Journal of Computational Mathematics, Vol.8, No.4, 1990, 381-385.

APPROXIMATE SEVERAL ZEROES OF A CLASS
OF PERIODICAL COMPLEX FUNCTIONS*®

Gao Tang~-an Wang Ze—ke
(Department of Computer Science, Zhongshan Universsty, Guangzhou, China)

Abstract

This paper discussed the number of zeroes of the complex function F ¢ - C
defined by

n

F(Z) = E(ah cos(kZ) + by sin(kZ)) + ao + cnIm(Z) + - - - + awn(Im(Z))™,
k=1

where Im(Z) is the imaginary part of Z, |an|+|ba| # 0. Let n, = max {0,k|bx # —iar}

and ny = IIEEE {0,klbr # iar}. We prove that if 0 is a regular value of ¥ and

ning # 0, then F has at least n; + no zerces in domain (0,2x] x K and n; + n2
of them ca.n be located with the homotopy method simultaneously. Furtheromore, if

a; = -+ = am = 0 and nynz # 0, then F has exactly ny + na zeroes in domain
(0,27] x R.

§1. Introduction

Let C be the complex plane. We rega.rd C as R? by identifying Z =z+wyel,z,ye R
with (z,y) € R?. Define a complex function F : C' — C by

F(Z) =T(Z) + f(2), (1.1)

where T is a triangular polynomial with degree n and f is a polynomial of Im(Z) with degree
m. That is

n

T(Z) = ) (akcos(kZ) + bi sin(k2)),

flZ) = ao+ ayIm(Z) + - + am(Im(Z)]“’,

where ay, bx, a; are all complex numbers and a.n, # 0, jaq| + by, | # O.

By the definition of F, F is a periodical function of Z with period 27. So we need only
to discuss the zero distribution of F' in domain (0, 27] x R. Section 2 studies the number of
geroes of F and develops a method to calculate several zeroes of F'. Section 3 gives some
numerical examples.

* Received February 9, 1988.
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§2. Approximate the Zeroes

4

Let ¢ : R? — Q9 be a smooth mapping. Let z € RP be a regular point if the Jacobian
matrix of ¢ at z is of full rank. We call y € R? a regular value of ¢ if ¢~ 1(y) + {z €
RP|¢(z) = y} contains only regular points of ¢.

Lemma 11}, Let ¢ : R? x R — R” be a smooth mapping. If 0 13 a reqular value of ¢,
then for almwst all d € R?, 0 13 a regular value of the mapping ¢(-,d): R — R".

Consider the function F' of form (1.1). Since B 1, by Lemma 1, for almost all
&

ao € C, 0 1s a regular value of F. In this section, we always assume that 0 is a regular value

of F.

Lemma 203, Let H : R" x (0,1] — R" be a smooth mapping. Suppose O 13 a regular
valve of H, H(-,0) : R™ — R™ and H(:,1) : R* — R™. Let (z',t') and (z%,¢°) be two
boundary points of a component of H™1(0).

(a) If ¢! = ¢2, then

oH | |, gl , o o
sgn det E(I , ) = —sgn det E(m , £°).
(b) If t* # 2, then "
sgn det %g-(:rl,tl) = sgn det %[zz, %)

where sgn is the sign funciton.
Let ¥ =T+ f:C — C be as in (1.1). T is a triangular polynomial with degree n.
Define the auxiliary function G : C — C by

G(Z) = c[e'™? 4 e~*"21%), (2.1)

where ¢ is a nonzero complex number. It is easy to know that G has exactly n; + n, zeroes
in domain (0, 27| x R; they are

2k + 1
Z = i m k=01, ,n;y +n, — 1,
n; + no

and 0 is a regular value of G.
Define homotopy E: C x [0,1] Xx C — C by

E(Z,t,a) =tF(Z)+ (1 -t)G(Z) +t{1 — t)a. (2.2)
Then, E(-,0,:) = G(-) and E(-,1, ) = F(-). Since 0 is a regular value of F and G, and

oK

35 = t1-1),
by Lemma 1, for almost all « € C, 0 is a regular value of H(-,:}) = E(-,,a): Cx{0,1] = C.
Fix a € C such that 0 is a regular value of H. H~{0) = {(Z,t) € C x [0, 1]|H(Z,t) = 0} is
a one-dimensional manifold. That is, H~1(0) consists only of simple smooth curves.
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Let G4,G5 be respectively the real part and the imaginary part of . Since G 18 an
analytic function, G satisfies the Gauchy-Riemann equations

3G _8G; 8G, _ 9G, -

3z dy ' Ay Az

. Hence, the Jacobian determinant of the real mapping (G, G3) : R? . R? is positive at its

seroes. By Lemma 2, H~'(0) contains no curves with both boundary points in C x {0}.

We have

Lemmma 8. Let F,H be as above. Then for almost all « € C,H™*{0) i3 a one-
dsmensional manifold and any curve sn H™1(0) starting at C X {0} must esther intersect
C x {1} at a zero of F or go to infinsiy.

Now we prove the boundedness of the curves of H~*(0).

- Lemma 4. Let F be as in (1.1) satisfying |a,| + |bp]| # 0, ny = max {0, k{bp # —iar},
ng = max {0, k|by # tax}. Let G be as in (2.1) and H be as above. If nyny # 0, then for
<k<n _.
almost all c,a € C, any curve sn H71(0) 1s bounded.

