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Abstract

In this paper, a class of integration formulas is derived from the approximation so
that the first derivative can be expressed within an interval [nh,(n + 1)k] as

‘;_3: = _P(y_ yn) +fn+Qn(t)'

The class of formulas is exact if the differential equation has the shown form, where P
ig a diagoftal t;iatrix, whosge elements

d
_'=_f'trnr1: =1:m
PJ ay}_ J( ¥ ) J ’
are conatant in the interval [nhk, (n + 1)A], and @.(¢) is a polynomial in ¢.
Each of the formulas derived in this paper includes only the first derivative f and

a
Shor y tn, 3 J»
ayjf.?( 1] )

It is identical with a certain Runge-Kutta method as P tends to zero and thus correct
to the order of such Runge-Kutta method. In particular, when Q,(t) is a polynomial
of degree two, one of our formulas is an extension of Treanor’s method, and possesses

better stability properties. Therefore the formulas derived in this paper can be regarded
as a modified or an extended form of the classical Runge-Kutta methods. Preliminary

numerical results indicate that our fourth order formula is superior t¢ Treanor’s in
stability properties.

§1. Introduction

It is well known that the classical Runge-Kutta method, generally very satisfactory for
non-stiff systems, fails badly in handling stiff systems. Thus, it is desirable to have a class
of explicit formulas which can handle stiff systems (at least some special stiff systems) but
which can provide proper speed and accuracy, of course, where a little special treatment 1s
required.
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In many practical applications, one encounters systems of ordinary differential equations
which can often be expressed approximately as

Y = =Py — yn) + fn + Qult,v),

where P is a diagonal matrix, p; = —9f;/dy; is a large quantity, én(t, y} is a function of ¢
and y varies slowly and thus can be approximated by a polynomial Q,.(t) in t. By virtue of -
this fact Treanor has proposed a modified Runge-Kutta method in [1]|, however, the interval
of absolute stability is still small for handling stiff systems [2], {3]. Though the approach we
will use is almost the same as Treanor’s, one of the formulas we will provide, when @, (¢) is
a polynomial of degree two, is really an extension of Treanor’s method and possesses even
better stability properties. Therefore, our formulas may also be regarded as a modified or
an extended form of the classical Runge-Kutta methods.

Finally, eleven test problems arising mainly in chemistry from [4}, [5] are chosen for nu-
merical experiment. Preliminary numerical results indicate that our fourth order formula is
superlor to Treanor’s in stability properties. However, just like Treanor’s method, generally
speaking our formulas are suitable only for the cases in which the main diagonal elements
of the Jacobian matrix are large and the off-diagonal elements are comparatively small.

§2. Derivation of Integration Formulas

In this section a class of numerical integration formulas of the stiff initial value problem

{y' = f(t,y), )

¥|,._o = Yo

will be derived.
Assume that the equations of (1) at point (¢,,y,) can be expressed approximately as

y' = =Py — yn) + fu + Qnlt), (2)

where P is a diagonal matrix with elements

d :
™ = ayj.fj'(tﬂjyn): g = 1,2,"‘,??'1

and @, (¢) is a polynomial in ¢ containing unknown parameters which are determined in the
course of the integration.
To simplify notation, we restrict our discussion to the scalar equation, and set

1
Fi-1(h) - ({— 1)
(—ph) |
Now the formulas for different @, (¢) are derived as follows. First of all we consider the

simplest case, namely Eq. (1) can be expressed approximately in the interval {nh, (n + 1)A)|
as

Fo(h) = e P, Fi(h) = Fas 1,8 vy (3)

¥ = —ply —yn) + fn + Alt — ts). (2.1)

Then the ordinary differential equation

f

¥y = —ply — yn) + fa,
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in the interval [nh, (n + %)h] and Eq. (2.1) in the interval [nh, (n + 1)A] will be integrated,
respectively. We obtain then solutions

h

h
yn+% =yu+§F1("§)fm y’ﬂ+% =f(tﬂ+%=yn+%) =fﬂ+

1
2
and

Yn+l = Yn + hE (h)fn + AthE(h)

By virtue of {2.1) and ¢/ Ah can be evaluated from

ntg]
== ( = )+f # ol
yﬂ+% = yﬂ_l_% Un 11 9 :
Finally we obtain the integration formula
h h
3 g lopsy).
(I) yn+%, 4 +2 1 yis fn fn+% f n+% yn-i—%

Ynt+1 = Yn + RF (R} f, +2hF2(h){ (fn+% - fu) +p(yn+% = yn)}.

