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Abstract

In the presence of reentrant corners or changing boundary conditions, standard
finite element schemes have only a reduced order of accuracy even at interior nodal
points. This “pollution effect® can be completely described in terms of asymptotic
expansions of the error with respect to certain fractional powers of the mesh size.
Hence, eliminating the leading pollution terms by Richardson extrapolation may locally
increase the accuracy of the scheme. It is shown here that this approach also gives
improved approximations for eigenvalues and eigenfunctions which are globally defined
quantities.

»

¢1. Introduction

On domains with reentrant corners standard finite element schemes usually suffer from
a global loss of accuracy caused by the presence of the local corner singularities. Various
methods are devised in the literature for suppressing this “pollution effect” , mainly by using
systematic mesh refinement near the corner points, or by incorporating “singular” shape
functions into the scheme. All these procedures require significant overheads and are not
always easy to combine with existing standard routines; see [1] for a survey of these methods.
As an alternative, it is proposed in (3] to use Richardson extrapolation for eliminating the
leading pollution terms in the error. This approach is based on asymptotic error expansions
of the form

N
(v - un)(z) = ) An(2)h2* + Ry(z)h?|log(h)], (1.1)

n=1

where A, are local mesh size parameters, and o, < 1 are the exponents in the leading
“singularities” at the reentrant corners. Such an expansion is established in [3] for the
approximation of the 2-dimensional Poisson equation by linear finite elements on certain
locally uniform meshes. On the basis of {1.1), a simple extrapolation procedure yields
improved approximations # to u, satisfying

(u— Gn)(z) = Ru(z)h®|log(h)], =zecn. (1.2)

The implementation of this method is relatively easy, compared with the use of singular
functions or systematic mesh refinements, particularly for three-dimensional probiems. A
turther advantage is that one can work with (piecewise) uniform meshes which, at least in
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the case of constant coefficients, allows for very economical storage techniques. This makes
it possible to solve two- and also certain three-dimensional “corner problems” with high
accuracy on small computers.

The remainder term Rj, in the expansion (1.1) is integrable on {1, umfnrmly as h — 0.
Hence, the pointwise error estimate (1.2) implies similar ones also for certain globally defined
quantities. For example, in approximating torsion moments one obtains

'/;]ud:n—j;]ﬁhdm:(}(hzﬂng(h)n. (1.3)

In the present paper, we shall extend this result to the approximation of eigenvalues and
eigenfuncitons. In particular, an expansion of the form

N
A= A=) Cnh2* + O(h? (1.4)

n=1

will be derived for appropriate mean values Ag of the discrete eigenvalues, which implies
that the extrapolated values A; satisfy

Ap — A = O(K2). (1.5)

This approach may Jargely improve the eigenvalue approximations already on relatively
coarse meshes; sbme numerical results are given at the end of the paper. Consider, for
example, the eigenvalue problem of the Laplacian, — A, first on the unit square, and then on
the unit square with two slits (see Fig. 2 below). Then, for linear finite elements an error mn
the smallest eigenvalue of less than 1% requires about 225 nodes for the regular domain, but
more than 10,000 nodes for the slit domain. In the latter case, one step of h-extrapolation
gives the same accuracy already on a mesh with 900 nodes.

In the following, L,(f1},1 < p < o0, and H”‘(ﬂ) HT (1), m € IN, are the usual Lebesgue
and Sobolev spaces on 3. The norm of L,(f1) is denoted by | - ||,. The notation | - ||p;0e
refers to the L,-norm on any fixed subdomain {}' C (] having positive distance to all of the
corner points nf 8f1. The Lg-inner product and norm on (1 are denoted by (-,:) and || - ||,
respectively. Finally, the symbol ¢ is nsed for a generic positive constant which may vary
with the context, but iz always independent of the mesh size parameter and of the particular
functions involved.

