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Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
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Abstract. Multiclass Lighthill-Whitham-Richards traffic models [Benzoni-Gavage and
Colombo, Euro. J. Appl. Math., 14 (2003), pp. 587–612; Wong and Wong, Transp. Res.
A, 36 (2002), pp. 827–841] give rise to first-order systems of conservation laws that are
hyperbolic under usual conditions, so that their associated Cauchy problems are well-
posed. Anticipation lengths and reaction times can be incorporated into these models
by adding certain conservative second-order terms to these first-order conservation
laws. These terms can be diffusive under certain circumstances, thus, in principle, en-
suring the stability of the solutions. The purpose of this paper is to analyze the stabil-
ity of these diffusively corrected models under varying reaction times and anticipation
lengths. It is demonstrated that instabilities may develop for high reaction times and
short anticipation lengths, and that these instabilities may have controlled frequencies
and amplitudes due to their nonlinear nature.
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1 Introduction

1.1 Scope

The well-known Lighthill-Whitham-Richards (LWR) kinematic traffic model [21,31] states
that the density of cars φ = ρ/ρmax, where ρ is the local number of cars per mile and
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ρmax is some maximum bumper-to-bumper density, can be described by the conserva-
tion law ∂tφ+∂x(φv(φ))x = 0, where t is time, x is the spatial coordinate along either an
unbounded, one-directional highway or a closed circuit, and the local velocity v=v(x,t)
is a given function of the local density, v= v(φ(x,t)). It is usually assumed that v(φ)=
vmaxV(φ), where vmax is the preferential velocity of drivers on a free highway and V is
a hindrance function describing the drivers’ behaviour of reducing speed in presence of
other cars. The function V satisfies V(0)=1 and V ′(φ)≤0. These assumptions lead to the
one-dimensional scalar conservation law

∂tφ+∂x f (φ)=0, x∈R, t>0, (1.1)

where the flux density function f is given by

f (φ)=φv(φ)=vmaxφV(φ). (1.2)

The model (1.1), (1.2) has been extended in several directions. On one hand, Nelson [23,
24] showed that introducing an anticipation length L and a reaction time τ, replacing
V(φ(x,t)) by V(φ(x+L−vmaxVτ,t−τ)) and neglecting O(L2+τ2) terms when expanding
the latter expression around (x,t), one obtains a ”diffusively corrected” version of (1.1),
(1.2) of the following form:

∂tφ+∂x f (φ)=A(φ)xx. (1.3)

Here, L may also depend on φ, and under certain restrictions on L= L(φ), τ and v(φ),
the function A is Lipschitz continuous and increasing so that the governing equation
(1.3) of the diffusively corrected LWR model (”DCLWR model”) is a strongly degenerate
parabolic PDE in the sense that A(φ)= 0 for φ≤ φc, where φc is a critical density value
(e.g., a perception threshold), and A′(φ)> 0 for φ > φc. Properties of (1.3), under the
additional assumption of abruptly varying road surface conditions, were analyzed in [8].
On the other hand, Benzoni-Gavage and Colombo [3] and Wong and Wong [37] extended
the LWR model (1.1), (1.2) to a multi-class model, the so-called ”MCLWR model”, by
distinguishing N classes of drivers associated with preferential velocities vmax

1 > vmax
2 >

···> vmax
N . For the MCLWR model, the sought quantity is the vector Φ :=(φ1,··· ,φN)

T of
the densities φi of the cars of the different driver classes. The local velocity vi of vehicles
of driver class i is given by vi =vi(φ)=vmax

i V(φ) for i = 1,··· ,N, where we define φ :=
φ1+···+φN . Thus, the MCLWR model is given by a strongly coupled system of nonlinear
first-order conservation laws of the type

∂tΦ+∂x f (Φ)=0, x∈R, t>0; f (Φ)=
(

f1(Φ),··· , fN(Φ)
)T

, (1.4)

where the components of the flux vector f (Φ) are given by

fi(Φ)=φivi(φ)=φiv
max
i V(φ), i=1,··· ,N. (1.5)
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It can be shown [15,39] that the system (1.4), (1.5) is strictly hyperbolic for Φ∈D0 :={Φ∈
RN |φ1>0,··· ,φN >0,φ<1}.

It is the purpose of this paper to introduce a new model, called diffusively corrected
multi-class LWR model (”DCMCLWR model”), by combining the assumptions of the
DCLWR model with those of the MCLWR model. In particular, we associate class i
of drivers with the triple (vmax

i ,Li,τi), i = 1,··· ,N, which means that drivers of differ-
ent classes may have different preferential velocities, anticipation lengths, and reaction
times. The resulting model, which reduces to (1.3) and (1.4) in the respective limit cases
N = 1 and L = 0, τ = 0, where L := (L1,··· ,LN)

T and τ := (τ1,··· ,τN)
T, can be cast as a

quasi-linear system of second-order PDEs of the form

∂tΦ+∂x f (Φ)=∂x

(
B(Φ)∂xΦ

)
. (1.6)

Here the flux vector f = f (Φ) is the same as in the MCLWR model, and B=B(Φ) is an
N×N matrix expressing the diffusive correction. The precise functional form of B(Φ)
depends on the choice of V(φ) and the vectors vmax :=(vmax

1 ,··· ,vmax
N )T, L and τ.

The system (1.6) is supplied with an initial condition and periodic boundary condi-
tions. We formulate, and in part evaluate, a stability criterion for the model (1.6) based
on an analysis of the eigenvalues of the matrices

M(Φ,ξ) :=
i

ξ
J f (Φ)+B(Φ)∈C

N×N , ξ∈R+, (1.7)

where i=
√
−1 and J f (Φ) denotes the Jacobian matrix of f (Φ). Furthermore, by a series

of numerical experiments we illustrate the behaviour of solutions to (1.6), and in partic-
ular the effect of different values of Li and τi for different classes of drivers.

