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Abstract

In this paper we investigate the attainable order of (global) convergence of col-
location approximations in certain polynomial spline spaces for aolutions of a class of
second-order volterra integro-differential equations with weakly singular kernels. While
the use of quasi-uniform meshes leads, due to the nonsmooth nature of these solutions,
to convergence of order less than one, regardless of the degree of the approximating
spline function, collocation on suitably graded meshes will be shown to yield optimal

convergence rates.

#

81. Introduction

In this paper we present an analysis of certain numerical methods for solving the second-
order Volterra integro-differential equation (VIDE)

/(0 = £t ) + | (6 - 5)"%k(t, o y(s))ds, tel:=10,T), (1.1)

with initial conditions y{0) = yo, ¥'(0) = 2. Here, the given functions f : [ x IR — IR and
k:S x IR — IR (with § := {(t,3) : 0 < s <t < T}) denote given smooth functions, and
constant a satisfies 0 < a < 1. In practical applications one very frequently encounters the
linear counterpart of (1.1)

y"(t) = p(t)y(t) + g(t) + /: (t—s)"“K(t,s)y(s)ds, t€l{0<a<l1).  (1.2)

In the subsequent analysis we shall, for ease of exposition, usually utilize the linear version
of (1.1) to display the principal ideas.

Equations of type (1.1) (in practical applications one occasionally encounters second-
order VIDEs whose right-hand sides contain also terms involving y'; see e.g., |8, 9|; we
shall consider this general case in a subsequent paper) arise in many areas of physics and
engineering. But the literature on the numerical solution of (1.1) or its genéral case is
comparatively small. Very little convergence analysis has been given so far. Moreover, as
far as high-order Volterra integro-differential equations are concerned, Aguilar & Brunner
(1] have presented a study of collocation techniques for Eq. (1.1) with « = 0, and Tang [10]

*Received December 9, 1987.



308 TANG TAO AND YUAN WEI

for high-order Volterra integro-differential equations without singularity. Prosperetti |8, 9]
introduced methods based on piecewise cubic Hermite interpolation for a class of second-
order integro-differential equations, where care is taken that on a suitable initial interval the

nonsmooth solution 1 approximated accurately. No convergence analysis has been given to
this method.

The numerical methods to be analyzed will be collocation methods in the polynomial
spline space,

S50 (Zn) = {u: ule, =t Un € Pryy,0Sn <N -1,
wl?) (2.} = u(¢,) for t, € Zy and 5 =0, 1}, (1.3)
associated with a given partition (or : mesh) ITy of the interval I,
Oy :0=¢tM <t <. <t =T

(the index indicating the dependence of the mesh points on N will, for ease of notation,
subsequently be suppressed). Here, P,,.; denotes the space of real polynomials of degree
not exceeding m + 1, and we have set g := [tg,t1], On := (En,tn+1] {1 € n < N — 1); the
set Zy = {{, : 1 £ n < N — 1} (ie., the interior mesh points) will be referred to as the
knots of these polynomial splines. In addition, we define

F 4
h:=max{h,:0<n<N-1}, A:=min{h,:0<n< N -1}, (1.4)

where h,, := t,4; — t,; the quantity h is often called the diameter of the mesh IIn (note

that, according to the above remark on our notation, both A and A’ will depend on N).
In order to describe these collocation methods we rewrite (1.1), for ¢ € o,,, In “one-step

form”,

:
o"(6) = Fa(y;t) + / (¥ )%, 5,905 ds; (1.5)
in
where
ti+1
Falit) = (L y(®) + 3 f (¢ — 5)"k(t, 5, y(s))ds. (1.6
1=0
For given parameters {c;} with 0 < ¢; < --- < ¢, < 1, we introduce the sets
Xni={thy:=tp +chn;1<7<m}, 0<n<N-1, (1.7)
and we define
N-1
X(N):= | ) Xu;
n=0

the set X(N) will be referred to as the set of collocation points, while {¢;} will be called
collocation parameters. A numerical approximation to the exact solution y of (1.1} {or

(1.2)) is an element of Sm+1[ZN, satisfying the given equation on X (), i.e., by (1.5), this
approximation u i8 computed recursively from

ey
ul (tny) = Fp(ujtny) + AL / (c; — 8) “k(tng,tn + shn,un(tn + sh,))ds
" .