§2. The Pollution Effect

Let 1} € IR? be a polygonal domain with reentrant corners or slits. As model situations,
we consider the first boundary value problem of the Laplacian operator

—Au=f inl, u="b ondfl (2.1)
and the corresponding eigenvalue problem
—Aw=2Aw, infl, w=0, ondl (2.2)

The data f and b are assumed to be smooth, say f € C* and b € C?7*, Below, we shall
largely use the notation of {3].-Let Z = {zn,n =1, - -, N} be the set of all corner points of
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81, with the corresponding interior angles w,, € (0, 2n), and let Z = {z,,n =1,---, N} be
the subset of Z, consisting of all reentrant corners. Corresponding to the points z,, € Z, we
mtroduce polar coordinates (r,,4,), and define the singular functions

Spi 2= ([i]x) "1 2 pona sin{an6,), 7€Z\ {0},

T

where «,.; = i7v \ w,. Further, we set o, = min{a,.;,n = 1,- .-, N}. Then, the weak
solution u € b+ Hj(f)) of problem (2.1) admits an asymptotic expansion of the form (see

Kondrat’ev [4])
In

N
u=> ¥ Kny(t)sni+ U (2.3)
n=1s—=1

with a remainder term U & C%**(01) N H2(11) and certain numbers K,.i(u), the so-called

“stress intensity factors”. Here, we take [, = 0 if w,, < T I = Lo i, & l T = 2 if

3 ; . ;
57 < wy < 2w, and [, =3 f w, = 2. Then, the remainder U/ satisfies

p?zUELm(ﬂ), = H roT Aniln+1 H log(rn) 1. (2.4)

wn>w /2 wap=1/2

(4 é : y
For 0 < w, & 70U has bounded derivatives at z,,. In the case of a right-angled cor-

; . 1
ner, the logarithmic growth in {2.4) corresponds to the leading “singular” term 4—{ flzn) +

Ab{z,)}r2 log(r,.) sin{26,,) in u. For the purposes of the present paper it suffices to separate
from u only those singular parts which correspond to the reentrant corners, z,, € Z.

As in [3], to discretize (2.1) and (2.2), we consider a standard finite element scheme using
piecewise linear elements. Let (3,, € 1 be polygonal neighborhoods (relative to 1) of the
reentrant corners z,,n = 1,---, N, of 941, such that 2, N Q,, = P for n # m. Further, let
Qo = Q\U{Q,,n=1, -, N}. For a mesh size vector H = {ho,hy, -, An}, satisfying

1
with some v > 0, and h = max{h,,n =0, - ¥V}, let {Tu} be a uniformly regular family
of triangulations of {2, such that each T} is of width Ay, m §1,,. Corresponding to Ty, we
introduce the finite element space

n:{].’nl:'”:Nl

S = {v &€ H' (1), v piecewise linear with respect to Ty },

and set Sy0 = Sy M Hy(Q). Then, for functions v € H!{11) which are continuous up to the
boundary, the Ritz projection R ;v into Sy 18 defined through the conditions R v — OV E

Shr‘u, and
(VE v, Vp,) = (Vu,Vep,), Ve, eS8, 0 (2.5)

Here, ¢, denotes the usual pointwise interpolation operator mnto Sg. For the error u— Ry u,
there holds (see [3]| and [1) for references)

v~ Raru| + v~ Rau|wioe = O(h**). (2.6)

In general, these estimates are optimal with respect to the power of A.
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Corresponding to (2.2), we consider the discrete eigenvalue problems
(Vw, Vou)=Ag (w.ﬂl(upﬂ)l V ou €540 (2'7)

For the ordered eigenvalues Al < X2 < ..-and A}f < A?{ < ... of the problems {2.2) and
(2.7) (counted according to their multiplicity), there holds

B =% = Olh*E), (2.8)

In order to describe the convergence of the eigenvectors, we fix some eigenvalue A with
multiplicity m. Let A}, -, A} denote the eigenvalues of (2.7} converging to A, according
to (2.8). Then, for any orthonormal sets {wl,---,w}} of corresponding eigenvectors there

exists an orthonormal basis {w!¥,- -, w™H} of the eigenspace E(A) of A, such that
“w'L'H o wiH " T ”lwi'H - wf!—f "m;lﬂc = O(hza'): 1=1,-.-,m, (2'9)

analogously to (2.6); see Strang-Fix [7] and the proof of Theorem 2 below.

