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Absatract

In this paper, we reduce the 1-D, 2-D and 3-D inverse scattering problems of the
wave equation into the nonlinear integral equation. The iteration for solving the above
integral equations has been considered.

§1. Introduction

There are sevgral works about the inverse scattering problem of the wave equation [1-5].
In (4] and |5]; the characteristic iteration for solving 1-D, 2-D and 3-D inverse scattering
problems to determine potential have been given. In this paper, by the method of [4] and
[5], we reduce the above inverse problem to the nonlinear integral equation. In the 1-D case,
the integral equation is of second kind. In 2-D and 3-D cases, the integral equations are
‘Radon’s interesting integral geometry problem.

The integral equation in this paper will be useful for the theoretical and numerical
analysis and application of the above inversion.

The iteration for solving the above integral equation 1s considered. Moreover, we perform
several simulative numerical calculations in the 1-D and 2-D scattering inversions and get
excellent numerical results.

We shall first deal with the nonlinear integral equation in 3-D. Then we will describe
the nonlinear integral equation in 1-D and 2-D. A description of the parallel iteration for
solving the above nonlinear integral equations is given in Section 4. Our numerical results
are presented and discussed in Section 5.

§2. $—D Inverse Scattering Potential Problem
and Its Nonlinear Integral Equation

2.1 Basic equation and its scattering inversion

3%u 3%y | 9%*u  *u | | B
gt2 dz? = Oy? * 332] gl s 2)u =0, .
(z,y,2) € B2 x RY, t>0, (2.1)

u(z,y,2,t) =0, (z,y,2) € REx RY, t<0 (2.2)

f—
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g-;(mr y:[_]: t) = 5(’:: y,t], (:II, y) € R21 t20. | (2'3)

To recover g(z,y, z) from measured data on the surface boundary

1 8{(t — V22 +¢?)
27 Jgﬁ-[-yﬂ

will be called the inverse scattering potential problem of 3-D wave equation, where §(-) is
the generalized delta function, and ¢(z,y,2) > 0 is a continuous function.

u(z,4,0,¢) = f(z,y,t) = ~ +fs(zyt)  (2.4)

2.2 The properties of the solution

Lemma 2.1. For q(x,y,2) € C(R? x Rt), the solution of (2.1)-(2.3) can be decomposed
to |

1 6t - /22 + 42 + 2%}

u(z,y,2,t) = R = o - Fu(z, y, 2,t), (2.5)

where v(z,y, 2, t) satisfies

v (3% 3%y 3% 1 §(t — /2% + y* + 22)
w_(amz 'ﬁyg '.332)+q(zlyiz)u_EQ(mly!z) \/:::3+y2+z2

(z,y,2) € B2 x Rt, t>0, (2.6)

v(z,y,2,t) =0, (z,y,2) € R*x RY, t<0, r_ (2.7)

> %

-é;(z, v,0,t) =0, (z,y)€R? t>0. (2.8)
Proof. Let

1 6{t — /2% + 42 + 22)
2 /2?4 y2+22

Since u; is a solution of (2.1)—(2.3) when ¢(z, y, ) = 0, by substituting (2.5) into (2.1)-(2.3},
(2.6)—(2.8) can be obtained immediately.

t, =

2.3 Nonlinear Integral Equation of 3—-D

Theorem 2. Suppose that g(z,y,2) € C(R? x R*). Then the 3-D inverse scattering

problem for determining q(z, y, 2) from (2.1)—(2.4) will be reduced to the following nonlinear
integral equation: .

1 2 2 2y . d
2“.2[1::2 - (Iﬂ =4 yz)] c/.-/;[[m,y];t]IQ(fj o S.)(E e ] ]snle]dﬂ ¢

i v(€,n, 6t~ V(€= 2)2 + (n — y)2 + ¢2)
o -/-/;?I(z.yl:t] e VI(E-2)? + (n—y)?+¢2

where S[(z,y);t] denotes the half ellipsoid and D|(z, y);t] ss its body.

dédnd¢ + fs(z,y,t),
(2.9)
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Proof. By [4], |[5] convolute both sides of (2.5) about ¢ by A

1 6(t —/(z~ €)%+ (yv—n)°+ 27) |
2 - &2+ (y-n>+22 e

and then integrate on both sides of (1.5) ;

'Bzu - 8% |
] / / [EE = a o -——) + q(m Y, z) ] x, wdzdydz |
§ v 2 2 2
= —/ f / lq(=, y,z)ﬁ( Va? +y? +2%) %y w] dzdydz. (2.11)
T Jo —oo ¢ ~ 00 \/Ig-i-yﬂ-!-zg