g =1, i, (1.8)



b

The Numerical Solution of Second-Order Weakly Singular Volterra Integro-Differential Equations 309

where

i=0

n—l at; 1,
Fn(u; tn;') = f(tnj'iun(tnj')) + Z [ (tnj e 3)_ak(tnj: g, u;(s])da,
' n=0,---,N—1. (1.9)

Note that if the collocation parameters are chosen so that ¢y = 0 and ¢,,, = 1, then the
approximation u lies in the smoother spline space

st (2n) n (1) = 882, (2w).

We now rewrite (1.8) in a form which is more amenable to numerical computations.
Since 4/’ is a polynomial of degree at most m — 1, we may write -

"

' m
U, (tn + shn) = E L;(s)Yn;, (1.10a)
3=1

where

Yn_f Fog u::(tn_f): L.f(s) i fp‘lﬁ[(‘E R ck){(ci w5 ck]'

ks
It follows that *
Ul (tn + hn) = 2n + hn ¥ 8;(3)Yn;, (1.10b)
. =1
a = lta), 05(s) = [ Lyla)ds
| . 0
and
M
t, (tn + shy) = Y + hnsz, + k2 E b;(s)Yn,, (1.10c)
y=1
‘with

Yn -= un(tn): 6.1'('5) S '/:'(H - z)L.f[z)dz' |

With this notation the collocation equation (1.8) assumes the form

Yoy = Flu;ty;) + hi-a f j (c; — 8) %kt ;,tn + 3h,, Y + by oz, + h? E bi(8) Y,k )ds,
0 k=1
(1.11a)
with
F(H; tnj) = f(tnj; Yn + hncjzn + hi E b (cj)Ynk]
k=1
n-—1 1 B i : m
+> Al f [ ﬂjh,- % — 3] E(tng, ti + shiy ¥ + hisz + hZ > be(s)Yir)ds.

$=0 0 k=1

(1.11b)

At t = £, 4 the values of u and its derivatives are given by
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Uni1 == Un(tns1) = Un + Baze + B2 D (1) Yo, (1.12a)
k=1
Znt1 = U (tat1) = 2n + hn ) ak(1)Yar, (1.12b)
k=1
and

r
ult(tns1) = ) Li(1) Yok (1.12¢)

k=1
For eachn =0, -- -, N — 1, equation (1.11) is a system of m nonlinear equations for Y, :=

(Yo1, s Yum)T. Once Y, has been computed, the approximation spline u € S,[,:_]H(ZN) and
its derivatives u' and u' are completely determined on the subinterval o, by (1.10).
We note in passing that Brunner has presented in [6] an analysis of the convergence prop-

erties of collocation approximations in S,{;_l 1] (Zx) to the solution of the Abel-type Volterra
integral equations of the second kind, and, in [12], an analysis of those in s\e )(ZN) to the
Abel-type Volterra ifttegro-differential equations of the first order. A survey of collocation
methods for Volterra integral and integro-differential equations with weakly singular kernels,
as well as additional references, may also be found in [3], [5] and [7].

In this paper we carry out an study of the convergence properties of collocation approx-
imations in S,E:_}H(ZN] to (1.1) and (1.2), both for quasi-uniform sequences of meshes and
for graded meshes. Moreover, we extend this analysis to the fully discretized version of the
collocation equation (1.8) in which the integrals have been approximated by appropriate

quadrature processes.

82. Preliminary Results

Consider the scalar second-order linear differential equation

y"'(t) + p(t)y' (t) + q(t)y(t) = r(t), tel, (2.1)

where p, ¢ and r are continuous on I. We have the following resultsl?.