To prove our error expansions, we need to impose some uniformity conditions on the
triangulations, namely that they are “locally stretching invariant and symmetric® (see [3]):

(T) The family of triangulations {7y} 13 generated from some macro-triangulation T,
such that, for the reference sets CT =U{K € T.,z. € K}, n=1,---, N, there hold:

a) The vertices z, are the only reentrant corners of C',n=1,---, N.

b) (Local stretching invariance) For any H = (ho,  hn), K = (ko, -, kn), with
k. < h,, the scaling z — k,h;(z — z,) maps the subtriangulations Ty (Cr) = U{K €
Ty, K cC?},n=1,---, N, into the corresponding subtriangulations Tk (C¥ ).

c) (Local symmetry) Each C;, as well as the subtriangulation Ty (C}), i8 symmetric
with respect to the bisector of the angle at z,.

EV}V{H
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Fig. 1. Two members of a locally stretching invariant and symmetric family of triangulations
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Without loss of generality, we set {}, = C7,n = 1, -  N. Below, the notation of
“locally stretching invariance and symmetry” will synonymously be used also for a single
triangulation. The central result of 3] is the following expansion theorem:

Theorem 1. Let the family of triangulations {Ty} satisfy condstion (T). Then, there
holds | '

(u— Riu)(z) = Y An(z)h2*™* + Rp(2)h?|log(h)l, =z €0, (2.10)

=1
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with certain functions A,() € C(Q1\ {2,}) and & remainder term satisfying Ry € C(£1\
f;’] N Ly(Q1), for some ¢ > 1, and | Ry | oc.10c + || Ru|ls < c.

We suspect that the local symmetry of the triangulations, and the technical condition
(a) of (T), are not essential for the validity of Theorem 1. In order to describe the explicit
form of the coefficients A,{z), some further notation is needed. With the solution v,._; of
problem (2.1), corresponding to the data f = —As,..; =0 and b = s,._,;, we define the
functions s,. _; = 8p,_; — Vn,—i,t € IN. Clearly, each of s/, _. is harmonic in {2, identically
zero on d{2, and has the same singular behavior near z,, as s,._;. Using this notation, the
coefficients in the expansion (2.10) have the form

An(2) = AnKua(u)sh _1(2), (2.11)

with certain numbers A,, which are determined by the local structure of the triangulations
at the corners z,,. Further, for the stress intensity factors there holds the formula

o
K, 1(u) -—-/ —Aua:l;_ldz—[ ué-—s:“__lds. (2.12)
(1 an OnR

In view of the expansion (2.10), the dominant error terms can be eliminated by Richard-
son extrapolation. Since the influence of the several corner points z, is localized by the
appearence nf the “local” mesh sizes h,,, one may work with meshes which are refined only
in the nerghborhoods {1, of the corners z,. From [3]|, we recall the following algorithm:

Step 1. Choose an appropriate locally stretching invariant and symmetric triangulation
Ty with mesh size vector H = {hg, h1, -+, hy}, and compute the Ritz projection Ry u.

Step 2. Choose some « > 0 and refine Ty locally in 2,,n = 1,---, N, in such a way
that the resulting triangulation, T, corresponds to the mesh size vector

H' = {h0171h11 gl :WNhN}: n = z—ﬂflﬂﬂlu;l}‘

The connection between the refined subtriangulations in {1,, and the fixed triangulation in
{lo may be realized in the usual way, either by properly adjusting the triangles in the contact
zone or by introducing blind nodes.

Setp 3. Corresponding to Ty compute the Ritz projection Ry u and form the linear
combination

Riuu= (2° — 1)" 12" Ry u — Ryu).

