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Abstract

The operators radiative transfer equation constructed by Chandrasekhar
has been extended to the non-stationary case by Bellman and Wang. The
local existence of solution of such non-stationary equation is established based
on the construction of scattering matrices from a co-propagation group with
unbounded generator. In case the system is dissipative, the local existended to
the global existence.

1. Introduction

Based on the “Principle of Invariance,” Chandrasekhar {1] established differen-
tial-integral equations which govern radiative transfer of diffuse reflection and trans-
mission by plane-parallel atmospheres of arbitrary optical thickness and station-
ary. Bellman [2] and Wang [3,4] have extended Chandrasekhar’s result to the non-
stationary case. The non-stationary scattering matrix is

Al

) :S(%y;ﬂ,no;t:tn) — ( RS ) 3 (1'1)

where z,y are the spacial point, {1 and {1y are input and output direction cosines,
t and io are input and output times. The left-hand reflection operator p satisfies a
differential-integro ono-linear equation of the form

_gg + ﬁ(m]%g - 5(::)%% = a(z) + d(z)p + pb(z) + pec(z)p, (1.2)

where f and § are propagation coefficients, and a, b, ¢, d are bounded compact inte-
gral operators. For more details and other operators differential-integro equations
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for t,r, and r, see Wang [4]. It should be pointed out that once p 18 solved, other
operators t,7 and r can be solved by a system of linear equations. Therefore equa-
tion (1.2) is the most important and interesting one. The purpose of this paper 1s
to find local and global solutions for p in equation (1.2), and more generally for S.
Operators t,7,p and r are nonpredictive.

2. Propagation Operator I

Using the propgation operator [5],
T 7
S = ?(m,y] i ?(:r,y;ﬂ,ﬂn;t,tc,)*= o (2.1)
.

with stable generator

_ | Blz) A=)
M= ( ~C(z) -D(z) ) | A

satisfying: (i) There is a Banach space Y, continuously and densely embedded in
H with Y C Domain B(z) and Y C Domain D(z). Each B(z) and D(z) gener-
ate Co—groups of operators on H, and the families {B(z)} and {—D(z)} generate
propagation operators on H Gy(z,y),G2(z,y) respectively with G1(Y) € Y and
G;(Y)cY. . (2.3)

(ii) For each z, M(x) is closed densely defined, with Y @Y C Domain (M(z)),
and generates a Co—group on H © H, and the family {M(z)} is stable and generates

propagation operators {?[z, y)} on H & H such that,
(a) .—S"(:n, y) is strongly continuous in z and y jointly.
(b) S(z,y)(HO H)c HO H.

(C) fﬂl‘ EH@H,ISU:

k
;;?(m,y) (i) = M(y)S (z,y) (i)

To show dependencies of § and S on (z,y) we have used § = S(z,y) and
T = ?(z,y}. If ?(:c, y) is a propagation group, we denote

. B
4 _s.._(qF *?_).
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The following Lemmas are stated. Details of proofs are not presented here.
Lemma 2.1. If M(z) satisfies (2.3) and A and C are compact valued contin-
uous function of , then the operators p(z,y) and r(z,y) are compact operators on
H.
Lemma 2.2. Under the conditions of Lemma 2.1, 7,7, T and 't are
Fredholm.
Lemma 2.3. Under the condition of Lemma 2.1, for each x there exist € > O,
such that sf z < y < z+ ¢, then T (z,y) has a bounded inverse.
It is well known [4] that if 7 is invertible, then S is single valued. And S is

related to S by the relation

-1 -1 -1 -
t=t -7 7, r=7 , p=T7FF and r=-7 7. (2.5)
In addition,

is:(n A(y))+(3(y) O)s+s(0 , )+s( ’ O)S,
dy 0 o 0 © 0 D(y) C(y) ©

S(z,z)=(; [;)

Summarize Lemma 1-3, and relations between S and S.

Theorem 2.1. Under the condition of (2.3) with C end A continuous (in
norm) and compact, for each z there exists € > 0 such that z < y < = + € we
can construct a bounded single valued transport matriz S(z,y) and S(z,z) = I. In
particular we have

d;;p = A(y) + B(y)e + pD(y) + pC(¥)p, p(z,z) =0,

where p = p(z,y).
In case the initial value of reflection operator is K instead of 0, then the

solution is given by [7],

P(K;z,y) = p(z,y) + t(z, y) K(I - r(z,y) K) 'r(z,y).

That the map P from B(H) to B(H) is weak operator topology continuous if r(z, y)
18 compact was shown by Krein [8]. The converse is proved by Shew [5].

Assuming such stability for z > 0 we may partially extend the construction of
S , in the non-dissipative case [see section 4] past the point

z = glb{z| 7 (0, z) is not invertible }.
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Let z < Zg < Z1 < *++ < Zp < --* be a sequence of points such that {M(z)} satisfies
the above conditions on [0, z,] for each n. Define H, by

Hy = é( ker 7(0,zn)).
=0

Since 7 (0, z,) is Fredholm H, is finite dimensional and restriction
?(01 mﬂ) : Hpy — ?(D: mn)Hn

has a bounded inverse. Thus, S(0, z,,) can be constructed on all but a finite number
of dimensions, and S is partially extended beyond the conjugate point, z.