1.2 Related work

To put the paper into the proper perspective, we mention first that the MCLWR model
has been analyzed in a number of papers including [4, 16, 22, 39]. In particular, its hyper-
bolicity has been established [16, 39] and the admissible waves of the Riemann problem
have been investigated [39]. Moreover, the model (1.4), (1.5) admits a separable, strictly
convex entropy since the corresponding Jacobian matrix J f (Φ) is diagonally symmetriz-
able [3,4]. Component-wise or characteristic high-resolution numerical schemes for (1.4),
(1.5) involving weighted essentially non-oscillatory (WENO) flux reconstructions are ad-
vanced in [11, 15, 38, 40]. On the other hand, particularly simple first- and second-order
difference schemes for the same problem that rely on the structure of the fluxes fi (1.5)
along with the definite sign of the velocities vi are introduced in [7]. Variants of the
original MCLWR model (in the sense of [3, 37]) have been proposed and in part ana-
lyzed for highways with varying road surface conditions [10, 41, 42], traffic flow on net-
works [18,26], and stochastic fundamental diagrams (equivalent to the velocity functions
vi) [27].
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To provide justification for the presence of second-order terms in (1.6), we mention
that Nelson and Sopasakis [25] show that for one driver class, the first-order Chapman-
Enskog expansion of the classical Prigogine-Herman [30] kinetic equation of vehicular
traffic leads to a traffic stream model that can be expressed by the DCLWR equation (1.3).
Thus, as is argued in [23], a DCLWR model is presumably the proper traffic-theoretical
analogue of the Navier-Stokes equations of fluid dynamics. Moreover, Lighthill and
Whitham themselves, at the end of their paper [21], propose to include a diffusion effect
”due to the fact that each driver’s gaze is concentrated on the road in front of him, so that
he adjusts his speed to the concentration slightly ahead” [21, pp. 344]. Since the model
development in Section 2 closely follows the original calculus by Nelson [23] in the case
N=1, the same arguments are valid for the present systems case (N≥1). That said, we are
well aware of the well-known general criticism by Daganzo [13] of second-order traffic
models, who argues that diffusion terms may cause ”wrong way travel” in determined
situations. However, we demonstrate in Example 14 of Section 4.6 that the nonlinearity
of the diffusion terms in (1.6) in conjunction with the (mild) assumption V ′(0)=V ′(1)=0
prevents this phenomenon from occurring.

Several alternative approaches have been pursued to extend the LWR model to finite
reaction times and anticipation lengths. The treatment by Sopasakis and Katsoulakis [34]
(see also [19]) for one driver class leads to a scalar conservation law with a non-local
flux involving a non-symmetric ”anticipation kernel”. In [28] a linear stability analysis
is applied to a second-order macroscopic local traffic model, and a corrected ”effective
density” sensor accounts for aggressive or timid drivers. A related analysis is presented
in [33]. Ngoduy and Tampere [29] study the influence of different reaction times (of
a single driver class) in terms of the same model. Their condition for traffic stability
reads [29, Eq. (39)]

τ<
1

2φ2|V ′(φ)|vmax
, for 0<φ<1 (1.8)

(in our notation). If this condition is violated, then their model can develop instabilities
that can be considered as stop-and-go waves. The relation between reaction times and
anticipation lengths and traffic stability is also discussed in [36].

Finally, we mention that other kinematic flow models that give rise to systems of the
type (1.6) include the sedimentation of polydisperse suspensions [5] and the settling and
creaming of dispersions of droplets [1]. These models are typically posed with zero-flux
boundary conditions on a bounded x-interval.

1.3 Outline of the paper

The remainder of this paper is organized as follows. In Section 2 we describe the
DCMCLWR model accounting for anticipation lengths and reaction times. In Section 3 a
parabolicity analysis is performed and its results are confirmed by the numerical experi-
ments described in Section 4. Some conclusions are drawn in Section 5.
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2 A diffusively corrected MCLWR model

2.1 The model equations

Assume that vehicles of class i have the preferential velocity vmax
i , where

vmax
1 ≥vmax

2 ≥···≥vmax
N >0. (2.1)

Following the reasoning in [23] (see also [8]), we now assume that the behavior of drivers
of class i is associated with an anticipation distance Li and a reaction time τi. Then the
reaction of a driver does not depend on the spot value φ(x,t), but rather on

pi(x,t) :=φ
(

x+Li−vmax
i Vτi,t−τi

)
. (2.2)

This formulation takes into account that vmax
i Vτi is the distance travelled by a car of class

i in a time interval of length τi. Furthermore, note that (as in [8]) notation is ambiguous
in (2.2) since we are not specific about the argument of V inside (2.2). To turn (2.2) into a
usable expression for the flux fi, we expand V(pi(x,t)) around φ(x,t). Writing φ=φ(x,t)
and denoting

τ := max
1≤i≤N

τi, L := max
1≤i≤N

Li,

we obtain

V(pi(x,t))=V(φ)+V ′(φ)
(

∂xφ
(

Li−vmax
i V(φ)τi

)
−τi∂tφ

)
+O(τ2+L2). (2.3)

Summing the conservation laws ∂tφi+∂x(vmax
i φiV(φ))= 0 over i= 1,··· ,N and defining

vmax :=(vmax
1 ,··· ,vmax

N )T yields

∂tφ=
N

∑
k=1

∂tφk=−∂x

(
V(φ)ΦTvmax

)
.

Inserting this result into (2.3) we get

V(pi(x,t))=V(φ)+V ′(φ)
((

Li−τiv
max
i V(φ)

)
∂xφ+τi∂x

(
V(φ)ΦTvmax

))
+O(τ2+L2).

Neglecting the O(τ2+L2) term and inserting the remaining expression into the conser-
vation equations

∂tφi(x,t)+∂x

(
φi(x,t)vi(x,t)

)
=0, vi(x,t)=vmax

i V
(

pi(x,t)
)
, i=1,··· ,N,

we obtain a system of the form (1.6), where the components of the flux vector f (Φ) are
given by (1.5) and, if we assume for a moment that no perception threshold for the an-
ticipation length or reaction time is introduced, then the entries of the diffusion matrix
B(Φ) are given by

αij(Φ)=−V ′(φ)
(

Li+τi

[
V ′(φ)ΦTvmax+(vmax

j −vmax
i )V(φ)

])
φiv

max
i , 1≤ i, j≤N. (2.4)
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We recall that the entries of J f (Φ)=(∂ fi(Φ)/∂φj)i,j=1,···,N are given by

∂ fi(Φ)

∂φj
=vmax

i

(
δijV(φ)+φiV

′(φ)
)
, i, j=1,··· ,N.

In this paper we focus on the hindrance functions V according to Dick [14] and Green-
berg [17], namely

V(φ)=min
{

1,−Clnφ
}
=

{
1, for φ≤φDG,

−Clnφ, for φ>φDG,
(2.5)

with a parameter C>0, where we employ the common value C=e/7≈0.38833, such that
φDG=exp(−1/C)≈0.076142. Alternatively we use the common linear Greenshields (GS)
velocity function

V(φ)=1−φ. (2.6)

Note that in view of (2.4), the particular form of the velocity function (2.5) implies that
B(Φ)=0 for φ≤φc =φDG, so (1.6) degenerates to the first-order system (1.4) for the cor-
responding vectors Φ. Thus, the resulting model is strongly degenerate. In general, and
following [32], we assume that φc is an explicitly known perception threshold or critical
density such that the drivers’ reaction is instantaneous in relatively free flow, i.e., when
φ≤φc, and otherwise is modeled by the diffusion term. Thus, for a unified treatment we
assume that

B(Φ)=
(

Bij(Φ)
)

i,j=1,···,N , where Bij(Φ)=

{
0, if φ≤φc,

αij(Φ), if φ>φc.
(2.7)

2.2 Stability analysis

We perform a linearized stability analysis for the system (1.6) under the assumptions of
the DCMCLWR model. The linearized equation for a small perturbation u about a con-
stant state Φ(0) is obtained by substituting Φ=Φ(0)+u into (1.6) and neglecting quadratic
terms in u. This yields the following linearized version of (1.6):

∂tu+ J∂xu=B∂2
xu, where J :=J f

(
Φ(0)

)
, B :=B

(
Φ(0)

)
. (2.8)

We now seek solutions of (2.8) of the form u(x,t)=z(t;ξ)exp(iξx) for a fixed frequency ξ.
The vector function z satisfies the system of ordinary differential equations

z′=−ξ2 Mz, (2.9)

where ′≡d/dt and M=M(Φ(0),ξ) is the matrix defined in (1.7). The general solution of
(2.9) is of the well-known form

z(t;ξ)=
r

∑
j=1

exp
(
−ξ2λjt

)
qj(t,ξ), (2.10)
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where λ1,··· ,λr are the eigenvalues of M that appear in its associated Jordan blocks of
corresponding sizes m1,··· ,mr, where m1+···+mr=N, and qj are polynomials (with vec-
torial coefficients related to the Jordan decomposition basis) of degree less or equal mj−1.
If limt→+∞ |z(t;ξ)|<∞, then Re(λj)≥0 if mj =1 or Re(λj)>0 if mj >1.