In the presence of only one reentrant corner (or if all corners have the same angle) one
usually takes &k = 2a.. As an immediate consequence of the expansion (2.10), there holds

lu ~ R vllooioc + [lu — Rurully = O(h?|log(h)}). {2.13)

Next, we consider the eigenvalue problems (2.2) and (2.7). Again, let A be an eigenvalue
of (2.2} with multiplicity m, and let A}, -+, A% and w}, --,w be the approximating
discrete eigenvalues and corresponding (ortho-normalized) eigenfunctions. We denote by
m,m~, and gy the orthogonal projections onto the eigenspace E{(A) of A, onto its orthogonal
complement E{A}+, and onto span[w}, -, wi?], respectively. Finally, we introduce the
notation K = (—A)~?! for the sclution operator of (2.2). Notice that the operator (/—AK) :
E(A)* — E())! is an isomorphism. Employing this notation, we can state the following

results.
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Theorem 2. Let the family of triangulations {Ty} satisfy condition (T). Then, for the

( 1 <=
mean values Ag = — Z Ayr, there holds
m .

p==1

" | |
i} i :

P e A Renillas 12 4+ O(R?). 2.14
" —)2 ) Akl msnsl|® + O(A%) (2.14)

n—1

Further, for any function v € L= (1), there holds

(rv - 7w, v}{x)} = A i A h2Mnit {(u, s, _1)en(2z) + (v, ﬁn]ws:l;_l{z]}

=1

+ Ry (v; z)h?|log(h)], (2.15)

forz €}, wheree, = (I —AK) " 'ntsl ;€ E(A)*. The remainder term satisfies Ry (v;:) €
C(ﬁf?) "L, (1), for some g > 1, and

“RH(U; ')”:ﬂ;lnc i ”HH (U; ‘)“q = CHUHT

‘We note that, as a particular consequence of (2.15}, the error for any continuous eigenfunc-
tion w can be expanded in the form

N
(w— 7, w)z) = A Z Anh2 v (w8 Jen(z) + R{w; z)h%| log |(R}]- (2.16)

Tl

, Bt

The proof of Theorem 2 will be given in the next section. The constants A, are the same
as in {2.11).

Now let T}, be a refined mesh as described in the extrapolation procedure above. Then,
using the mean value A}, of the corresponding discrete eigenvalues, we obtain from (2.14)

that _
Ag = (ZE‘“ 1)_1(2E1:rf "‘j‘H) :’}‘+O(’IEE)‘ {2'17)

Analogously, by (2.15), for any v &€ L* (1), the linear combination

(2% — 1)1 {257y v — mgv) = mu + O(h*| log(h)]) (2.18)

il

J

provides an improved approximation of the continuous eigenfunction nv € F{A}, on interior
subdomains (¥’ bounded away from all corner points. In practice, for v in (2.18) one may
take an orthonormal system of discrete eigenfunctions on the triangulation T}, yielding a
basis of an m-dimensional subspace which approximates £/(A) with order O(h*|log(h)|].

The results of this paper are not restricted to linear finite elements. They easily carry
over to more general triangular or quadrilateral elements, provided that the results from the
local pointwise error analysis used in the proofs in [3] can be made available for them. For
elements of higher order, or, for low order elements on certain uniform meshes (see Lin and
Xie [5], and also |2] and {6]), one might seek to carry the expansions {2.14) and (2.5) further
to higher order , r > 2, of the remainder terms. However, in the case of several reentrant
corners, the order r = 4, seems to be the upper limit for the localization of the pollution
effect to the neighborhoods of the corners.
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§3. Proof of Theorem 2

First, we shall express the eigenvalue error }.}{ — A In terms of the projection errors
w? — Rpwv® i =1,-.., m. For abbreviation, we drop the superscripts 1+ and H, setting
Ag = Ay, wy = wly, and w = w"¥. Notice that |w] = |wg| = 1. Then using equations
(2.2) and (2.7), we see that

|VIw —wg]|[* = [[Vwl* - 2(Vw, Vug) + || Vog |2
= Ay —A+A{2—2(W,WH)}=AH —A+A|w-——wH||2.