Integrating by part and by [6], we have

f f v *y —-—d:l:dy / f [ T,y,z)v % wdzdydz

X (V%2 + y? j— zz\/(z — €)2 + (5 — y)? + 22)" ! }dzdydz.

w(z,y,2,t€,n) =

(2.12)

Changing the positions of (z,y,2) and (£,n,¢) in {2.11) and using the property of w, we
have

® 1™ 1 glnglull nsd ~ VIE— 2] +n - 9P 427
u(z:ynﬂ,t) ZWt[ﬂ ‘/;m -[-un \/(f_I)Z_*_ s )g_i_s_g | dfdﬂdf

5t - VE TP + - VE- 2P+ -9 +¢F)
42 ./ / ,/ a{&, 1, ¢) \/52 + 02+ 2 (E—2)2 + (7 — y)? +¢2 dgands.

(2.13)
Introduce spherical coordinates
VTR, n=VE- Pt - (214
Then &
r+ry=t and ¢>0. (2.15)

Denote the half ellipsoid of revolution by the ellipse. The above half elhpsmd and its body
will be denoted by S|(z, y);t], and D[{z,y); t| respectively. -
Finally, we have

1
22 12 — (22 + y?)

s l u(ﬁ:’?:f:t_\/(‘S_I)E+(ﬂ_y)2+§2) | >
m o Tl T ey agdndt + il

ff [g(&,m,¢) (€2 + n® + ¢?) sin 8]dddg
SHES TR
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§8. Nonlinear Integral Equation of Inverse Scattering
Potential Problems of 1-D and 2-D

3.1 The inverse scattering problems in 1-D and 2-D

Just as in the 3-D case, the inverse scatiering potential problems mn 1-D and 2-D are
to recover g(z) in 1-D and ¢(z,y) in 2-D from measured data on the boundary. Note that
. the point impulse source on the boundary in 1-D 1s

du
el — > 3.1
0,0 =8(0), t20, ()
and in 2-D is
ou +
To(#0,1) = 6(z,1), (zt)€ Rx RY, (5.2
The measured data on the boundary in 1-D is
u(0,t) = —H(t) + fslt), t>0, (3.3)
and in 2-D 1s
1 H(t— |z})
— } R+. 3.4
t&(z,’ﬂ, t) " JE =[] fs(z,t), (z,t) € R x (3.4)
3.2 Nonlinear Integral Equation of Inverse Scattering Problems in 1-D and
2-D |

Theorem 2. Suppose that gq(z) € C{0,00), then the snverse scatiering problem for
determining g(z) in 1-D can be reduced to the follouing nonlinear integral equation

- - 32 g
o)~ 2 [ a(eule, 22 - §)dg = 2552 (23), - 65)
where w(z,t) satisfies
2 2
33:: ‘:;: + g(z)w = q(z)é(t ~z), t20, z>0, (3.6)
w(z,t)=0, t<0, z2>0, - (3.7)
dw '
5-(08) =0, t20. (3.8)

Proof. Omitted.

Theorem 3. Suppose that g{z,y) € C(Rx R™"), then the £-D snverse scattering potential
problem unll be reduced io

1 -/ & o dr
"r—i.[-/;}hr,t] (¢, m) ViE=2) +1? Vit—71)2— (2 +n2) /7% — (£ - z)2 + n? g

B l t—4/¢?+n? U(E, l'},t—'r) ' '
7 '/:[Dlml i 8 VE=z)i+72 /T - [(6-=)2+ ﬂﬂd AT IR i
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where D|z,t] denotes the half disk of the ellipse, and v(z,y,t) satisfies

H{t — \/z? + y?)

&3 3%y 9%
(@ + E) + g{z,yjv = —Q(I y)

3t VE— (2 + )

(z,y) € Rx R, t > 0, (3.10)
v{z,y,t) =0, (z,y) e Rx RT, t <0, (3.11)
8
a—:(m, 0,t)=0, =z€R,t>0. (3.12)

t4. Iteration

We will describe the iteration for solving the 3-D inverse scattering potential problem
of the wave equation. The iterations of 1-D and 2-D cases are similar.

4.1 Iteration for solving 3-D scattering inversion

(i) Pick up go(z,y, 2), for example, go(z, y, z) = O.
(ii) By induction, suppose that ¢,(z,y, z) has been obtained. Upon substituting it into
(4.5)~(4.7), va(z; y,2,t) can be calculated.