Lemma 2.1. Let f1(t}), f2(t) be hinearly independent solutions of

y"(t) + p()y'(¢) + 4(t)y(t) =0, tel (2.2)

Then the funclion
-
g ) = f O & Aelilds, BET, (2.3a)
D

is the (unique) solution of (2.1) satisfying the initial conditions y(0) = 0,y'(0) = 0, where

Qu{t, 8) = Wilt, s)/Wa(s), (2.3b)



The Numerical Solution of S8econd-Order Weakly Singular Voiterra Integro-Differential Equations 311

with
Wi (t, 2) := f1(s) f2(t) — f2(2) f1(2), " (2.3¢)
Wa(s) := f1(s) fa(s) — f2(s) f1(9). (2.3d)
Moreover, every solution of (2.1) with y(0) = yo, ¥’ (0) = 2o has the form
y(t) = yi(t) +u (¢}, tel (2.4)

Here y,(t) 15 the unigue solution of (2.2) satisfying y1{0) = yo and y}{0) = 2.
Note that f; and f, are linearly independent solutions of (2.2). We have W5(t) # 0 for

all t € I.
Now we turn our attention to the linear counterpart of (1.1)

y"(t) = p(t)y(t) + qt) + [:(t — 8)7%k(t, s)y(s)ds, O<a<l, tel, (2.5)

with initial conditions y(0) = yo and ¥'(0) = 2.
Lemma 2.2.8l. Consider second kind Abel-type Volterra equation

y(t) = g(¢t) + ft (t — s)"*K(t,s)y(s)ds, O0<a<l tel. (2.6)

0
»

If K € C™(8),g € C™(I), with m > 1, then the unique solution of (2.6) has the form

y(t) = g{t) + i Yu(t)t"1), tel (2.7)

n=1

The functions {¢,} satisfy ¥, € C™(I).
The proof of the above result can be found in [7].

Lemma 2.3. If function f € C™(I) N C™12(0,T), then f can be ezpressed in the form
f=fi1+ fa such that f; € C™12(I) and 372 f; € C™*2(]),

Proof. If m = 0, letting g; = t2~2f, we have g} (0) = 0 from the definition of differ-
entiation. Furthermore, since g, € C2{0, T|, we have g, € C(I). Considering the function
gz := tg; we have

g2(t) = g1(¢t) + tg, (£)-
Again from the definition of differentiation we have gf(0) = 2¢}(0) = 0. Hence, t*7°f €

C?{I). In the case of m > 1, function f can be expressed in the form f(t) = f;(¢t) + f2(t)
with

A=Y 1O/ (2.8
fa(t) = [ﬂ t(t - 2)" M) (2)dz /{m —~ 1) (2.8b)

By use of an analogous discussion to the case m = 0, we can show that t3~%f, is m + 2
times differentiable at ¢ = 0. Thus t*>~*f € C™*t2(I). The proof of the Lemma is thereby

complete.
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The:nrem 2'4*. Let p,q, K in (2.5) satisfy p,q € C™(I}), K € C™(S), wsthm > 1. Then
the (unique) solution of the initial-value problem (2.5) has the jorm

y() = vo() + 3 va(t)t) “ (2.9)

n=1

(unsformly on I), where the function v, saiisfies v, € C™+2(1) for alln > 0 and a € {0, 1).
Proof. Let f;, f2 be linearly independent solutions of

y'(t) =p(t)y, te€l, (2.10)

and y; be the solution of (2.10) with initial conditions y; (0) = o, ¥1(0) = 2o.
Consider the following equation |

y"(t) = p(t)y(t) +q(t) +r(t), te, (2.11a)

with y(0) = yo, ¥'(0) = 20, where r(t) is of the form

r(t) := ./: (t —s)7“K(¢, s)y(s)ds. (2.11b}

»
Then using Lemnia 2.1, we have

y(t) = y1(t) + -/: Q. (t,s)g(s)ds + /: Qift, 8)r(s)ds, tel, (2.12)

where the function Q; (¢, ¢) is defined in (2.3b), (2.3¢) and (2.3d). By observing @1(¢,t) =0,
we have Qi{t, s) = {t — 2)Qz(¢, s), where

. 3Q1(H, 3)

Qﬂ(t’ 3) - 0 au u=n+={t—n]dz- (2'13)

By applying the Dirichlet lemma to double integrals, we have
o) =)+ [ Qstalylelde, tel (214

where :
a®=nl)+ [ Qultal)ds, (2.152)
Qslt, 8) = j;} (u—8)"*Q1 (¢, u) K (u, s)du. (2.15b)
Let
1