Secondly, when Eqi(l] can be expressed approximately in the interval [nh, (n + 1)A] as
V' = =Py —yn) + fo + At ~ t,) + B(t — t,)>. (2.2)

One can in the same way as above obtain the integration formula

n+3 3 +4
Vo2 =0t SR (F) 0 g'hpﬂ(%}}'){(fﬁg ~fa) +2(s,, 1~ w) }

() { f . 2= (tn+2,yﬂ+g),

Yn+l1 = Yn + hFI(h)fﬂ + Sth(h]{ (‘fn+% N f"’) 2 p(yn+% B yﬂ)}

2 Rty

Similarly, to obtain a modified Treanor’s method we take respectively

+§hF3(h){f 2 =2/, 1+ fn +P(yﬂ'+-§ T, +y“)}'

i .. ho(h 4 e (1)
yﬂ_}_% yﬂ.+ ZFI(Z)fﬂ: fﬂ'l‘% f(ﬂ‘f‘%jyn-i-%)
and . . "
(2) _ e s i (1) {1} (2) __ (2)
yn+% - FD(Z)y“ % 2F1(2) (fﬂ+i—,r +pyn+%)’ fn+% f(t“+%’yﬂ+%)
instead of
W _, . h (1), _ ¢f; m)
Y % yﬂ-+2fﬂ: fn% f( +%:yn%
and
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From this the integration formula

y“}1=yn+gF1(g)fn. 1o =f(t hyl”l),

o) TRl U LA
2, =1 (B B () (2, +n,),
2 = 1(t, 80 )
() { guss = yn + hFy(h) fo + 2hF(R){ (fi]% —_fﬂ) + p(yfl% - ) },

fn-kl = f(tn+l:§'n+1):
Ynt+1 = Yn + B{F1(R) fr + (4F5(h) —~ 3F;(h))(fn + pyn) + (2F2(A)

—4F3[h])[(f[:}l + py{i}_i) % (f{i}_l, toy )]
rn o 557 s

= 5 n+é_‘;.
+{4F5(h) — Fﬁ(h])(fn+l + Pn+1)}

(2) _ (1}
e
& df; : ’ ntz nt3 .
can therefore be obtained, where p; = ~ B taken instead of p; = —— Ay n
LA —
yn+% yn+‘é‘
Treanor’s method. Obviously, it is inconvenient for our formula (IIT) to take such a form of

p, because it requires the solution of a set of nonlinear equations at each step.

§3. Basic Properties of the Integration Formulas

In this section, we will discuss some basic properties of the mtegraton formulas derived n
Section 2, such as the order of accuracy, stability, the relation between the formulas derived
in Section 2, and Runge-Kutta methods.

The formulas derived in Section 2 may be regarded as a particular case of the general
explicit one-step methods. The definitions of their order and consistancy may be given
analogously, and thus are omitted here. In order to save space, we consider only formula (I}
in detail.

First of all, it is easy to see that formula (I) becomes the classical Runge-Kutta method
of order two as p tends to zero: |

ki, = f(t-n: yn):
: k
W k= 1(t, 100+ b ),

Yn+1 = Yn + RK2.

The order of accuracy. Expanding formula (I) in a Taylor series at the point £,, gives
its local truncation error (LTE) T3,

1 7
T: = Tri(2) T (gpgfn + ﬁpf:;)ha = Tri(2) + TE(2) (p}h°,
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where Tgy(2) is the LTE of the Runge-Kutta method (I)’. Therefore formulas (I} is of
order two. Similarly, we can verify that formulas (II) and (III) are of order three and four
respectively.

It should be noted that Tz (p) is not only a function of f and f’ but also a polynomial
of degree two in p. Numerical results indicate that for the fixed steplength A, if the three
methods, namely Runge-Kutta’s, Treanor’s and ours, applied to the same. initial problem
of ODEs are all stable, then the numerical solutions obtained using these methods can be
ordered, as far as accuracy is concerned, in general as follows: the Runge-Kutta method is
the best, Treanor’s is-in between, and ours is the worst. This fact means that Te(4) plays a
more important part in the LTE than Ty K (4)- However, in handling stiff systems, generally
p 15 not equal to zero (if p = 0 the formula becomes one of RungesKutta’s), and is often
very large. Therefore a further investigation on how to construct the formulas in Section II
so that Tg(,){p) is as small as possible is worthwhile, '

The stability properties. We apply formula (I) to the scalar test equation y' =
AY, A < 0. When p = — A, we obtain easily

M
Yn+1 — ¥nt

hence formula (I) is stable. When p £ — ) we have

A
Yn4+1 = R(’\: ph‘)ynj
where |
B Ah el AbN oo _ongay (€ P* 1+ ph
R(\ph) =1+ (1 - P)+2Ah(1+~p—h)(1 e~rh/2) ( e
Set

