®, Clenshaw(1% Fox[11l Morris and Hornerl'2l | Olaofel!? and
Horner['4l. - Ansextension of Clenshaw’s method had been described by Elliott!*®l and an
extension of Clenshaw’s method into the complex domain has been given in Doha (7}. The
proposed method may also be considered as an extension of Elliott’s method into the com-
plex domawn, which consequently yields rational approximation and as a special case the

polynomial one. |
The method 1s described Sections 2 and 3, and is illustrated by numerical examples in

Section 4. Numerical results and comparisons and some concluding remarks are given in
Sections 5 and 6 respectively.

42. Ultraspherical Series Solution for Linear Differential
Equations

Let y(z) satisfy the linear differential equation of order m,

m

Y pi(z)Diy(z) = q(z), pm(z) #0 (3)

1=0]

where g(z) and p;{z), + =0,1,2,---, m, are functions in z, and, in addition, let {z) be a
function defined in [—1, 1} which has the uniformly convergent expansion

y(z) = ) anCL¥(2) (4)

n=>0

where the coeflicients a,, are to be determined. Now assume that the kth derivative can be
expanded m a uniformly couvergent series

v ) (z) =Y dPeMNz), k=0,1,2,---,m. (5)

=0
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The method of determining the coefficients a,, depends basically upon the following two

[

recurrence relations for the ultraspherical polynomials Chp )[m), namely

2(n + )G (2) = D(CLF, (2) - Cu2h (=) (6)
and '
2(n + cr)m(?}l“}(:c} = (n + I]Cff_':_)l(z) + (n+ 2a — 1)0}:_}1(:!:) (7)

both of which are valid for n > 1. In view of the formulas (4) and {6} we find that

(k+1) ﬂ{k+1]

{d
“n nt+a—1 nt+a+l’ = (8)

We define a related set of coefficients bLk) by writing
a*¥) = (n+a)bl¥!, n>0, £k=0,1,2,---,m, (9)
and accordingly, equation (8) takes the form
2(n + a)bl¥) = plFtN) _pletl) - n > (10)

Again, let C,(y) dendte the coefficient of C'},,“](a:) in the expansion of y. Then, from the
recurrence relation (7) we see that

n+ o
p

Cﬂ(zy) e [ﬁ(“’}bn—l s ’T(ﬂ)ﬁn+1], n>1

where |
B(n) = { T,/(n + a), Zig . ~(n) = 2 — B(n).

In what follows, a generalization of the previous relation is needed. Define for an arbitrary
function u of the variable n

ut(n) =p(n+1), p (n)=p(r-1)

By induction, one finds

+

ke 1
C“'(m y) T an

k
8 4
S " Ak (n)ba—ktz, mk 20 (11)
3=0

where

Ari(n) = (k)} a=0; Agp(n)=1,

]
ﬁ(”)}‘;-l,ﬂ(n): 7 =0, |
Aki(n) = Bn)Ag_, ;(n) + Y r)Ai_y,_i(n), 1S7<k—-1, k21,

| ’T(H)A:—l,k—l(n)l Cr ?5 0.

In equation (11) we may replace y(z) by y*) (z) provided &, is changed by %) From (11),
the quantities Cp(zy), Cn(2%y), -, Cn(s™y) can easily be found, and so in Equation (3)
C,{pi(z)D*y) can de written down if p;(z) is 2 polynomial in z. In cases where p;(z), + =
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0,1,2,--+,m, are not polynomials in z, it is sometimes best to replace them by suitable
polynomial approximations.
We might have a use for coefficients with negative order, n < 0. If 2a = m,moa
nonnegative integer, then we will take
b{k}: O,k lf{{nﬂm—l,
i bL_]m, n > m;

while if 2& 1s not an integer, we take

b{_k,{= ;. w2l

In general, boundary conditions on the solution y(z) are given at z = 0 or z = +1. For
these points we have

i 1) = (-1)mei™ (=1) = T(n + 2a) /T(2a)n!
Canr1(0) =0, C}2(0) = (~1)"T(n + o)/nil(a), a#0.

T

If the series (4) and (5) are substituted into the differential equation {3) and the re-

sult is combined with (10) and (11), we obtain relations for the coefficients 6% for k& =
0,1,2,---,m, for all n. These relations and those obtained from the boundary conditions

are equivalent to an infinite system of linear equations in the unknowns 4. The numerical
solution of these equations can be performed by any of the algorithms described in Wimp
[16], or the two well-known methods described in detail by Chenshaw!1?., These are the
method of recurrence and the iterative method.