With respect to the instability phenomena predicted by eigenvalue analysis of J
and B, we mention first that if B has an eigenvalue λ with Re(λ)< 0, then it turns out
that M will do so for |ξ|> ξ0 , for some ξ0. It would then follow that this would trigger a
growth of z(t;ξ) in (2.10) when t→∞ for |ξ|>ξ0 . This would completely ruin the solution
of the nonlinear system, for these oscillations would appear in all frequencies above ξ0.
Milder instabilities would be expected if B has eigenvalues with positive real parts but M
does not, since this should only hold for relatively small values of ξ. These phenomena
are illustrated in the numerical examples.

Considering separately the two terms of the matrix M (cf. (1.7)), namely (i/ξ)J and B,
we obtain that the linearized stability condition for (1.6) when B=0 is exactly the hyper-
bolicity condition for the resulting system (ξ can take any sign), whereas the linearized
stability condition when f =0 is directly inherited by the condition on M, i.e., the eigen-
values of B=B(Φ(0)) should have non-negative real parts if they are simple and strictly
positive real parts if they have some corresponding Jordan block of non-trivial dimen-
sion. Unfortunately, J having real eigenvalues and B having eigenvalues with strictly
positive real parts does not imply that eigenvalues of M have strictly positive real parts,
as the following simple counterexample shows: with ξ=1 and

J=

[
1 0
0 −3

]
, B=

[−1 −3
3 3

]
,

the eigenvalues of M=iJ+B are −0.2332−2.2436i and 2.2332+4.2436i, whereas the eigen-
values of B are 1±2.2361i.

This discussion illustrates that the satisfaction of the stability criterion stipulated by
(2.10), namely that the pairwise distinct eigenvalues λ1,··· ,λr of M=M(Φ(0),ξ) satisfy

Reλ1≥0,··· ,Reλr ≥0, (2.11)

can in general not be evaluated exactly by analyzing J and B separately. However, some
special cases are tractable. These include the DCMCLWR with drivers having the same
maximum speed so that classes of drivers are distinguished by their reaction times and
anticipation lengths (see Section 2.3).

2.3 DCLWR model with drivers having the same maximum speed

Let us consider the model (1.5), (1.6), (2.4) under the assumption

vmax
1 = ···=vmax

N =: vmax. (2.12)
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This means that the classes of vehicles are distinguished only by the drivers’ reac-
tion times τi and anticipation lengths Li. Under the assumption (2.12), and defining
e :=(1,··· ,1)T, Dτ :=diag(τ1,··· ,τN) and DL :=diag(L1,··· ,LN), we obtain

J f (Φ)=vmax
(
V(φ)I+V ′(φ)ΦeT

)
, (2.13a)

B(Φ)=−V ′(φ)vmax
(
vmaxφV ′(φ)DτΦ+DLΦ

)
eT. (2.13b)

Under the present assumptions, and setting Φ :=Φ(0) and φ :=φ(0), we obtain

M=vmax
[ i

ξ
V(φ)I+V ′(φ)

( i

ξ
Φ−

(
vmaxφV ′(φ)Dτ+DL

)
Φ
)

eT
]
.

This matrix is a rank-one perturbation of a multiple of the identity matrix I, and its eigen-
values are given by

λ̃1=vmax
[ i

ξ
V(φ)+V ′(φ)

( i

ξ
φ−

(
vmaxφV ′(φ)τT+LT

)
Φ
))]

, (2.14a)

λ̃2= ···= λ̃N =vmax i

ξ
V(φ), (2.14b)

with the corresponding one- and (N−1)-dimensional eigenspaces

V1=
{

w∈C
N : w=α

( i

ξ
Φ−

(
vmaxφV ′(φ)Dτ+DL

)
Φ
)

, α∈R

}
,

V2,···,N =
{

w∈R
N : eTw=0

}
,

so that all Jordan blocks are trivial. On the other hand, the rank-one matrix B(Φ) defined
by (2.13) has the eigenvalues

β1=−V ′(φ)vmax
(
vmaxφV ′(φ)τT+LT

)
Φ, β2= ···=βN =0,

which are the real parts of λ̃1,··· ,λ̃N given by (2.14). We have proved the following
lemma.

Lemma 2.1. Under the assumption (2.12), the stability criterion (2.11) is violated for a vector
Φ :=Φ(0), i.e., the matrix M has an eigenvalue µ with Reµ<0, if and only if V ′(φ)<0 and

(vmaxφV ′(φ)τT+LT)Φ<0, (2.15)

that is, if the matrix B has a negative eigenvalue β1.

3 Parabolicity analysis

We first quote some results from [12, 15] that are needed to establish the stability results
of each of the convective and diffusive terms appearing in (1.6).
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Theorem 3.1 (see [15]). Assume that the components of f (Φ) are given by (1.5), and that the
velocities vmax

i are ordered according to (2.1). If Φ∈D0, then the Jacobian J f (Φ) has N pairwise
distinct real eigenvalues λ1,··· ,λN , and the following interlacing property holds:

vmax
N +V ′(φ)(vmax)TΦ<λN <vmax

N <λN−1<vmax
N−1< ···<vmax

2 <λ1<vmax
1 .

Theorem 3.2 (see [12]). The eigenvalues of B(Φ) are given by µi =−V ′(φ)λi, i = 1,··· ,N,
where

λ1=
C1

2
−
(C2

1

4
−C2

)1/2
, λ2=

C1

2
+
(C2

1

4
−C2

)1/2
, λ3= ···=λN =0,

where we define

C1=
N

∑
k=1

φkvmax
k

(
Lk+τkV ′(φ)(vmax)TΦ

)
, (3.1a)

C2=
N

∑
i,j=1
i<j

φiv
max
i φjv

max
j τiτj

( Li

τi
− Lj

τj
+(vmax

j −vmax
i )V(φ)

)
(vmax

j −vmax
i )V(φ). (3.1b)

A sufficient condition for B(Φ) to have eigenvalues with non-negative real parts only is that
C1,C2>0 and C2

1 6=4C2.