92(pk) = min {(1 & ﬂ—phﬁ)/{ﬂ_p:z;lzlf; ph)’ (1+ E_ph}/(l _Pi-mhl }

It can be proved that if 0 < —~Ah < ph + 05(ph), then |R(}, ph)| < 1 holds. It follows that
formula (I) is stable as Ak € [—(ph + f2(ph)),0]. 1t is easily seen that §,(0) = 2 as ph tends
to zero, and |R(A,0)| < 1 as Ah € [-2,0|, namely, the interval of absolute stability of the
usual Runge-Kutta method with order two. We believe that a result analogous to formula
(I) for formulas (II) and (III) also holds. Hence formula (III) derived in Section II has better
stability properties than Treanor’s. Here we note that it is difficult to prove directly the

stability properties of formulas (II} and (III) as we do formula (I). But the numerical results -
in the next section will show that the conclusion is trustworthy.

§4. Numerical Results

In this section, we present some preliminary numerical results which can be used to
make a comparison between formula (III) and Treanor’s method when they are used in
component form with fixed steplength. The first aim of the numerical experiment is to
confirm numerically that the conclusions stated in the previous section are true, namely
formula (III) has better stability properties than Treanor’s. Another aim is to demonstrate
mumerically that, as a general rule, formula (III) is very efficient for stiff systems when its
Jacoblan matrix has large main diagonal elements and no large off-diagonal elements.
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To this end, we are particularly concerned with eleven test systems arising mainly in
chemistry and two numerical examples on pafabolic equations. The test problems can be
found in [4]-[6], and are specified the appendix in detail.

All numerical experiments were run in FORTRAN double precision on the IBM 3083 of
the computing center of the Geselischaft fiir Mathematik und Datenverabeitung in Bonn.

The numerical results are presented in Table 1 which includes the following parameters:

-ALMH : the allowable maximum steplength
MRER : the maximal relative errors at ¢;
H: steplength A.

Our numerical experiments for each test problem are always started with the steplength

h = 0.1. When numerical results overflowed or diverged with A = 0.1, we used a steplength
smaller than 0.1 and so on; hence ALMH=0.1 in Table 1.

As we can see from Table 1, the conclusions stated in Section III are demonstrated again.

Table 1
. Treanor’s Formula III
Test Problem No. | ALMH | MRER H MRER | ALMH | MRER
1 0.01 | 2.4(-2) | 001 |6.3(-3) | 005 | 4.3(-2)
2 0001 | 6.1(-5) | 0001 | 1.7(=2) | 0.1 | diverge
3 0.002 | 2.8(-8) | 0.002 | 7.6(-6) | 0025 | 1.3(-5)
i 0.01 | 2.2(-2) ] 0.01 | 45(-2) | 0.1 | 7.8(-2)
5 001 | 6.7(-7) | 001 | 48(-6) | 0.1 | 6.1(-5)
6 0.01 | 1.4(-5) | 001 | 4.2(-4) | 0.1 | 1.4(-2)
7 0.001 diverge | 0.01 | 7.7(-8) 0.1 4.0(-6)
8 0.1 | 4.0(-6) 0.1 | 2.8(-5)
9 0.1 | 4.9(-5) 0.1 | 9.7(-5)
10 0.0001 | overflow | 0.0001 | 3.4(-6) | 0.1 | 6.5(-3)
11 0.0001 | overflow | 0.0001 | 4.5(-6) | 0.1 | 9.3(-2)

Numerical example on parabolic equations. Here, numerical results in the two dimen-
sional case for parabolic equations which are aimed at showing the effectiveness of formula
I11 for some special stiff systems will be shown. Let Q° be a square domain of IR* given by

Q= {(z1,72) € R*,0<z; <1, 0<zy <1}
Now we give the following problems!®.
Problem 1 (Dirichlet type).
ﬁlJl:-zﬁf!mr.—l(?l“ in §1, t>0,
dJt _
ul(z;,2o,t) =0 onI', t>0,
uw(z1,72,0) = ug(z1,z2) in{],
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where
T3, if 22 €23 < 1—23, z3 20,

( \ l—=i, fl—gL<m<ey, =%l

UL T 1, T} = ;

’ 1 — zq, lf]-_I?gIlEIEJ 2 < 1,
A1, ifIl E To i: 1—:171, | EO

Problem 2 (Neumann type).

d

a—l::&u—i—(xg—mﬂ*lﬂ_t in {I, t>0
)

ke I on’, t>0
dv

uw{z1,Z2) =0 in {J,

191

Let §£1 be subdivided uniformly with Az; = Az, = 1/4, and employ At = 0.01, 0.1,
0.2, 0.5, and 1.0 respectively {according to the stability conditions in 6] for piecewise linear
finite element solutions by using explicit schemds, At < 1/96). The numerical results are

presented in Tables 2 and 3.