The starting point of the method of recurrence is to assume that 8% = 0 for k =
0,1,2,---,mand n > N, where N is some arbitrary positive integer not known a priori, and

to assign arbitrary values to bgc). The values of b!,k} forn = N—1,N—2,.--,0 may then be
obtained from the recurrence relations. Finally, a multiplying factor is determined so that
the initial or boundary conditions are fulfilled. It may happen that the recurrence method
yields by without making use of any equations near n = 0. In order that the remaining
equations be satisfied, the recurrence process is repeated as often as required with different

values of bgf]. An appropriate linear combination of the trial solutions gives the required
solution. The precision of results obtained by this method may be increased by taking a
larger value of N. If, however, the selected N is larger than that required to achieve the
desired precision. little effort need be wasted.

The iterative method starts with some initial guess for the b,, which satisfies the boundary

conditions. From these values (10) can be used to n::.":anrnl]_:.'ut«aE b,(-,,k}, 1 < k < m. These values
can be used to compute a new b, from the recurrence relations, again satisfying the boundary
conditions. This procedure is continued until the desired precision is reached. Such schemes
often do not converge, or corverge slowly. Since the recurrence method is often quite rapidly
convergent, the iterative method i3 perhaps most useful in correcting small errors due to
rounding which arise in the application of the recurrence method.

§3. Extension of the Method in the Complex Domain

To extend the method into the complex domain we consider instead the function yl2z) =
Rl (2, z), where z is the independent variable, —1 < z < 1, and z is regarded as a parameter
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which may take any real or complex values. The function R(®)(z, z) satisfies the differential
equation

- & R(¢){z, z)
> e g = atea) @2
Assuming that
Rl®)(z,z) = . E an(z)CL“}(z] (13)
’}‘(E) n=0

and using Clenshaw’s method described in the previous section, the coefficients a, (z) can
be found so that the preceding differential equation (12) 18 satisfied. If, for example, the
function y(z) satisfies the initial condition y(0) = 1, then we get -

Q0

7(z) = Z ﬂn(ﬂ')cﬁﬂl (0)-

n=0

With this v(2z) and with z = 1, we find that

RO, = yle) = Y a0 (1) / 3 an()CE7 0) (14

n=0 yi =0
Actually we do not work with infinite sums, but we start with a finite sum, say Rj{.?] (z, z),
for y(zz) in the form

1 N

1(2) =

4 (2)CL) (2) (15)

y{zz) ~ R}.;}(z, z) = -
where the multiplying factor 1/~4(z} results from the satisfaction of an initial condition.
Finally, putting z = 1 in (15) yields a finite rational function R}..f’ (z,1) = Yn(z), say, which
approximates y(z) for any real or complex values of 2,1z} £ 1.

It is worth mentioning that, if we put 2 = 1 in (13) and (15), then we get the series
expansion and the usual polynomial approximation for the function y(z) respectively.

Since there is no easy way to estimate analytically the error in a rational approximation
derived by the method explained above, probably the best way to investigate the accuracy of
an approximation is to tabulate and inspect the absolute error function of the approximation
for selected arguments. It is appropriate at this point to define the quantity

E\® = sup [R{(2,1) — y(2)]
2| €1

to denote the maximum absolute error associated with the rational approximation to y(z)

obtained from C,(,,“} :

§4. Numerical Examples

Example 1. Consider the solution of equation

D%y + Dy + 162y =0; y(0) =1, ¢'(0) =0 (16)
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mn the range 0 < x < 1. This corresponds to the solution of Bessel’s equation for Jo(4x).
Inspection of (16} and the boundary conditions shows that the solution is an even function
of z. Let £ — z2z, R(®)(2,2) = Y(22), and ~1 < z < 1. Then equation (16) takes the form