Qelt, 8) = /; 27 %Qz(t, s + z(t — 8)) K (s + 2(t — s),8)dz, (2.16)

where Q2 is defined by {2.13). Hence we obtain

Qal(t,s) = (t - 8)* 7" Qult, 2), (2.17)
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and

y(t) = qu1(t) +/[; (t — 8)2~ Q4 (¢, 8)y(s)ds. (2.18)

It follows from Lemma 2.2 that the solution of (2.5) with y(0) = yg, ¥'{0) = 25 can be
expressed in the form

y(t) = q1(¢) + i P (th™2), tel (2.19)

By the hypotheses for p,g and K, we have g; € C™%2(]) and Q4 € C™(I). Hence we may
obtain that ¢, € C™(I). Now we shall prove that ¢, € C™*2(0,T],n > 1. Let

;
gro=qu(t) + D va(t)e?®®, 7>1, te€L
n=]1
Then from the proof of Lemma 2.2 (cf. [7] pp. 11-12, pp. 29-31), we have for 7 > 1

y_.,- = {1 (t) + '/.: (t - S)Z-QQ.; (t,ﬂ)gj_l(qs]dﬂj f}g(t} — ql(t), t e l. (220)

From (2.20), it # easy to find that §, satisfies

t

g; (t) = p(t);(¢) + q(2) +f (t — s) " K(t,8)g5—1{s)ds, teEl (2.21)
0

It now follows from p,q € C™(I),K € C™(S) and g € C™+?(I) that g; € C™ - 2(0, T},

7=12, -, for all values of a € (0,1). Then we have ¢, € C™*2(0,T|, n = 1,2,---. An

application of Lemma 2.3 to (2.19} leads to the expression

y(t}] = vo(t) + i vy, (£)E™3 ), (2.22)

n=1

where the function v, satisfies v, € C™%4(]) for all n > 0. The proof of Theorem 2.4 is
thereby complete.

The result of Theorem 2.4 shows that for Eq. (2.5) smooth, p,q and K lead, for 0 <
a < 1, to an exact solution y which behaves like y(t) = O(t>~*)} near t = 0; it thus has
unbounded derivatives y{™}(t)(n > 3) at t = 0.

It 1s an easy matter to establish the following result (cf. [4], [7]).

Corollary 2.5. Let the assumptions of Theorem 2.3 hold, and assume that a = p/q
(with p and ¢ coprime). Then the solution of (2.5} can be expressed in the form

g=—-1
y(t) = wolt) + D wa(t)t"3-%), tel, (2.23)

n=1

with w, € C™*%([),n=1,.--,¢g~ 1L
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§8. The Attainable Order of Convergence

In this section we state the results on the attainable order of convergence of the collo-

cation approximation u & SSLI(ZN) with respect to quasiuniform sequences of meshes and
graded meshes, assuming that the integrals occurring in (1.8) and (1.9) are known exactly.
The fully discretized collocation equation will be investigated in Section 5.
A sequence of meshes for the interval [ is said to be quasi-uniform if there exists a finite
constant C; such that, for all N,
hih' < Cy (3.1)
holds (recall the notation introduced in (1.4)). It is easily seen that such a mesh sequence

has the property
hy <h<CiTN™!, 0<n<N-1 (3.2)

hence h = O({N~1!) for any compact interval 1.

Theorem 8$.1. Let the functions p,q and K in (1.2) satisfy p,q € C™(I), K € C™(5),

withm > 1. Ifue S,{,:_}l_l(ZN] is the collocation approzimation defined by (1.8), and if y
denotes the ezact solution of (1.2), then

1y®) — u® ||, =O(N~11"%)), k=0,1,2 (3.3)

for any quasi-uniform mesh sequence and for all collocation parameters {c;} with 0 < ¢; <

We observe that, for quasi-uniform meshes, the order of convergence of u is governed
by the degree of the smoothness of the derivatives of the exact solution, not by that of the
solution itself. This is, of course, not surprising since the collocation equation defining u
involves also u' and v’

Consider now graded meshes of the form

tn = (n/NYT, 0<n<N-1, N>2 (3.4)

where the grading exponent r satisfies r > 1. For any such mesh we have 0 < ho = A’ <
hy < -+ < hy-y = h, and, in analogy to (3.2),

h, <h<rTN~!, 0<n<N-1 (3.5)
Thus the mesh diameters of a sequence of graded meshes of the form (3.4) behave like
h = O(N~1) on compact intervals.