Further, by the orthogonality properties of Ry, there holds
IViw — wyl|* = |VIw — Rgw|* + | V[Rgw — wg]||*.

and, by analogous arguments,
IV[Rgw ~wgl||* = (Vw, V[Rgw — wy]) - (Vwy, V[Rgw — wyl)
= AMw,Rgw — wy) — Ag(wy, Ryw — wy)
=Mw —wy,Rgw—wyg)+ (A — Ag)(wyg, Ryw — wy).
Combining the foregoing identities, we obtain
Ay — A= |[V]w— Ry w])? + Mw — wi, Rgw — w) + {A - Ay Hwz, Reyw — wg). (3.1)
Then, the low order error estimates (2.6}, (2.8) and (2.9) imply that
Mg — A = ||Viw — Rgw]||? + O(h?). (3.2)

Now, observing that |V[w—R g w]||* = A(w, w— Rz w), we might directly apply the pointwise
expansion for w — Rz w, given by Theorem 1. This, however, would result in an expansion
with a remainder term of order O(h%{log{k)|}. In order to avoid the extra logarithm we
proceed as follows.

Inserting the “singular” expansion (2.3), for w, into the identity (3.2), we obtain

Ty Im

N
AH — N z L L Kn;i(w)Km;j(w)(v[ﬂn:i ol Rﬂsﬂ;i]! v[sfﬂ‘-ii o RH""“;J‘])

N I,
+2 Z E(?[sﬂ;; — Rusnil, V[w — Rgwl]) + | V[w — Rgw]|? (3.3)

n=1:=1

The several terms on the right of (3.3) will be handled separately. First, since w € H?*{{1),
there holds
IV[w = Rgw]||? = O(h?). (3.4)

In order to estimate the several inner products in (3.3), we shall use some of the technical
notation and results from [3].

1 : A
Let R = 7 min{dist{z,, 2,,), 2n,2m € £, 2, # 2}, and, for 0 < a < R,

N
(1° = {z € Q,dist(z,2,) <a}, n=1,---,N, Q¢=0)\ Uﬂ:
. n=1
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Further, let {1,!:,1, n= , N} € C§°(IR?) be a partition of uruty on {1, such that
o
Z'pmi =} 1 ﬂ- HE]‘: ¢“{]"H“EG’ ﬂ-=1,'**,N.
m=0 5 g

anrrespnndingly, we introduce the weight functions
an\bﬂ'*'ﬂbn(rﬁ'i_ﬂﬂhz)lfzr n = 1!“'1N:

and, for multi-indices v = {71, - -,9n), -~

The constant x is taken sufficiently large, K > ko > 1, such that

Jmax { max o3 (v)/ min £3(y) } < e() (3.5)

In virtue of (3.5), the usual L;-error estimates for the interpolation operator Sy carry over

to weighted norms,
»

"oz V (e~ Se)l € (MR p2 V3|, re{0,1}. (3.6)

Using this notation, we recall the fﬂlluwmg weighted norm error estimate from [3|, Lemma
2.1,

lexVie = Rav)ll < c(v){lle7 Vv — Suvlll + A7 o7 v — Suv]]}, (3.7)

where v = (ay;; ~1—¢,---,anyy —1—¢) and 0 < € << a.. This holds for an arbi-
trary function v € H'({1) N C(1), provided that the constant x is chosen sufficiently large

(independent of h).
Now, we are prepared to analyze the inner products in (3.3). Using the local approxi-
mation properties of Sy, we conclude that

(VIsni — Rersniil, V(v — Rewl}| = [{V[sni — Susny), VIw — Ryw])}i
< 1oz "Visni — Sussilllller Viw — Rgw]|| < c(7)Allp2 Viw — Ry w]|,

where « is as defined in (3.7). Consequently, by (3.7) and by (3.6), we obtain in view of
(2.4) that