Proof. First, we prove that H~1(0) is bounded in direction y. Notice that

- pco8(kZ) = 1( 7 4 e7%2), sin(kZ) = 11[ tha uptkey

We have
H(Z,t) = (1~ t)c(e*™Z 4 e7*™2%) + t(a, cos(nZ) + b, sin[nZ)) + - -

= {{(1 - t)e+ %t(unl —tbn,))e™ 2 + ({1 —t)e + —;—t(aﬁ, + 1by, ))e P2 + - ..
Since for all ¢t € [0, 1] and for almost all ¢ € C,
(1—t)e+ -;—t(am — b, ) #0, (1-t)e+ %t(an, +tb,,) # 0,

that is, for almost all ¢ € C, the coefficients of the terms e'*1Z and e~**2Z in H are nonzero,
if {(Z(k), t(k))}2,; € H~1(0} and y{k) — co, t(k) — to € [0,1] as k — oo, without loss of
generality, we assume y(k) — +co as k — co, then

b, f_‘:[f;fﬁf” = (1= to)e + Sto{an, +ibn,) =0

k—o0

This is a contradiction. Hence, for almost all ¢ € C, H™1(0) is bounded in direction y.
Now, we prove that every curve in H~*(0) is bounded in direction z. Suppose in contrary
that some component of H~!{0) is not bounded in direction z. By the periodicity of H and
the boundedness of H~!(0) in direction y, there exists a positive number M such that
[0, 2x] x [— M, M| x [0, 1] contains an infinite number of curves of H~1(0). This contradicts
that 0 i1s a regular value of H.
Now, we are ready to prove our main result.

Theorem 5. Let F =T + f : C — C be as in (1.1),T be a triangular polynomial

satisfying |an| + [bn| # O with degree n, ny = max {0 kiby # —iax}, ng = max {0, k|bx #
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iax}. If0 i3 g regular value of F and nyng # O, then F has at least ny+ng zeroes in domain
(0,27] x R and n, + ny of them can be located unth the homotopy method.

Proof. Let G be as in (2.1) and H be as above. By Lemma 3, for almost all o € C,
H~1(0) is a one-dimensional manifold, and H~*(0) contains no curves with both boundary
points in C'x {0}. By Lemma 4, for almost all ¢ € C, any curve in H~!{0) is bounded. Hence,
we need only to show that any two curves of H~1(0) starting respectively at (',0), (72,0) €
(0,2x] X R x {0} must intersect C x {1} at different zeroes {¢',1),(¢* 1) of F. That is,
¢? — ¢l = 2kx for all integers k. Otherwise, suppose for some integer ko,¢* — ¢! = 2kow;
then by the periodicity of H, the curve in H~1{0) starting at (¢! + 2kow,0) must intersect
C x {1} at {¢2,1) too. So there are two curves in H~*(0) with (¢*, 1) as an end point. This
18 a contradiction.

Corollary 8. Let F : C — C be defined by

F(Z) = ag + i(ﬂk cos(kZ) + by sin(kZ))

k=1
with |en| + |bn| # 0,0y = 121;._{1-{“{0,“&;: # —2ak}, ng = I?kaén{ﬂ,ﬂbk # tan}. If0is a
regular value of F and njyng # 0, then F has exactly n, + np zeroes n (0,27 x R.

»
Proof. Since F is analytic and 0 is a regular value of F, F satisfies the Cauchy-Riemann

equations, and the real Jacobian determinant of F is positive at its zeroes. Since ning # 0,
by Lemma 2 and the proof of Theorem 5, the corollary 1s obvious.

§3. Numerical Experiments

A program was written for zeroes of the class of periodical complex functions based on
the algorithm of {3]. The following are some examples calculated with homotopy (2.2).

Example 1. F: C — C is defined by
F(Z) = 2sin{4Z) + cos(32) + 2(Im(2))**° + i(Im(Z))* + 8i.
The eight resulting zeroes of F are

(0.737398267, 0.482591212), (1.57079601. —0.466710865),
(2.40419388, 0.482591212), (3.21657562, —0.527321279),
(3.98593998, 0.583417416), (4.71239090, —0.610647082),
(5.43883705, 0.583416760), (6.20820236, —0.527321696).

Example 2. Let F : C — C be

F(Z) = sin(62) + cos(4Z) + cos(22) + sin(Z) + (Im(Z))®
+{Im(2))* + i((Im(Z))® + (Im(Z))?) + 20.1 + i
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The twelve resulting zeroes of F' are

(0.716865185, 0.592638135), (0.868974626, —C.596008837),
(1.79889965, .0.647369623), (1.93854427), —0.656512976),
(277105713, 0.676286399), (2.90113831, —0.662934899),
(3.86054516, 0.577746322), (4.02312183, —0.585952878),
(493177986, 0.631447732), (5.08513451), —0.639616251),
(5.90183067, 0.675030220), (6.03476429, —0.656130612).

Example 3. F:(C — ( 13 defined by

F(Z) = sin{3Z) + 1 ccs(3Z) + cos(22) + sin(Z) + (Im(Z))°®
+{Im(Z})* + i((Im(Z))® -+ (Im(Z)}?%) + 0.1 + 0.3i.

#
The five resulting zeroes of F are

(1.20212746, —0.182225823), (1.95877171, —0.556550562),
(3.44832802, —0.803195238E — 01), (4.78542042, 0.244741678),
(5.88517857, —0.223386347).
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