Since C2
1 6= 4C2 generically, we henceforth use C1,C2 > 0 as a sufficient condition for

B(Φ) to have eigenvalues with non-negative real parts only. From the next result we can
obtain reaction times that ensure that the matrix B(Φ) has eigenvalues with non-negative
real parts only with velocity functions V(φ) that satisfy

V(φ)=

{
1, for φ≤φc,

W(φ), for φ>φc,
(3.2)

where W is a function that satisfies W(φc) = 1, W(1) = 0 and W ′(φ)< 0 for φc < φ < 1.
For instance, W(φ) =−Clnφ with φc = φDG gives the Dick-Greenberg model (2.5) and
W(φ)=(1−φ)/(1−φv) produces a variant of the Greenshields model (2.6).

Theorem 3.3. Let vmax
1 ,··· ,vmax

N be free velocities such that vmax
1 > vmax

2 > ···> vmax
N , V(φ) a

velocity function that satisfies (3.2) and

Li= Li(φ)=max
{

Lmin,β(vmax
i V(φ))2

}
, (3.3)

where the parameters Lmin,β>0 are chosen such that

Lmin≤β(vmax
i )2. (3.4)

Then there exist reaction times τi = τ(vmax
i ) for i= 1,··· ,N, where τ(v) is a monotone increas-

ing function and τ1 ≤ Lmin/(vmax
1 κ), with κ =maxφ |φV ′(φ)|, such that the matrix B(Φ) has

eigenvalues with positive real part.
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Note that (3.3) is a multiclass version of the equation

L(φ)=max
{

Lmin,
(v(φ))2

2a

}

proposed in [24] for N=1, where a is the deceleration and Lmin is a minimum anticipation
distance (regardless of how small the velocity is).

Proof of Theorem 3.3. We consider φ> φc, since B(Φ)= 0 otherwise. By Theorem 3.2 it is
ensured that B(Φ) has eigenvalues with non-negative real parts only when C1,C2>0, and
this is in turn guaranteed when

Lk+τkS(Φ)≥0, for all Φ and k=1,··· ,N, S(Φ) :=V ′(φ)ΦTvmax, (3.5a)

∆ij :=
Li

τi
− Lj

τj
+
(
vmax

j −vmax
i

)
V(φ)≤0, for all Φ and 1≤ i< j≤N. (3.5b)

Let φ=φ∗
i be the unique solution of Lmin=β(vmax

i )2V(φ)2, then

Li(φ)=

{
β(vmax

i )2V(φ)2, for φ≤φ∗
i ,

Lmin, for φ≥φ∗
i .

(3.6)

From the assumption (3.4) we deduce that φc ≤ φ∗
i for i= 1,··· ,N. Furthermore, φ∗

i ≥φ∗
j

for i< j. Moreover, S(Φ)=V ′(φ)ΦTvmax≥V ′(φ)φvmax
1 implies that a sufficient condition

for (3.5a) to hold is given by

τi≤
Lmin

κvmax
1

, for i=1,··· ,N. (3.7)

We consider now condition (3.5b). From (3.2) and (3.6) we get

Li

τi
−vmax

i V(φ)=





β(vmax
i )2

τi
−vmax

i , if φ≤φc,

β(vmax
i )2W(φ)2

τi
−vmax

i W(φ), if φc ≤φ≤φ∗
i ,

Lmin

τi
−vmax

i W(φ), if φ∗
i ≤φ≤1,

i=1,··· ,N.

We consider a pair of indices i < j and discuss the cases determined by φ belonging to
[φc,φ∗

j ] (Case 1), [φ∗
j ,φ∗

i ] (Case 2) or [φ∗
i ,1] (Case 3).

In Case 1, if we use the functional form τi =τ(vmax
i ), for some τ to be determined, and

denote

ψ(v,φ) :=
β(vW(φ))2

τ
−vW(φ),
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then ∆ij =ψ(vmax
i ,φ)−ψ(vmax

j ,φ). If ψv≤0 then ∆ij ≤0 for i< j, and this is equivalent to

τ′≥ 2τ

v
− τ2

v2 β̃
, β̃ := β̃(φ) :=βW(φ).

We consider µ(v)=vnτ(v), with n to be determined so to simplify the latter expression

µ′=nvn−1τ+vnτ′≥nvn−1τ+vn
(2τ

v
− τ2

v2 β̃

)
=nvn−1τ+2vn−1τ− vn−2τ2

β̃
.

We take n=−2 so that this expression yields

µ′≥−v−4τ2

β̃
=−µ2

β̃
=⇒ µ′

µ2
=−

( 1

µ

)′
≥− 1

β̃
=−

( v

β̃

)′
,

and, upon integration and some algebra,

τ=v2µ≥ β̃v2

v+A (3.8)

for some positive A to avoid null denominators.

In Case 2, and taking into account that Lmin≥β(vmax
j )2W2 for φ≥φ∗

j , we get

∆ij =
Li

τi
−vmax

i W(φ)−
( Lj

τj
−vmax

j W(φ)
)

=
β(vmax

i )2W(φ)2

τi
−vmax

i W(φ)−
( Lmin

τj
−vmax

j W(φ)
)

≤β(vmax
i )2W(φ)2

τi
−vmax

i W(φ)−
(β(vmax

j )2W(φ)2

τj
−vmax

j W(φ)
)

.

As in Case 1, if τ satisfies (3.8) then ∆ij ≤0.
In Case 3 we get

0≥ Lmin

τi
−vmax

i W(φ)−
( Lmin

τj
−vmax

j W(φ)
)

=Lmin

( 1

τi
− 1

τj

)
−W(φ)

(
vmax

i −vmax
j

)
. (3.9)

Since W(1)=0 and vmax
i >vmax

j , (3.9) holds if and only if τi ≥τj.

Recapitulating, we deduce that (3.5b) holds if τi =τ(wi) with τ satisfying

τ≥ βW(φ)v2

v+A , for all φ, τ′≥0,
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and, since W(φ)≤1, this is equivalent to

τ≥ βv2

v+A , τ′≥0. (3.10)

We consider the increasing function

τ̃(v) :=
βv2

v+A
for A>0 that certainly satisfies (3.10). Therefore, to ensure that B(Φ) with τi= τ̃(wi) has
eigenvalues with non-negative real parts only, we use (3.7), so we need to find conditions
on A so that

βv2

v+A ≤ Lmin

κvmax
1

⇐⇒βv2− Lmin

κvmax
1

(v+A)≤0, for all 0≤v≤vmax
1 . (3.11)

The roots of

βv2− Lmin

κvmax
1

(v+A)=0

are

w±=
1

2β

[ Lmin

κvmax
1

±
(( Lmin

κvmax
1

)2
+4β

Lmin

κvmax
1

A
)1/2]

and (3.11) will hold if w− ≤ 0 (which is true) and vmax
1 ≤ w+, which yields after some

algebraic manipulations

β(vmax
1 )2≤ Lmin

κ
+

Lmin

κvmax
1

A=⇒A≥
(κβ(vmax

1 )2

Lmin
−1

)
vmax

1 >0.