{V]snii — Rusnsil, Viw — Rgw])| < e(v)r{||p} V|w — Spw]]|
+h™1 o2 [w — S w]||} < ch?w|lpI Vew|| = O(h%). (3.8)

From Lemma 3.1 of [3], we recall the estimate
(Vlsnii — Rarsnil, Vism; — Rusm;j]) = O(R%), (3.9)
for m # n, and

(V[an;; = RH*’H#]: v[srr;i = Rﬂsn;r’]) — O(hmh.l{ﬂ";ﬁa";‘hﬂ} | log{A}]"); (3-10)
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where r = 1, for a,.; + an,,; = 2, and r = 0, else. Finally, Theorem 3 of [3] states that, for
Qn.q + g5 < 21

AGD (H) = B o255 (Vs — Rusniil, VIony — Rusny]) = AP 4 O(RZ-omi—anis),
(3.11)

with certain numbers A{ 7K the triangulations are locally symmetnc then A(":" ) = :
for 1 £ 7. Collecting the foregoing results and setting A,, = A{ ) , we obtain the following
expansion for a single eigenvalue

N
Ag = A=) A Kn(w)?hZ* + O(R?). (3.12)

n=1

From the representation formula (2.12), we see that

Ko (w) = Mw,s;,._4). (3.13)

Therefore, reintroducing the superscripts ¢, H, and summing up the identity (3.12), we arrive
at

m N
Z i, —mA = A2 AL D) (whH sl 1PRZe10(h?) = A% ) Aglimsl,._y||2R2*~+O(R?).
n= =1 n=1

This proves the eigenvalue expansion (2.14).
Next, we prove the expansion (2.15} for the error between the projections « and ng.
- First, for any function v € L°°({1), there holds

{(u, w2 )wh? — (v, w};)w}{}

A

TY~ Tl
1

i

{(o, 7w — wy JobH + (v, 0" ) [t H — wiy]}

o

-
2|
e

{0, 70" = wg)w'H + (v, 0 F)x[wH — wy]}

+
s

1

i

+ ) (v, wy — ) {w —wh}. (3.14)

s

1

L
i

In view of the basic estimates (2.9), the last sum on the right is of the order O(h?) in
L?(0) n L . Further, using the identity

loc*®
R e Y 1 [ — sy ) = N il )y e
we obtain for the second sum on the right of (3.14) that

i

> { o mlwt, win))ut ot (v, 0 (0t~ i)}

g=1
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Fri rm ,
of 22 {(”’ | e T S R [ w}ﬂwj'H)wj'H}
t—=]1 y==1
m m ‘ |
=2 2 (0, o) (Wt — wip, W - w)ubE = O(h?),
i=1liy=1

(3.15)
in L*(1) N L2
Therefore, it remains to expand the error xt(w"# — wi;) for each single eigenfunction.
As above, we drop the superscripts ¢+ and H, and simply set w = w" ¥, Following an idea of
Q. Lin, we use the operators K = (—A)~! and Ky = Ry K, to write

w—w, =AKw—~ A, Kgw, = AK(w—w_)+ By + CHx, (3.16)
where
Bp=(A-Ag)Kw+ MK - Ky)w= —i—(}i —Ag)w 4w — Rgw,
Cr = (A — ) (Kx — K)w+ (A= An) K (w, - w) + Au (K — Kgg)(w,, — w).