Table 2. Numerical Solution for Problem 1 at Point {0.5, 0.5)

it 0.01 0.1 0.2 0.5
0.5 Z.02555  —.02653 —.01253 _
1.0 ~.00809 ~.00846 —.00831 —.01168 —.00760
1.5 ~00256  ~.00268 ,_ —.00404
2.0 _00081 —.00085 -.00093 —.00129  —.00209
2.5 ~.00026  —.00027 ~.00041
3.0 —000081 —.000085 —.000093 ~-.000129 -—.000240

Table 3. Numerical Solution for Problem 2 at Point (0.5, 0.75)

t £ 0.01 0.1 0.5 1.0
0.5 00576 00583 00778
1.0 00183 00185  .00204 00343
1.5 00058 00058  .00067
2.0 00018 00019  .00021 00006
2.5 .00006 00006  .00007
3.0 000018 .000019 .000021 .000029

As can be seen from the three tables, our numerical results demonstrate that formula
III has better stability properties than Treanor’s and is very efficient for some special stiff
systems. Also, it can be seen from Table 1 that as far as accuracy is concerned, Treanor’s
method is better than formula III. This indicates that a properly combined version of formula
ITI, Treanor’s method and the Runge-Kutta method with order four can be favourable for
numerical integration of some special stiff systems. Therefore it is suggested that one should
take |[ph| < 2.78 in the Runge-Kutta method with order four, 2.78 < lph| < 8.0 in Treanor’s,
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and |ph| > 8.0 in formula IIl respectively. Of course, it is convenient for Treanor’s methad

1

Lo take py = =y instead of
Uy

{2) 1)
f A f 1
T+ = n.-i—_:;
'J. I __._.._.__3 -

P 2] (1)
SO |
0 ik o

in the entire algorithm as stated above.
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Appendix: Specification of lest Problems

Problem 1. y| = 7727{yy — yyya2 4y -~ 8375 % W0 %2), i (0) == 4,

?J-fg = (Y2 1 Y1yo y;;)f‘TT-ZT, y*z{()] _
wlh = 16Uy — us),  ws(0) o 4,

Problem 2. yP= ys; - 100y,y2, i (0) == 1,

yh = yx + 2uy — 100y, 40 ~ 2% 10%y3,  y2(0) = 1,
yé SR T 100@'19’2: yJ(G] = 01
yfl — —Ya T 10“19%1 yS[D] = 0:

Problem 3. |, = -0.04y; — 0.01yy3, ¥1(0) =1,

yh = 400y, - 100yzy; — 3000y3, wa(0) = 0,
tl = 40.

Problem 4. y, = —7.89% 107"y, — 1.1 107y 43, #1(0) = 1.76 % 107
vh = T80« 107 10% ) — 1.13 % 10°ypy3, w2(0) = 0

yh = 7.89% 107y, + 1.13 % 10°%ys + ¥ + y3, u3(0) =0
gy = 1.1 % 107y153 — 1.13 % 10%y,  w4(0) = 0,
Ly = 1000).

Problem 5. 4} = —0.013y, — 1000y2y3, :{0) = 1,

yh = 2500ysys,  yol0) = 1
ys = ~0.013y; — 1000y, y3 — 2500y, s, y3{0) == 0,

31 == 5.
Problem 6. ¢y, = .01 — [1+ (y; + 1000)(1 + v1)]( .01 + y1 +¥2), % (0) =0,

yp = 01— (1 + y3) {01 +y1 +v2), 32(0) =0,
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Problem 7. ¢, = 1.3{ys — y1) + 10400ky., y,(0) = 761,

vh = 1880[ys — yo(1 + K)], 2(0) =0,

yh = 1752 — 269y3 + 26Ty;, ys(0) = 600,

yz = .1+ 320y, — 321yq, y4(0) = 0.1,

t; = 1000, where k = exp(20.7 - 1500/y, ).
Problem 8. | = —y, —y 92 + 2%y, y1{0) =1,

yp = y1(1 — y2)/98 = 3yz,  w2(0) =0,

m
Problem 9. v = 2(yz —¥:), w1(0) =0,

yh = 10y, — (60 — .125y3)ys + .125y5, y2(0) = 0,

y% =% 1: y3[0] = O:

t, = 400.
Problem 10. y} = 10" {—3y1y> + .0012y4 — Yy1y3), w.(0) = 3.365 % 10-7,

yb = —3 %« 10y, 9o + 2% 107y4, w2(0) = 8.261 * 1073,
yh = 10 (~ 9y ys + .001y4),  y3(0) = 1.642 « 1077,

tl — 10f).
Problem 11. 4y} = —y; + 10%ys5(1 — %), wi(0) =1,

yh = ~10yz + 3+ 107ys(1 — y2), ¥2(0) =0,

!

Yz = —yy —u3, ¥3(0) =0,
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