& R(*) (2, z) i dR() (2, z) dR*) (z,0)
dz? dz dz

z +162°zR*) (2,2) =0, R'*)(z,0) =1, = 0. (17)
Also, let R(*)(z, z) be given by (13}. Comparing the coefficients of CL* (z) in the expansion

of the terms of equation (17), and making use of (11), we can easily show that

nb,{f_}l + (n + 2::}6521 + 2(n+ )bl + 162%[nb, _, + (n + 2a}bn 41} = 0. (18)
Repeated use of (10) enables one to put (18) in the form
1
bz = PP T P e (n+2a+1)(n+a—1)b12 — 2a(n + a)b,,]
(n + o — 1) 1 1
 82%(n — 1) [(n + 2‘3‘)6:{1-11 + ”551—11]- (19)

This and the equation
by = by + 2(n + @), (20)

# s i ; .
can be used alternatively to get a rational approximate solution for any value of o, ¢ > —1/2.

The complete solution for the case @ = 0 has been given in detail in Doha [7].

~ : : ; 1 :
In the following we consider the two important cases @ = — and a = 1, which correspond

to the expansion in Legendre polynomials P,(z) and Chebyshev polynomials of the second
kind U, (z).

Taking b1 = 10 (iLe.N = 10), with byz = b1y = ---b{)) = 8{)) = ... = 0, and rounding
the coefficients of the powers of z in the other coefficients as they are calculated, we obtain
the trial solutions shown in Table 1. We find that when these trial solutions have been

computed, both equations (19) and (20) for a = 2 and o = 1 have been satisfied to a

certain accuracy. Thus, only the condition Rig](z,O) = 1 remains to be satisfied. This

condition gives for a = 1/2
5

1z} = ) aza(2)CLL? (0)

n=0

where the coefficients a’s are given in Table 1. With this v(2) and with z = 1, we get the
sought-for rational approximation in the form

1 — 3.6173822 + 2.551432% — 0.561502° 4+ 0.040352% — 0 000601

REE"E] (z, W= 1+ 0.382622% + 0.081922% + 0.013382% + 0.0019628 + 0.000312z10 21)
and the corresponding polynomial approximation as
R{y/? (1, ) = 0.25620Py(z) ~ 1.07057P;(z) + 0.48785P4 (z) — 0.07638 Ps (z)
+0.00599 P; (z) — 0.00027 Pyo(z). (22)
For the case a = 1, we get the rational and polynomial approximations as
B (2 1) = 1 — 3.636522% + 2.61931z* — 0.605622° + 0.047542% — 0.0010521° (23)

1+ 0.363482% + 0.07322z% + 0.011132° + 0.0016128 + 0.000242z10
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and
R{V(1, 2) = 0.38274Up(z) — 0.45707U,(z) + 0.14110U,(z) — 0.01784U¢(z)
+0.00120Ug(z) — 0.00005U6(z). . (24)
For the sake of comparison, it is worth while to write down the rational and polyno-

mial approximations obtained from Chebyshev polynomials' 7}, (z){(a = 0); these are given
respectively by (see Doha [7}):

1 — 3.6000022 + 2.49000z% — 0.522222° + 0.033542% — 0.000422'0

R (z,1) = 25)
10 (2 1) = J770 2000027  0.00002% T 0.015562% T 0.0024325 1 0.00042270 (2
and _
R9(1, z) = 0.05014Tp(z) — 0.66526T(z) + 0.24898T} (z) — 0.03324075 ()
1+0.00230T; (z) — 0.000097T (). (26)

Evaluations of Jo(4z) based on rational approximation formulae (21}, (23) and (25} are
given in Table 2 compared with the exact values of this function. The exact values were
evaluated by taking the sum of the first twenty-five terms of the power series expansion of
that function. This table shows that all three of them are essentially of the same accuracy,
but Riéﬂ)(z, 1) is b&ter near the ends of the interval [—1, 1], while R'%(z,1) is the best
near the middle of that interval.

Example 2. It is well-known that rational approximations to e™*,z € [—1, 1], arise
quite naturally in the numerical solution of heat conduction problems and in the study of
numerical methods for ordinary differential equations; see Cody, Meinardus, and Varga [17].
This function satisfies the differential equations

(D+1)y=0, y(0)=1 (27)
If Rl®) (2, z) = y(2z), z € [—1, 1], then (27) takes the form
dR*}(z, z)

s FzR@) (z,2) =0, R!¥(z,0) = 1.