Theorem 8.2. Let the functions p,q and K in (1.2) satisfy the assumplions stated sn

Theorem 2.4. If u € S,E:.}H(ZN) is the collocation approzimation defined by (1.8), and 3f y
denotes the ezact solution of (1.2), then

|yt®) — u® o = O(N™™), k=012, - (3.6)
provided we employ the sequence of graded meshes (3.4) corresponding to the grading ezponent
r=m/(1—a). (3.7)

This holds for all collocation parameters {c;} with0<c; <--+ < ¢ < 1.
This result tells us that the choice (3.7) for the grading exponent leads to optimal (globle)
convergence, in the sense that the exponent m in (3.6) cannot be replaced by m + 1.
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§4. Proofs of Theorem 3.1 and 3.2

We shall follow the techniques proposed in |7] and [10] to give our proofs of Theorems
3.1 and 3.2. Let

Y(t) = (y(t), v (t) (4.1a)

Plt) 1= [ p(t) © ] - (4.1b)

Q(t) = (0,4(2))7, (4.1¢c)
and

H(t, s) := [ (D} K(‘i 5) ] , (4.1d)

where p, g and K occurring in (1.2) satisfy the conditions stated in Theorem 2.4. Then Eq.
(2.1) is equivalent to

Y'(t) = P(t)Y (£} + Q(t) + fﬂt(t —8)"H(t,8)Y(s)ds, t€l, 0<ac<l, (4.2)

with initial condition Y (0) = (yo, 20)7. Let U(t) = (u(t), v'(t))*. It follows from (4.2} (with
E=i,5) and from the linear counterpart of (1.8) that |

Cy '
el (tny) = Pltnj)en(tns) + Ay [ (c; — 8) " Htn; tn + shn)en(tn + shy)ds
0

by — & R
+ E hl « f [ Jh.' : — § H(tnj, t; + Shi)ﬂ;(t; + sh,-)da,

3=0
leilml H:UJ‘”INull (43}

with eg(to) = (0,0)T, where e(t) := Y'(t) — U(t), and e, denotes again the restriction of ¢ to
the subinterval o,,.
For ease of notation we assume, without loss of generality, that o is rational : a = p/q,

with p and g coprime. Hence, according to Corollary 2.5, the solution of (1.2) has the form

q—1
y(t) = z: w, ()", w,eC™t3(]), 0<n<g-—1 (4.4)

n=0
On the first subinterval oo we have, in complete analogy to [6] and |7],

m+1

y(to + sho) = Z coks® + hy~*Co(s) + hy' 2 Ro(s), (4.5)
k=0

where we have

g-1 q—1
= SR, Role) = T Renle) )
r=0 r=0
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and
m+1

Cols) = Eh{r-l}taha]( r3-al _ 1) Z "*'m:s

r=1

This follows from the application of Taylor’s formula to the functions w,(¢p + shg) in the
expresgion for y(to + sho):

m—+1
we(to + sho) = 3 el e* + hTH2 Ry, (s),
k=0
with |
‘:g}k) 2= w(k](fﬂ)hgfk!i
and

R{}r f(s m+1 {m+2}(tﬂ+zhg)dzf(m+ 1)' p =0, w0 g — .

If n > 1, then t,, > 0, and we may write

m-1

y(tn + shn) = Y cars® + AT 2R, (s), (4.6)
i k=0
where )
Cnk 1= y‘k}(tﬂ]hﬁfk!
and

R.(s) := f;(s — ) (4, 4 2k, )dz/ (m + 1)!