This concludes the proof.

4 Numerical examples

In the subsequent series of examples, we solve the system (1.6) numerically for 0≤ t≤T
and 0≤ x<L along with the initial and periodic boundary conditions

Φ(x,0)=Φ0(x), 0≤ x<L; Φ(0,t)=Φ(L,t), for 0≤ t≤T,

corresponding to a circular one-directional road of length L. Numerical approxima-
tions are obtained by the Kurganov-Tadmor (KT) scheme [20] applied to the DCMCLWR
model. In fact, Kurganov and Tadmor [20] explicitly propose a version of their scheme
for convection-diffusion problems of the type (1.6), even though a well-posedness anal-
ysis for systems of PDEs of this type is not available in the strongly degenerate case.
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In [5] the same method was applied to (1.6) in the context of a model of polydisperse
sedimentation. To further support the use of the KT scheme, we mention that numerical
experiments conducted in [12] indicate that the KT scheme, a class of schemes introduced
in [7] and based on MUSCL-type spatial differencing and Runge-Kutta temporal differ-
encing and an alternative implicit-explicit (IMEX) scheme designed for (1.6) that involves
a spectral WENO scheme for the convective part converge to the same solution of (1.6) as
∆t, ∆x→0 (under suitable CFL conditions). In some examples we will compare the per-
formance of the KT scheme with that of one of the schemes introduced in [12], namely the
scheme IMEX-RK(3,4,3), and Scheme 10 introduced in [7]. The latter scheme is originally
defined for (1.4) and is adapted to (1.6) by adding the same discretization of ∂x(B(Φ)∂xΦ)
as that of the KT scheme.

In the following numerical examples, and unless otherwise stated, the x-interval [0,L]
is subdivided into M=3200 subintervals of length ∆x=L/M. We denote by ∆t the time
step used to advance the numerical solution from time t= tn to tn+1 = tn+∆t and by Φn

j
the vector of numerical solutions associated with cell [j∆x,(j+1)∆x), j= 0,··· ,M−1, at
time tn. For each iteration, the time step ∆t is determined anew by using the following
formula (derived from a linearized CFL condition):

∆t

∆x
max

0≤j≤M−1
̺
(
J f

(
Φn

j

))
+

∆t

2∆x2
max

0≤j≤M−1
̺
(

B
(
Φn

j

))
=Ccfl1

for the KT scheme and Scheme 10 of [7], and

∆t

∆x
max

0≤j≤M−1
̺
(
J f

(
Φn

j

))
=Ccfl2

for IMEX-RK(3,4,3), where ̺(·) is the spectral radius. In the numerical examples we
choose Ccfl as the largest multiple of 0.05 that yields oscillation-free numerical solutions
when these are expected to be so.

Finally, in some of the examples we present approximate L1 errors to illustrate the
convergence properties of the numerical scheme. As in [12], these approximate errors
are computed as follows: Let us denote by (φM

j,i (t))
M
j=1 and (φref

l,i (t))
Mref

l=1 the numerical
solution for the i-th component at time t calculated with M and Mref cells, respectively.
We use cubic interpolation from the reference grid to the M cells grid to compute φ̃ref

j,i (t)
for j=1,··· ,M. We then calculate the approximate L1 error of class i by

ei(t) :=
1

M

M

∑
j=1

∣∣φ̃ref
j,i (t)−φM

j,i (t)
∣∣, i=1,··· ,N.

We define the total approximate L1 error at time t as etot(t) := e1(t)+···+eN(t).

4.1 Example 1 (DG model, N=4, stable behaviour)

In Example 1 we consider the DG velocity function (2.5), a circular road of length L=
10mi, N=4 driver classes with the respective preferential velocities vmax

1 =60mi/h, vmax
2 =
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Figure 1: Example 1 (DG model, N=4): (a) initial datum (4.2) and (b–f) numerical solution at simulated times
(b) t=0.08h, (c) t=0.2h, (d) t=0.3h, (e) t=9h and (f) T=50.0h.

55mi/h, vmax
3 =50mi/h and vmax

4 =45mi/h, and a uniform minimum anticipation length
Lmin = 0.03mi. The reaction times are chosen such that the eigenvalues of the diffusion
matrix B(Φ) have non-negative real parts for Φ ∈ D0 ⊂ R4. According to (3.1) this is
ensured if the parameters τ1,··· ,τN satisfy the following condition:

τ1≤
Lmin

Cvmax
1

; τi ≤
(vmax

i

vmax
i−1

)2
τi−1, i=2,··· ,N. (4.1)

To satisfy (4.1) here, we choose τ1 = 0.0013h, τ2 = 0.0011h, τ3 = 0.0008h and τ4 = 0.0006h.
Fig. 1 shows the evolution of the initial traffic ”platoon” given by

Φ0(x,0)= p(x)




0.2
0.3
0.2
0.3


, p(x)=





10x, for 0< x≤0.1,

1, for 0.1< x≤0.9,

−10(x−1), for 0.9< x≤1,

0, otherwise.

(4.2)
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We observe that the system tends to a stationary constant solution.

4.2 Examples 2–5 (DG model, N=2, unstable behaviour)

In Examples 2 to 5 we consider the DG model (2.5), a circular road of length L=2mi, and
N = 2 driver classes. The preferential velocities of the two classes are given by vmax

1 =
80mi/h and vmax

2 = 30mi/h, and a minimum anticipation distance Lmin = 0.03mi. For
Example 2, the parameters τ1=0.00096h and τ2=0.0025h have been chosen in such a way
that the condition for the PDE (1.3) (for N=1) to be parabolic for φ>φc, namely

τ≤ L

|φV ′(φ)|vmax
, for φc≤φ<1 (4.3)

is satisfied by both triples (vmax,L,τ)=(vmax
i ,Li,τi), i=1,2, but that at the same time C2<0

in a subregion of D0. In Fig. 2 we show a numerical example obtained for these values of
parameters in which φ1 and φ2 initially have disjoint support, i.e., drivers of both classes
are well separated. The ”convoys” of both species initially evolve according to the scalar
model studied in [8, 23, 24], see Figs. 2(a-c). As soon as both classes enter in contact,
unstable solution behaviour emerges, as can be seen in the oscillatory part of the solution
visible in Fig. 2(d).
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Figure 2: Example 2 (DG model, N = 2): (a, b, c) stable behaviour for individual driver classes (spatially
separated), followed by (d) unstable behavior for mixed driver classes.
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Figure 3: Examples 2–8 (DG model, N= 2). Stability region for the diffusion matrix B and instability region
for M for ξ∈ [0,100] for (a) Examples 2–5, (b) Examples 6–8.
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Figure 4: Examples 3–5 (DG model, N=2): Simulations for different initial conditions which lie in the stability

or instability region (cf. Fig. 3): (a, b) φ0
1 = φ0

2 = 0.15 (Example 3), (c, d) φ0
1 = φ0

2 = 0.4 (Example 4), (e, f)

φ0
1 =φ0

2 =0.25 (Example 5).