Let R{®)(z, z) be given by (13). Comparing the coefficients of C,E,,“}(z} in the expansion of
the terms of the preceding differential equation, we find

This equation and equation (20) can be used to compute b, and hence a,. Since the
equations are homogeneous, the values of a, have to be substituted 1n equation (15) to
satisfy the initial condition RIE.?] (2,0) = 1, which in turn gives

N

v(z) = ) aa(2)C3(0).

n=0

. . oy gy : 1
In Table 3, we give the rational approximations for ¢~ * in [—1, 1], for a =0, 5 and 1; N =

2{2)10. Table 4 also contains the explicit values of E}f} corresponding to each approxima-
tion. In Table 5, we give the corresponding polynomial approximations to e™*,z € [—1.1],

for a = 0,1/2 and 1; n = 2(2)10.
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§5. Numerical Results and Comparisons

From the results of Examples 1 and 2, it is not difficult to show that the polynomial
approximation obtained for & = 0 is better than those for a = 1 /2 and 1; meanwhile the
approximation for a = 1/2 is also better than that of & = 1. This certifies that the terms of
the Chebyshev expansion of the first kind are asymptotically smaller in maximum absolute
value than the corresponding terms of any other ultraspherical expansion.

Results of Table 4 show that Eﬁ?} < Eﬂm < Eﬁ},Z < N < 10. This also certifies
that the rational approximation obtained from Chebyshev polynomials of first kind (o = 0)
1s the best of any other rational approximations obtained from ultraspherical polynomials
corresponding to o > 0.

Some comparison with the well-known technique of Padé would be appropriate. Now
the (m, n)-th degree Padé approximant to e~ 2 is given by Braess!!8l:

&* = Rown (3] = Pn(2)/@Qn (3)

where

Pm(z)=fﬂ (t + 2)™t et dt,

¢ Qn(z) = f (t — z)"t™e "dt.
0
After performing these integrals we get
s s = m i—k - n n—k
e* ~ R,.n(2) —‘;] (k)(n+k)!z /; (k)(m+k]!(—z) . (28)

Now the rational approximations given in Table 3 compare favorably with the Padé ap-
proximants obtained from (28) expressible in a similar form; for example the rational
functions Rﬂ,] and Ry,10(z) were compared, and it is found that R{él 13 better than
Rio,10(2z). Evaluations of ¢ %,z = 0(0.1)1, based on rational approximation functions
Riﬂ’(:),ﬁié’ 2 (2) ,Rﬁlﬂ}[z] and R 10(z), are given in Table 6 compared with the exact
values of this function. '

86. Conclusion

In this paper we have described a method which enables us to find simultaneously the
rational and—as a special case—polynomial approximations for an arbitrary function f(z)

expanded in an infinite series of ultraspherical polynomials C!*) (z). The coefficients of ex-
pansion may be obtained to any degree of accuracy. The function f(z) is assumed to satisfy
some linear differential equation with associated initial or boundary conditions. The differ-
ential equation can then be solved directly to give the unknown coefficients of expansion.
The rational approximation to be obtained by this method can be considered as an
extension of Elliott’s method!'®! and Doha’s method!?) into the complex domain. It is of
fundamental importance to note that the polynomial approximation for f (z) is obtained

, : : L ;
directly from its rational one, R{“)(z,z), for any o > i sumply by putting the parameter

z equal to unity.
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Table 1*. Computation of trial solution for Example 1 in terms of a, using
Legendre and Chebyshev polynomials respectively.

Trial

nilz " “an(2) 1 z* 2t " 28 2% a.{1)
0i zYao — 966313 | +253187 |—99003.5|+11642.5| —496 | —8 [+0.256108
— 1586340 |+1009740| —332721 | +30524 [-1320|—54|+0.382736
2 a2 | +710167.5| —336990 [+50717.5| —1925 |[+37.5 —1.070566 °
+1586340 | —613155 | +80286 | —2427 | +72 —0.457070
4 z%a4 943486 | +54405 | —3213 | —13.5 +0.487854
—396585 | +76175 | —4035 35 +0.141098
6 zlag +32792.5 1 —2756 +71.5 —0.076379
| +44065 | —5122 +91 —0.017843
8 2204 23545 | —B8.5 +0.005994
— 9754 —18 40.001205
10 Bis +105 —0.000266
+110 —0.000048

Note. ztac = 32792.5 — 27562° + T1.5z*%.