The corresponding expressions for the first and second derivatives of the exact solution

on the sutinterval oy and o, n =1, ---, N — 1, are, respectively,
m—+1
y’(t{} e = Shg) = hal( Z kCﬂkSk_l + hg'“Ca(s) + hg‘+2R6(5)) ’ (4.7)
k=1
m+1
y"(to + shg) = hgg( Z k(k — 1)Cors* 2 + K37 2C{!(s) + k2 R]! (s)) (4.8)
k=2
and
m+1
' (tn + 5ha) = A7 ( Y keaes®™ 1+ AZFIRL(s)), (4.9)
k=1
m+1

|
.l_l
I
ek
i,
-9
H.
L
 ——

y'(tn + sh,) = h,‘:z( E k(k — )82 + h:l""’zR:(a]), n
k=2

‘Thus, setting

m+1
un(tn+shn)=2aﬂksk, 30,1, n=0,---,N—-1,



The Numerical Solution of Second-Order Weakly Singular Volterra Integro—Differential Equations 317

we obtain

e+ 1
Z Jﬂk&k + hg_uC’n(S) + hg‘+1Rn(3), f n= U,
k=0
m+1

Y duxs® + AT RA(9), fl<n<N-1,
k=0

enltn + sh,) = (4.11)

and

m+1
hy! ( E kdoxs® 1 + h2~=Ch(s) + hg"“RB[a]), if n =0,

k=1

ey (tn + shy) = (4.12)

m-1

h;;l(;; kJ“ka‘E‘l+h$+1R;(a)), ifl<n< N-1,

where
Co(s) := (hoCo(s), Cy(s))",
Ru(s) := (hnRn(s), R, (s))",
» _ { (cnk = Opk) [k T 1)(Cn,k+l == an,k-i—l]f’hn)T: 0< &k <m,

with n = 0,1,---,N — 1. If we now employ (4.11) and (4.12) in the error equation (4.3),
then we find

m+1 e,
Z {kﬂf_lfz — hn P(tn;)ck — hﬁ'“/ﬂ (c; — 8) " H(tns,tn + 3hn)skds}:f"k
k=1

= hn{ Pltns) + B [ (65 = 8)7" Bltns,to + sha)ds }dno

n—1 1
Livii— Ts —a &
+hn2h}-u/ [n:h : —3] H(tﬂj,t;-l-sh,')dsdig
0 1

1=0
n—1 m+1l .3 £ i i i

Hha ¥, b2 Zf ["’h' : —3] Hito: to+ ohi)a dodin + hafoy  (4.25)
1=0 k=1 "0 .

with
Tnj = —h?R:; (CJ'} i3 hnm+1 P(tﬂ-i)Rﬂ(cf)

+hl-a / g oM B bs b + b STRE B 1
O

n—1 .
- tn' T t-;' —a ik
. Z: h'} '/; [ Jh; et H(tny,t; + shi)(h] +1Ri(3))d3

=1

1 tn' _t T ; i o ;
+h.},'“f [ Jho 2 _s|  H(tnj to+ sho)(h22Co(s) + AP Ry(s))ds.  (4.14)
0
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On the first subinterval, (4.13) and (4.14) become, respectively,

E {k'-’?_lfz ~ hoPltoj)ck — h3™° [ Jr(nr:_.,- — )" % H(tos,t0 + 3hu)akds}cﬂ,k
k=1 0

- {hoP(tu:') + A5 ,[ J (c5 — 8)™% Htoj, to + Sh“]d'ﬂ}gm + Bufly e
O

and

rog 1= W { — Gles) — =4 Ry(es) + haPltos)(Coles) + A+~ Rofey)
g ./ﬂj[cj — 5)"*H(to;, to + sho) (h272Co(s) + h?+lﬂﬂ(3))d5}: (4.16)
0

where I, on the left-hand sides of (4.13) and (4.15) is the 2 X 2 identity matrix. We first note
that the matrix defined by the coefficients of {d,.x} on the left-hand side of (4.13}) (or (4.15))
is invertible whenever h > 0 is sufficiently small; this follows from the fact P(t) and H(¢, s)
are continuous, and the observation that, for A = 0 (recall (1.4) for k), the determinant of

this matrix 18 (m! H[ci ~ ¢4))%. Furthermore, in complete analogy to the technique used
£

by {7, pp. 381-387| a.:;}d [10}, the results stated in Theorems 3.1 and 3.2 can be immediately

established. The proofs of Theorems 3.1 and 3.2 are thereby complete.