(iii) Let & denote the integral geomtry operator

= ! 2 2 2y .
6o = 5wt M, e+ P smdlads. (4

Solve the following linear regularizing!® integral geometry equation

|G + allbq = v(n)(z,¥,0,t) — fs(z,y,t). (4.2)

Here 6, is the increament function of g(z,y, 2}, fs(z, y,t) i8 the boundary response which is
defined in (2.4). a is a regularizing factor which is chose by qnasi-optimality technology.

(iv} Update q(,) to g(n+1):
9(n+1) = 9(n) + 5‘?($: Y, t)- (43)

The process (i)—(iv) is the general iteration. Acoording to that the integral geometry
operator G defined by (4.1) preverses symmetry, then the integral geometry equation (4.2)
is decomposed into four sub-operator equations in subdomains. By an advanced extrapolate
parallel technology we decompose the scattering wave equation (4.5)-(4.7) into four sub-
equations using an implict scheme. The above iterative process (i}-(iv) is decomposed into
four processes and the parallel iterative process is constructed.

4.2 Iteration for solving 2-D scattering inversion
The iterative program is similar to the 3-D, but Radon’s integral equation in (iii) should
be replaced by (3.9) which will be seduced to a pair of 1-D Volterra integral equation

‘B I L ’:
./; R w./‘/;.:r[m,tl i f\/{e—=1=+n’ Vo e M '(:);)
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and 2-D generalized Radon’s integral equation

Vitz —z2 [T t2 — |zl? 2 —|z[2 . ,\ Vt?+ 2tzcosf + 2°
q,,_l( conl. sl e) T2 df
8 o 2(t + || cos§) 2{t + |z| cos ) (t + zcosf)

1
(€ — )2 +n?)?|%

i

- H/./;;[m,thn(em)[tﬂ-—(\/Ez+n2—
[tg_(\/Ez+n2+\/(E—I)2+n2)2;:)dfdn
[¢2 — (V€2 +n% — /(€ — 2)? + n?)?]3

t = {VE+2+ V(- + %)
= =Sy = e

<K

(T
b SRy

1
12 — (V€3 + 92 = /(£ — )% + 7?)
JE- e+ +V(E-z) + n?)?]2 ~ 2 - (VE+n2 - V(-2 + n”)’z]%dfdr
2 — (VE + 12 = V(€ —2)2 + 22|32 — (VE +n? + V(€ - 2)2 + n?)?3
+F,(z,1), ’(z,t) e Rx R,

. (4.5)
where K is the entire elliptic integral, and K' is the derivative of K.

§5. Numerical Results

We have performed several numerical simulations in the 1~D and 2-D scattering mver-
sions and got excellent numerical results.

b.1 Numerical result of 1-I) case

Numerical results of some tests of 1-D inversion are presented in Fig 1-3. All of the
results are excellent and show that iteration (TCC) of 1-D is globally convergent [8]. In
this test, the boundary impulse response is presented in Fig 1; in Fig 2, the solid line
denotes the exact solution, the solid line with star denotes the approximate solution of the
first iteration, and the broken line denotes the initial guess value. In Fig 3, the sohd line
denoting the exact solution and the solid line with star denoting the sixth iterative solution
are coincident, which means that the sixth iterative solution is coincident with the exact
solution.

5.2. Numerical result of 2-I) case

The numerical simulative test of the iteration (TCC) for solving the 2-D scattering in-
verse problem has been done. We reduced integral equation {3.9} to the 1-D Volterra equa-
tion (4.2) and 2-D generalized Radon’s integral geometry equation (4.3) in Lobachevski’s
hyperbolic geometry space. We solved (4.2) and (4.3) numerically and by using Tikholov’s
regularizing method [6]. In Fig. 6, the exact solution of ¢(z,y) is denoted by the solid line,
‘and the approximation of the ninth iteration is denoted by the broken line. The boundary
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impulse scattering response is presented in Fig. 4, and the first iterative result is presented
in Fig. 5.

| £.(8)

| | | I I l ) | o

Fig. 1. Boundary scattering response of 1-D case

P

exact P % first iteration’

- ~ - - - - guess

| 9(z)
2.00 |

1.20

Fig. 2. Numerical
results of 1-D case

2.00 |- o —— — — guess

1.20 |- / %

\
: X \
_// \x\\
Big. 5 Namechsl / ¢
: r b b d o b iy B

results of 1-D case 0.00[ -
: 1.00 2.00
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fa(z,t)

¢j N %
:

Fig. 4. Boundary impulse scattering response of 2--D case

‘ R

exact solution

.. .. first iteration
. guess

‘ q(=, y)

Fig. 5. Numerical result of 2-D case
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exact solution

Oth iteration
- —— guess

Fig. 6. Numerical result of 2-D case
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