Table 2. - E:falua.tion of Jo(4z) based on rational approximations Rig}(z, 1),
R};”ﬂ(z, 1),RE;)(3, 1} compared with the exact values.
z RV(z,1) RE;"{E}(E, 1} R'V(z, 1) Exact
0.0 | 1.000000000 1.000000000 | 1.000000000 1.000000000
0.1 | 0.860398227 0.960398256 0.960398227 0.960398227
0.2 | 0.846287353 | 0.846287463 | 0.846287351 0.846287353
0.3 | 0.671132744 0.671132967 0.671132702 0.671132744
G.4 | 0.455402169 0.455402511 0.455401767 0.455402168
0.5 | 0.223890793 | 0.223891236 | 0.223888549 | 0.223890779
0.6 | 0.002507756 0.002508254 0.002498785 0.002507683
0.7 { -0.185035873 | —0.185035372 | —0.185064389 | —0.185036033
0.8 | =0.320188549 | -0.320187900 | —0.320265318 | -0.320188170
0.9 | -0.391773852 | —0.391771880 | -0.391956217 | ~0.391768984
1.0 | —0.397173242 | -0.397165636 | —0.397566534 | —-0.397149810

1

Table 3. The rational approximations for e~ ® in |—1, 1], for « = 0, 2" and 1; N = 2(2)10,

N N
R — Zp;z'/z:q;z{,

-1<z<1.
=0 =0
a=20 a=1/2 a=1
: 2 % P g pi g
N —
8 8 10 10 12 12
1 —8 0.0 -10 0.0 -12 0.0
p. 3 -1 4 -1 5 -1