So far it has been assumed that o is rational. If ¢ is irrational, then, the solution of (1.2)
corresponding to functions p.g and K satisfying the hypotheses of Theorem 2.4 is of the
form (2.9), where the infinite series converges absolutely and uniformly on f; this also holds
for (1.1), provided that the given functions f and k are subject to appropriate smoothness
and boundedness conditions (cf. [11]). Hence, the above proofs are readily adapted to deal
with this general situation; the key observation is the uniform convergence of the infinite
series in (2.9) which implies, for example, that y{™%2)(¢)(¢ > 0) can be obtained by termwise
differentiation of the right-hand side in {2.9).

§5. Discretization of the Collocation Equation

Until now it has been assumed that the integrals

<5
f (ci — 8) *k(tns,tn + shn,un(tn + shn))ds, 1=n, 7=0,---,m
0

(5.1)
occurring in the collocation equation (1.8) are known exactly, i.e., the collocation approx-

“imation u € SE_‘;‘_I[ZN) is obtained from what we shall refer to as the exact collocation
equation

n—1
W (Ens) = f(tng, Un(tn;)) + K220 [un] + D A} 0 [u], 1<j<m, 0<n<N-1

(5.2)
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In most cases the integrals ‘I’L’?[u;] cannot be found analytically but have to be ap-
proximated by suitable quadrature formulas. Denoting these quadrature approximations by

ti?,(i} |u;], the resulting discrete version of (1.8),

8 (tng) = Fltng, Bn(tng)) + AL~ ®W) (4, ]+Zh1 “$ (i), 1<j<m, 0<n<N-1,

+1=0
(5.3)

with dg(to) = yo, G5{to) = 2o, defines for all sufficiently small mesh diameters A a polynomial
spline &## € S}:ll[ZN), which, due to the errors induced by numerical integration, will
generally be different from the exact collocation approximation u € S,(nlll(Zn].

In the following we restrict our analysis to the case where the approximations &’E'][ﬁ,]
are of the form

Z {n‘)k(tnjl 1k1 u’t(tlk)) if 2 7& n,
B w]=1{ ") (5.4)
Z Wyikk(lnj,tn + cickhn, tntn + cjerhn)), i 2 =n,
k=1
where P - t .
;:‘] .=/ﬂ [ nJh,— ~ — 8| Li(s)ds, ifi#n, (5.5a)
and .
wyk =c; / (1—38)"“Ly(s)ds, 7,k=1,---,m, (5.5b)
0
with -~
LT o ¢ ST (5.50)
Jek
Setting

ag{s) := _/I: Ly(z)dz,

br{s) = ‘/:(3 — z) Ly (2)dz,
we have, as in (1.10b) and (1.10c),

G (tn + shp) = 8n + hy > ar(s)Vux, s€[0,1], (5.6)
k=1
Gin(tn + 8hn) = Gn + hnadn + B2 D bi(s) Yok, s €[0,1], (5.7)
k=1
with 2, := 4! (t,), 9n := Gn(ts) and with Yoi := 4" (¢, ) Thus (5. 3) represents, for each
n=0,---,N—1, a system of m nonlinear equations for Y, := (Y,,l, Ynm)T Once these

va.lueis h;l.ve been found, the approximating spline 4 € S,Eﬂ_l(ZN) on ¢y, is given by (5.6)
and (5.7).
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Theorem 5.1. Let p, g, and K in (1.2) satisfy the assumptions stated in Theorem 2.4.
Moreover, let & € S,E:_}I_ ,(Zy) denote the solution of the fully discretized collocation equation

(5.3), with quadrature approzimations ‘ﬂbg}[ui] given by (5.4) and (5.5). Then
(i) If the underlying mesh sequence {Ily} is quasi-uniform, then the error ¢ := y — )

satisfies
ly® — 2% = O(N~1)), k=0,1,2. (5.8)

(ii) If {H},:,') } is the sequence of graded meshes (3.4}, and if the grading exponent is given
by r = m/(1 — <), then we have

g% — 2|, = O(N™™), k=0,1,2. ' (5.9)

These convergence results hold for all collocation parameters {c;} with 0 < ¢; <+ <cm S 1.
The above results are derived without difficulty along the lines of [7].
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