Consequently, there hu‘Ids

&*»

(1 - AK){w~w,) = By + Cx. (3.17)
Analogously to the basic estimate (2.6) we have that
(K — Ka)flloonoe + (K — Kn)f|| < Chllf]l, fe L?(0).
Using this together with (2.8) and (2.9), we see that C; satisfies
ICr oostoc + [[Crllg = O(R*|log(k)]). (3.18)

This is the standard estimate for all of the remainder terms in the subsequent identities.
For By, we apply Theorem 1, (2.11), and (3.12}, to obtain

N
By =X ) An(w, s,y )h2% s}, | ~ (w,sh._,)w} + Dy, (3.19)
n=1

where Dy also satisfies (3.18). Next, using (3.17), (3.18), and {3.19), we see that, for any
of the basis functions w}‘{, k=1,---,m, there holds

0= (w""*H, (I = ).K)(w = wH))wk‘H

N
=) Anlw,sn )R {(WRH 6 ) - (s ) (WP F, w)}u™F 4 B,
n=1

where Ef; satisfies (3.18). Summing this over k and observing that |w]|? = 1 and (w5, w) =
0, for w # w* ¥ we obtain that

N N
AD An(w, s )R as), =2 An(w,sh_ )R (w, s, )w+ By,  (3.20)

n=1 | =1
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where Ey also satisfies (3.18). We note that the identity (3.20) implicitly contains a condi-
tion to be satisfied by the stress intensity factors of the eigenfunctions of multiple eigenvalues.
Using (3.20} together with (3.19) we arrive at the expansion |

N
(I - AK)(w—w,) =X ) An(w,s}, _ )R2*xts, _, + Fy, (3.21)

n=1

where Fy satisfies (3.18). Notice that Fy € E(A)'. This implies that

N
rt(w—w, )=\ Z An(w,s,,._{)he* e, + Gh. (3.22}
n=1
where ¢, = (I — AK) " 'nts)._,, and the remainder Gy = (I — AK) ™' Fy satisfies (3.18),
as is guaranteed by the open mapping theorem.
Now, we reintroduce the superscripts + and f, obtaining

N
(- ) =AY a0t o )RR en + Gy, (3.23)

rii—1
n=1

where the rematder GY; satisfies (3.18). Inserting this into (3.14) we arrive at the expansion

Tv—M,v=A Z Anh2e i f(v e, )msh._y + (v, msh. 1 Jen} + O(h?]log(h}]), (3.24)

1i=1

in L4(1) N L, . This completes the proof of the theorem.

loc*

§4. Numerical Examples

In order to illustrate the resulis of the paper, we report some numerical test calculations
for the model eigenvalue problem (2.2). Figure 2, below, shows the meshes corresponding
to the mesh size h = 1/4. The successively refined meshes are obtained, for simplicity, by
globally subdividing each triangle into four congruent subtriangles. The tables, below, show

the errors in the approximation of the smallest eigenvalue.
7

Fig 2. Model problem —Au = f



332

* L | T L
Example 1. For a domain with a 45°-crack, w = rid the relevant singular exponent
= 4 r a
15 a3 = . The expected order of convergence for the eigenvalues is O(h2/ 7). One step of

h®/7_extrapolation raises the order to O(h?).

g

H. Blum and R. Rannacher

A1 Ax (Ag — A)/A | ratio | Ay (Ag — A)/A | ratio
8 | 40.318 | .1315 '
16 | 37.189 | .04372 332 | 34.599 —.02898
32 | 36.208 | .01620 370 { 35.403 | -.00641 221
64 | 35.862 | .00647 399 | 35.575 —-.00157 245
128 | 35.728 | .00272 420 | 35.617 —.00038 245
oo  35.631 453 | 35.631 250

Example 2. For a domain with two slits, w = 2, the relevant singular exponent 1is

1
0 = 5" The expected order of eigenvalue convergence is O{h). One step of h-extrapolation

eliminates the pollution effect of both slits.

e

A~ | dg | (g =A)/A | ratio | Ay | (Ag — A)/A | ratio
8 | 33.627 | .1954

16 | 30.318 | .07773 397 | 27.008 | -.03991

32-| 29.100 | .03445 443 | 27.883 | -.00882 | .221

64 | 28.586 | .01619 470 | 28.072 —-.00207 235
128 | 28.351 | .00784 484 | 28.117 | 00050 | .242
oo  28.131 500 | 28.131 250
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