* In each row, the firat line give;a the coefficients corresponding to using Legendre polynomials, while
the second line gives those corresponding to using Chebyshev polynomials of the second kind.
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N=4
0 192 192 126 126 1920 1920
1 -192 0.0 -126 0.0 ~1920 0.0
2 84 -12 56 = 864 -96
3 -0 0.0 ~14 0.0 —224 0.0
4 2.5 0.5 2 0.25 35 3
N=6 .
0 23040 23040 67567.5 67567.5 80640 80640
1 -23040 0.0 -67567.5 0.0 —80640 0.0
2 10560 —960 31185 —2588.75 37440 -2880
3 ~2880 0.0 -8662.5 0.0 -10560 0.0
4 504 24 1575 59,0625 1980 60
5 ~56 0.0 ~189 0.0 -252 0.0
6 3.5 0.5 14 -1.09375 21 -1
N=38
0| 5160960 5160960 | 17229712.5 | 17229712.5 | 92857280 92897280
1! -5160960 0.0 -17229712.5 0.0 ~-92897280 0.0
2| 2419200 -161280 8108100 -506756.25 | 43868160 —2580480
3| -698880 0.0 ~2364862.5 0.0 ~12902400 0.0
4 137280 2880 4729725 8445.9375 2620800 40320
5| -19008 0.0 ~67567.5 0.0 ~384384 0.0
6 1848 40 6930 ~-108.28125 41184 —480
7 ~120 0.0 —495 0.0 -3168 0.0
8 4.5 0.5 22.5 1.230473 165 5
N =10
O [ 1857945600 | 1857945600 | 6874655288 | 6874655288 | 40874803200 [40874803200
1 |-1857945600F 0.0 -6874655288 0.0 —-40874803200 0.0
2| 882524160 | 46448640 | 3273645376 | -163682269 | 19508428800 | —9289T72800
3 | 263208960 0.0 -682093612.5 0.0 —-5883494400 0.0
4 | 54835200 645120 206756550 | 2153714.063 | 1250242560 | 11612160
5| ~8386560 0.0 ~-32162130 0.0 ~197406720 0.0
6| 960960 -6720 3783780 [-21114.84375| 23761920 -107520
7| -82368 0.0 —337837.5 0.0 -2196480 0.0
8| 5148 60 22522.5 173.37474 154440 840
9 ~-220 0.0 ~1072.5 0.0  -8008 0.0
10 5.5 -0.5 33 -1.353514 286 -6
Table 4. Values of Eﬁ_.“} for =0 %, and 1; N = 2(2)10.
N B EL E
2 | 61x107% | 7.0x10°2 | 8.7x 10-%
4 | B3x107* | 1.3%x107% | 1.6x107?
68 | 35x107°% | 78x10°° | 1.3x10°®
8 | 1.4x107% | 30x107% | 5.7%x 108
10 { 26 x 107 | 3.0x 107 | 4.0 x 1071
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Table 5. The polynomial approximations for e™* in |1, 1], for a = 0, %,
and 1; N = 2(2)10,
N
T Za;C}“](z).
i=0
‘ a=0 u:% a=1 a =0 a:% a =1
1 s ay a; f 1 2 e &y
N=2 N =28
O 1.285714286 | 1.185185185| 1.136363636 0| 1.266065876 | 1.175201193 | 1.130318207
1|-0.444444444(-1.111111111 |-0.545454545 1 |-1.130318207(-1.103638323|-0.542990678
2! 0.111111111 | 0.370370370 | 0.136363636 2 | 0.2714953359¢ 0.357814350| 0.133010550
N=4 3 |-0.0443368491-0.070455634|-0.02189656G2
0| 1.265927978 | 1.175122202 | 1.130268199 4 | 0.005474240| 0.009665128 | 0.002714632
11-1.130193906 |-1.103563941 [-0.542966612 5 [—0.000542926 (-0.001099586-0.000269864
2] 0.271468144 ) 0.357791754 | 0.133004926 6 | 0.000044577 | 0.000099454 | 0.000022389
3|-0.044321329{-0.070440252|-0.021893815 7 |-0.000003198 [-0.000007620{-0.000001554
4| 0.005540166| 0.010062893 [ 0.002736727 8 | 0.000000199 | 0.000000508 ( 0.000000010
N=6 . N =10
Q] 1.266066460 1.1751,22292 | 1.130318431 0 1.266065878 | 1.175201194 | 1.303182080
11-1.130318728[-1.103638649(-0.542890786 11-1.130318208(-1.103638324(-0.542990679
2| 0.271495464 | 0.357814456| 0.133010576 2| 0.271495340 | 0.357814351 ] 0.133010550
3|—0.044336870|—-0.070455654 (-0.021896066 3 [~0.0443368503~0.070455634|~0.021896G9062
4| 0.0056474246 | 0.009965134 | 0.002714633 4 | 0.005474240| 0.009965128 | 0.002714632
2|—0.000542900|-0.001099548 |--0.000269857 5 [—0.000542926 (—0.001099586 |-0.000260864
6 0.000045242 | 0.000099959 | 0.000022488 6 | 0.000044977 | 0.000095454 | 0.000022389
7 |-0.000003198 [-0.000007620(-0.000001594
8 | 0.00000019% | 0.000000506 | 0,000000099
6 |-0.000000001 |-0.000000030{-0.000000006
10| 0.600000000; 0.000000002{ 0.000000000
“Table 6. Evaluation of e~* based on rational approximations R{>’(2,1){a =0, %, 1),
Padé approximant Rio,10{2z) Compared with exact values.
¥4 Rm}(z, 1) R{”ﬂ(z,l] Ril](i,l) RlD,lﬂ(z) Exact
0.0 | 1.0000000000 | 1.0000000000 | 1.0000000000 | 1.0G00000000 | 1.000000G000
0.1 | 0.9048374180 | 0.5048374180 | 0.9048374182 | 0.9048374086 | 0.9048374180
0.2 | 0.8187307532 | 0.8187307531 | 0.8187307531 | 0.8187307480 | 0.8B187307531
0.3 | 0.7408182207 | 0.7408182207 | 0.7408182206 | 0.7408182182 | 0.7408182207
0.4 | 0.6703200460 | 0.6703200461 | 0.6703200461 | 0.6703200499 | 0.6703200460
0.5 | 0.6065306597 | 0.6065306597 | 0.6065306598 | 0.6065306526 | 0.6065306597
0.6 | 0.5488116361 | 0.5488116361 | 0.54881163060 | 0.5488116337 | 0.5488116361
0.7 { 0.4965853038 | 0.4965853039 | 0.4965853038 | 0.4965852576 | 0.4965853038
0.8 | 0.4493289641 | 0.4493289643 | 0.4493289641 | 0.4493289624 | 0.4493289641
0.9 | 0.4065696597 | 0.40656G96600 | 0.4065696598 | 0.4065696b59 | 0.406569G597
1.0 | 0.3678794412 | 0.3678794415 | 0.3678794414 | 0.3678794373 | 0.3678794412
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