To ensure the parabolicity condition, we choose reaction times according to (4.1) by
setting τ1 =0.0008h and τ2 =0.0011h in Examples 3–5. As in Example 2, we observe that
with these reaction times each driver class is associated with stable behaviour when the
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respective other class is absent. In Fig. 3(a) we describe a stability region in the (φ1,φ2)-
plane (phase space) corresponding to points at which the real parts of the eigenvalues of
B(Φ) are positive. This is a subregion of R2

+ bounded by curves C1(Φ)=0 and C2(Φ)=0.
Next, we choose the initial condition

φi(x,0)=φ0
i +δφ0

[
cosh−2

(320

L
(

x− 5L
16

))
−0.25cosh−2

(40

L
(

x− 11L
32

))]
, (4.4)

for i= 1,2 (similar to the one proposed in [29]), where δφ0 is the amplitude of perturba-
tion; we here choose δφ0=0.08. We select the initial density Φ0 in the different regions and
compute the solution until a finite time. For the initial conditions φ0

1 =φ0
2 = 0.15 (Exam-

ple 3) or φ0
1=φ0

2=0.4 (Example 4) (Figs. 4(a-d)), which lie both in the instability region, we
observe that amplitudes present in the initial datum are expanded but remain bounded in
the instability region, while the frequencies are extended to maximum frequency. When
φ0

1 =0.25 and φ0
2 =0.25 in the stability region (Example 5), simulations (Figs. 4(e) and (f))

show that amplitudes of the disturbance decrease with time, and that the corresponding
frequency of oscillation does not increase. In both cases, initial perturbations generate
waves traveling downstream and upstream.

4.3 Examples 6–8 (DG model, N=2, mildly unstable behaviour)

We continue using the DG model (2.5), consider a circular road of length L=4mi and em-
ploy vmax

1 =80mi/h, vmax
2 =30mi/h, τ1=0.00095h, τ2=0.00075h and Lmin=0.01mi. For this

choice of parameters, we observe in Fig. 3(b) that the instability region of M=M(Φ,ξ) is a
subset of the stability region of B, which indicates that bounded or unbounded instabili-
ties could be generated even when the parabolicity conditions (3.1) are satisfied. As in the
last example, we choose two initial conditions close to the instability region. We display
numerical solutions for different initial conditions. We observe in Fig. 5 that an initial per-
turbation is split into two waves, a wave traveling downstream which decreases rapidly
in amplitude, and another wave traveling upstream which can cause traffic instability
depending on the initial condition. For φ0

1 =0.04 and φ0
2 =0.47 (Example 6) and an initial

perturbation with amplitude δφ0=0.03 which does not lie in the instability region for M,
waves traveling upstream and downstream decrease in amplitude until a steady state is
nearly reached. Numerical solutions are displayed in Fig. 5.

For φ0
1 = 0.12 and φ0

2 = 0.4 (Example 7) and an initial perturbation with amplitude
δφ0 = 0.01, which lie in the instability region for M, waves traveling downstream de-
crease in amplitude, while waves traveling upstream grow in amplitude and until some
frequency, which cause traffic instabilities. Numerical solutions at different times are
displayed in Fig. 6. Phase space diagrams are also shown in order to display how insta-
bilities may be triggered. In Table 1 we calculate total approximate L1 errors and CPU
times at time t= 0.03h for two different numerical schemes. The reference solution was
calculated using the KT scheme with M=12800 subintervals. This information indicates
that the numerical solutions produced by all three schemes converge to the same solution
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Figure 5: Example 6 (DG model, N=2). Unperturbed initial state in stability region of B and initial perturbation
in stability region of B and partially in instability region of M: (a, b) initial datum and numerical solution at
t= 0.1h; (c, d) phase plane plots of (c) the initial datum and (d) the numerical solution for t= 0.1h; (e, f)
numerical solution for 0≤ t≤0.1h.

as ∆t,∆x→0. In particular, the oscillations visible in the numerical solution (see Figs. 6(a)
and (b)) are not artifacts produced by the numerical scheme. That the oscillations are not
a numerical artifact is further supported by Fig. 7, where we compare the numerical solu-
tions obtained for M=1600 with all three schemes with the reference solution, obtained
by the KT scheme with Mref=12800.

In Example 8 we choose the constants φ0
1 = 0.05 and φ0

2 = 0.5, which lie in the stabil-
ity region, and add an initial perturbation with amplitude δφ0 = 0.05 so that the initial
function (φ1(x,0),φ2(x,0))T defined by (4.4) assumes values that are in the instability re-
gion for B(Φ). In the numerical solution (see Fig. 8) we observe that waves traveling
upstream generate a wave that decreases in amplitude, and we also observe instabilities
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Figure 6: Example 7 (DG model, N=2). Unperturbed initial state and initial perturbation in stability region of
B and in instability region of M: (a, b) initial datum and numerical solution at t=0.1h; (c, d) phase plane plots
of (c) the initial datum and (d) the numerical solution for t=0.1h; (e, f) numerical solution for 0≤ t≤0.1h.
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Figure 7: Example 7 (DG model, N = 2): comparison of reference solution (Mref = 12800) with approximate
solutions computed by schemes KT and IMEX-RK(3,4,3) [12] and Scheme 10 of [7] with M=1600.
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Table 1: Example 7 (DG model, N=2): approximate total L1 errors and CPU times at time t=0.03h for the
KT scheme with Ccfl1

=0.1, scheme IMEX-RK(3,4,3) [12] with Ccfl2
=0.6 and Scheme 10 of [7] with Ccfl1

=0.25.

IMEX-RK(3,4,3) KT Scheme 10
M error CPU time [s] error CPU time [s] error CPU time [s]

400 1.7e-3 1.92 1.8e-3 2.29 2.3e-3 0.34
800 1.4e-3 6.60 1.7e-3 9.92 1.9e-3 1.23
1600 9.3e-4 25.74 1.2e-3 55.94 1.4e-3 5.02
3200 2.9e-4 105.91 8.9e-4 308.26 9.1e-4 26.41

Table 2: Example 8 (DG model, N = 2): approximate total L1 errors and CPU times at time t = 0.03h for
the KT scheme KT with Ccfl1

= 0.1, scheme IMEX-RK(3,4,3) [12] with Ccfl2
= 0.6 and Scheme 10 of [7] with

Ccfl1
=0.25.

IMEX-RK(3,4,3) KT Scheme 10
M error CPU time [s] error CPU time [s] error CPU time [s]

400 3.1e-4 2.52 4.9e-4 4.05 6.7e-4 0.36
800 1.2e-4 10.60 2.4e-4 16.82 2.5e-4 1.31
1600 5.3e-5 39.43 8.9e-5 87.65 9.3e-5 6.33
3200 2.3e-5 145.04 2.8e-5 490.67 4.5e-5 30.24

that remain controlled. In Table 2 we calculate total approximate L1 errors and CPU times
at time t= 0.03h for three different numerical schemes. This table indicates that oscilla-
tions present in the numerical solution (cf. Figs. 8(a) and (b)) are not produced by the
numerical scheme.

4.4 Examples 9–11 (GS model, N=4 and N=2)

Now, we consider a DCMCLWR model with the Greenshields (GS) velocity function (2.6)
and assume that B(Φ) is given by (2.7) with the perception threshold φc=0.05. In Exam-
ple 9 we choose N=4 and vmax

1 =60mi/h, vmax
2 =55mi/h, vmax

3 =50mi/h, vmax
4 =45mi/h

and Lmin=0.03mi. The reaction times are chosen such that the eigenvalues of B(Φ) have
positive sign. In fact, we ensure that (3.1) holds by choosing τ1 = 0.0005h, τ2 = 0.0004h,
τ3 = 0.0003h and τ4 = 0.0002h. Fig. 9 shows a time evolution of the initial concentration
platoon to a final (nearly) constant steady state reached at t=50h.

To analyze chaotic behaviour, we consider in Example 10 a circular road of length 4mi

Table 3: Example 10 (GS model, N=2): approximate total L1 errors and CPU times at time t=0.03h for the
KT scheme with Ccfl1

=0.05, scheme IMEX-RK(3,4,3) [12] with Ccfl2
=0.6 and Scheme 10 of [7] with Ccfl2

=0.1.

IMEX-RK(3,4,3) KT Scheme10
M error CPU time [s] error CPU time [s] error CPU time [s]

400 2.1e-3 2.12 2.5e-3 4.05 8.1e-3 2.54
800 1.8e-3 9.12 2.0e-3 67.80 4.4e.3 12.08
1600 1.4e-3 47.38 1.9e-3 274.75 2.1e-3 50.45
3200 7.2e-5 205.44 1.0e-3 1059.48 1.0e-3 253.94
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Figure 8: Example 8 (DG model, N=2). Unperturbed initial state in stability region of B and large-amplitude
initial perturbation partially in instability region of B: (a, b) initial datum and numerical solution at t=0.1h; (c,
d) phase plane plots of (c) the initial datum and (d) numerical solution for t= 0.1h; (e, f) numerical solution
for 0≤ t≤0.1h.

and interaction between N = 2 classes with the respective free velocities vmax
1 = 60mi/h

and vmax
2 =30mi/h with an anticipation distance Lmin =0.01mi. Instabilities occur when

we choose reaction times as τ1 =0.0024h and τ2 =0.0008h. In Fig. 10 we display the sta-
bility region for the diffusion matrix B(Φ) and the instability region for the matrix M. As
for the Dick-Greenberg model, we choose two different initial conditions and show that
traffic instabilities can occur. In Fig. 11 we display a time evolution of an initial condition
with φ1 = 0.2 and φ2 = 0.23 and a perturbation with amplitude δφ0 = 0.02 in the insta-
bility region (Example 10). We observe that the solution is a wave traveling upstream
which grows in amplitude and frequency. We also observe that those instabilities remain
controlled, both in amplitude and frequency. We provide in Table 3 and in Fig. 12 infor-
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Figure 9: Example 9 (GS model, N= 4): (a) initial datum and solution at simulated times (b) t= 0.08h, (c)
t=0.2h, (d) t=0.3h, (e) t=9h and (f) t=T=50.0h.
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Figure 11: Example 10 (GS model, N= 2). Unperturbed initial state and small-amplitude initial perturbation
in stability region of B and in instability region of M: (a, b) initial datum and numerical solution at t= 0.1h;
(c, d) phase plane plots of (c) the initial datum and (d) the numerical solution for t= 0.1h; (e, f) numerical
solution for 0≤ t≤0.1h.
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Figure 12: Example 10 (GS model, N=2): comparison of reference solution (Mref =12800) with approximate
solutions computed by schemes KT and IMEX-RK(3,4,3) [12] and Scheme 10 of [7] with M=800.
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Figure 13: Example 11 (GS model, N = 2): Unperturbed initial state in stability region of B and initial
perturbation in stability region of B and in instability region of M: (a, b) initial datum and numerical solution
at t=0.1h; (c, d) phase plane plots of (c) the initial datum and (d) the numerical solution for t=0.1h; (e, f)
numerical solution for 0≤ t≤0.1h.

mation similar to that of Table 1 and Fig. 7 for Example 7, illustrating that also for this
case, the oscillations observed are not a numerical artifact and that all three numerical
schemes apparently approximate the same solution.

In Fig. 13 we display a time evolution of an initial condition with φ1=φ2=0.18 and a
perturbation with amplitude δφ0 =0.05 in the stability region of B but with some values
in the instability region of M (Example 11). We observe that the solution consists of two
waves traveling downstream and decreasing in amplitude.

4.5 Examples 12 and 13 (DG model, N=5, drivers having the same maximum
speed)

In Example 12 we consider a circular road of 10mi and choose N = 5 classes of drivers
with the same free velocities vmax = 50mi/h. To satisfy the parabolicity condition
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Figure 14: Example 12 (DG model, N=5, drivers having the same maximum speed): (a, b) total concentration
at different times, (c, d) individual concentrations and enlarged views at times (c) t=0.025h and (d) t=0.1h.
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Figure 15: Example 13 (DG model, N= 5, drivers having the same maximum speed): instabilities may occur
when the parabolicity condition (2.11) is not satisfied.

(2.11), it is sufficient to choose reaction times τi and anticipation distances Li such that
τi ≤ Li(|φV ′(φ)|vmax)−1 for i = 1,··· ,N. We employ the DG velocity function (2.5) and
choose the reaction times and anticipation distances given in Table 4. Fig. 14 shows a
time evolution of the initial concentration platoon Φ0(x,0) = p(x)(0.2,0.2,0.2,0.2,0.2)T ,
where p(x) is given in (4.2), for which stable behavior is observed.

When condition (2.11) is not satisfied, unstable behavior with non-controlled oscilla-
tions appears. As an example (Example 13) we consider the same initial platoon as in the
previous example but we choose τ2=0.00104h. Simulations are displayed in Fig. 15.
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Table 4: Example 12 (DG model, N = 5, drivers having the same maximum speed): reaction times and
anticipation distances.

i 1 2 3 4 5
Li[mi] 0.006 0.012 0.03 0.008 0.028
τi[h] 0.00028 0.00052 0.00132 0.00036 0.00122

4.6 Example 14 (Daganzo’s test, N=4)

We finish this numerical section with a test proposed by Daganzo in [13]. In that pa-
per, the author argues that second-order (scalar) partial differential equations modelling
traffic flow will give negative fluxes, i.e., cars moving backwards, at traffic jams. To per-
form a multiclass test that corresponds to this situation, we specify zero-flux boundary
conditions and set up the following initial condition:

Φ(x,0)=

{
ΦL, for x<0,

ΦR, for x>0,
(4.5)

where ΦL = 0 and ΦR is such that φR = 1. This initial condition prescribes an initially
stopped traffic after some point (x= 0) and no cars behind it. This density distribution
should be a stationary solution for the model, but, as Daganzo predicts in [13], the nu-
merical scheme applied to our model and this initial condition produce a smearing of
the profile around x=0, i.e., cars move backwards, see the dashed numerical solution in
Fig. 16.

Nevertheless, the analysis in [13] is performed for linear diffusion, but our model
yields strongly degenerate, nonlinear diffusion terms. Therefore, we can modify the nu-
merical scheme for preventing this smearing as the following reasoning indicates: A sta-
tionary solution for the KT scheme satisfies

f̂ j+1/2=
(

B(Φ)∆Φ
)

j+1/2
,

where f̂ j+1/2 and (B(Φ)∆Φ)j+1/2 are the numerical convective and diffusive fluxes,
respectively, of the KT scheme defined at the boundary between cells centered at xj and
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Figure 16: Example 14 (Daganzo’s test): solutions with the original DG velocity and modified velocity.
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xj+1, where xj = j∆x and j∈Z. The function (4.5) would be a stationary solution if

f̂ j+1/2=0 (4.6)

and
(

B(Φ)∆Φ
)

j+1/2
=0. (4.7)

Since the total concentration of (4.5) is zero for x < 0 and one for x > 0, the physical
convective fluxes are 0 for Φ in (4.5). If no artificial viscosity is added to numerical fluxes,
then (4.6) holds for (4.5). One therefore deduces that condition (4.7) is sufficient for (4.5)
to be a stationary solution for the numerical scheme. Since the discretization of the latter
is

∆x

2

(
B(Φj)+B(Φj+1)

)
(Φj+1−Φj),

it is then sufficient that B(Φj)=0. Since the latter is proportional to V ′(φj) and either φj=0
or φj=1, this would be ensured if V ′(0)=V ′(1)=0. The first requirement is satisfied for
the DG velocity (2.5) and the second one could be obtained by modifying the velocity
function. We have performed the modification to the KT scheme in this manner and
obtained that (4.5) is indeed a stationary solution for the numerical scheme (see Fig. 16).

5 Conclusions

We have analyzed the stability of a diffusively corrected multiclass Lighthill-Whitham-
Richards (DCMCLWR) traffic model that takes into account anticipation lengths and re-
action times. The basic result is that to achieve stability, defined in terms of the linearized
version (2.8) of (1.6), it is not sufficient to ensure that the diffusion matrix B has eigen-
values with positive real parts; rather, one also has to consider a contribution from the
convective part defined by the Jacobian J, multiplied by i/ξ. Thus, it is not possible in
general to identify stable or unstable solution behaviour with a particular type of (1.6),
unless we consider the special cases J = 0, J being a rank-one perturbation of a multi-
ple of I (as for the case of equal free velocities discussed in Section 2.3) or B= 0 (as for
the standard MCLWR model). This contrasts, for example, with the stability analysis of
a model of polydisperse sedimentation [9], whose governing equations can be written
as (1.4), and for which a stability analysis similar to the one conducted in Section 2.2
shows that a criterion for stable segregation (formation of horizontal concentration inter-
faces that move vertically), introduced in [2] for N = 2 and supported by experimental
results, is equivalent to hyperbolicity of (1.4). The experiments show that stable behav-
ior is obtained when the eigenvalues of M have positive real parts and that instabilities
may be triggered otherwise, although the nonlinear character of the equations stabilizes
some initial traffic configurations that would explode under the linearized equations. The
nonlinearities also help to control the amplitude (and in some cases the frequency) of in-
stabilities in the simulations. While we associate oscillations in the numerical solution
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with unstable behaviour in general, we distinguish between situations where there is a
blow-up of frequency (such as in Examples 2, 3, 4 and 13), which means that violations of
the stability condition lead to strongly oscillating solutions (akin to those studied in [6]),
and situations of mildly unstable behaviour (such as the ones observed in Examples 5
to 8 and 10) with finite frequencies of oscillation, and where numerical solutions can be
interpreted as the formation of stop-and-go waves (although the latter phenomenon is
usually associated with much larger amplitudes, cf. e.g., [28, 29]).

The present model, the stability analysis and its numerical simulations allow us
to draw some conclusions of stable and unstable traffic flow caused by heterogeneous
drivers’ behaviour. To elucidate this issue, let us first point out that the condition (4.3),
which is precisely the condition for the scalar equation (1.3) to be (degenerate) parabolic,
is very similar to the condition (1.8) derived in [29]. While it is plausible that traffic flow
is stable, and for instance free of marked stop-and-go waves, if reaction times of drivers
are sufficiently small, our analysis leads to a further conclusion for N ≥ 2. Namely, for
that case it turns out that to ensure stable traffic flow it is not sufficient so require that
(4.3) be satisfied with L, τ and vmax replaced by Li, τi and vmax

i for i = 1,··· ,N. This is
vividly illustrated in Example 2: two populations of drivers may produce stable traffic
flow when separated spatially, however, when they start to ”mix”, then instabilities oc-
cur. This behaviour is essentially produced by the fact that the larger reaction time τ2 of
Species 2 (in Example 2) in not sufficiently small in presence of the significantly faster
drivers of class 1. In fact, in view of the assumption (2.1) the criterion (4.1) states that the
eigenvalues of B have non-negative real parts (a condition necessary, but in general not
sufficient, to ensure stability of traffic flow) if the reaction time τi of drivers of a given
class i is adapted to the velocities of drivers of the faster classes 1 to i−1. In particular,
(4.1) means that τ1≥τ2≥···≥τN .

Finally, we remark that in the numerical examples the reaction times have been cho-
sen relatively high (up to the value of τ2 = 0.0025h= 9s in Example 2). The authors are
well aware that these values are not representative for real-world traffic flow, where re-
action times of about τ = 1s are realistic (cf. e.g., [35, 36]), but for non-attentive drivers
the reaction time may be substantially larger. Moreover, Nelson [23] employs τ= 2s for
his order-of-magnitude study, and Ngoduy and Tampere [29] study the effect of reaction
time on flow stability for several values of τ up to τ = 2s. However, we have not made
the effort in this paper to maximally adjust parameters to real systems, but rather chose
the parameters in such a way that the effects of instability become well visible. That said,
it should be pointed out that the choices of reaction times alone do not determine stable
or unstable behaviour; the key information is expressed by the spectrum of the matrix
M(Φ,ξ) defined in (1.7), and this spectrum decisively depends not only on the parame-
ter vectors L, τ and vmax, but also on the choice of the function V(φ) via its derivative
V ′(φ), which is present in the parabolicity or stability bounds (2.15) and (4.3) and in
Theorem 3.3. For the latter function we have used the simple given functional forms (2.5)
and (2.6); other choices of V(φ), especially those with large values of V ′(φ), possibly give
rise to appreciable instability phenomena at more realistic reaction times. In light of the
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comments made in Section 2.2, evaluation of the instability criterion (2.11) unfortunately
requires analyzing the spectrum of M(Φ,ξ), unless we are in the special case of equal
preferential velocities (Section 2.3), where Lemma 2.1 provides an easily applicable crite-
rion to decide whether traffic instabilities are excluded (which occurs if (2.15) cannot be
satisfied).
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