3. Non—stationary Radiative Transfer

To investigate the non-stationary radiative transfer of diffuse reflection and
transmission, we shall consider, Wang [4], the decomposition of

M(z) = B(z) + (), (3.1)
where E(x) = A=) 5 v and e(z) = el .
0 ~8(z) & —c(z) —d{z)

The operators a(z), b(z), c(z) and d(z) are compact operators (on H) valued. And
B(z),6(z) are bounded and continuous. It is well-known 9] that each E(z), and
thus M(z), is closable (identify £ and M with their closure) densed defind, and
generates a group on H @& H. The operator e(z) 18 continuous in z in the uniform
operator topology on B(H @ H), the family {M (z)}z>0 is stable.

One takes the space Y to be

Y = H'((—00,00),R*) ={f € H : %f € H and ||f]|% < oo},

where

Iflly = fR (1+|z\2){_¢% [R ¢%* {(s)ds]*dz.

Noting that Y is continuously embedded in Domain (g—) [cf. 10] and that Y is dense
in H and that B, D and M are identified with their cﬁosurea we may take Y to be
Domain (B) and Domain (D) and Y @Y to be Domain (M). Since {M(z)}z>0 is
stable, conditions (2.3 (ii) a and b) of Section 2 are satisfied [cf. 11]. It remains to

show that the forward and backward propagation operators S (z,y) and ?(z, y) so
generated by M(z) satisfy the regularity condition of (2.3 (ii) ¢) of Section 2, i.e.,
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invariance of Y under 5 and S and the differentiability with respect to the second
argument.

1
.\ A
To this end, note that k = (I — g—tf) " is an isometry from Y to H, [10]. Let

e (50).

then K is an isometry from Y @Y to H @ H. Let L denote the Schwartz class of
u) € L& L, and each z, it can

rapidly decreasing functions at infinity. Then for (u

Be shown that

u

v
(3.2)
Since B(z),6(z),a(z),b(z), (), and d(z) are independent of ¢, and since K com-
mutes with 3> the operator actions on £ @ £ determined by the commutators
(KE — EK) and (Ke — eK) can be extended to bounded operators from H & H to

1

o 4
Hao H, [12]. Since ”Ba—t- (I — %I) : ”H < 1, and 8 and é are bounded continuous in

z, and a,b,c,d bounded continuous in z in the uniform operator topology of B(H)

we have by (3.2), for (u) € L & L that

v

KM(:::)K_I( ) = M(z) (:)-I—(KE(:!:)—E(::)K]K_I (:) +(Ke(z)—e(z) K) K1 (u) .

v

KM(z)K"l(:) = M(x) (:) + P(z) (:):

where P(z) € B(H & H) is continuous in the uniform operator topology. We can
extend (3.3) to Y ® Y. Details are not presented here. And

Domain(M(z) + P(z)) = Domain K M(z) K 1.
Hence
KM(z)K~' = M(z) + P(z).

where P(-) € B(H @ H) is strongly continuous (indeed, norm continuous).
Under this condition, the work of Kato [13, 14] and (see theorem 6.3.7 [11]),

assures that the propagation group ?(z, y) associated with (3.1) satisfies the reg-
ularity condition (2.3 (ii) c), and the construction of the scatering operator S(z, y)
follows the development in Section 2.



198 Journal of Computational Mathematics Vol. 7

M

4. A Dissipative Case

If the output energy is always less than or equal to the input energy, the system
is called dissipative. It is equivalent to the condition ||S(z, |2 = 8*(z,¥)S(=,¥) <
1. S is called locally dissipative (at ) if there exists a A(z) > 0 such that S(z,y)
is dissipative for z < y < z + A(z).

Theorem 4.1. Under the assumption of Theorem 2.1 and S locally dissipative
for all z < y the result of Theorem (2.1) can be extended to all finite y > z, s.e. the
solution for (2.6) ezists for all finste y > =z '

Proof. The finite interval (z,y) is partitioned into z = zp,%1,%2,***,Zn = ¥
such that for all s,

Zir1 — 2i < Min[A(z;), e(z:)]

where £(z;) is as given in Lemma 2.3 and A(z;) is as in the above definition of

locally dissipative. For convenience, let 77, §: and S; and etc., denote T {z;,z; +

ﬁm;),?;(zi,z; + Ax;) and S(z;,z; + Az;) and Etlc. It follows from Lemma 2.3,
72 € B(Y,Y) is nonsingular for all § and r; = 7; € B(Y,Y) is also nonsingular,

and,
||r,;|l2 =1y 2 0. (4.1)

Since each S; exists and is locally dissipative, it follows that
Irdl €1 and  [|psfj <1, forally.

Furthermore,

1>8'S; and 12rir;+ 77 (4.2)
Therefore, ||r;|| < 1 and (E — ri41p:)~" € B[Y,Y]. Hence, by the star product, [cf.
7], .

r(%i, Ziss) = G(E — ri1pi) " g1 (4.3)
is well defined as an element of B(H, H) and has bounded inverse 7;(zi,%i+2)-
Therefore 5 (z;,%i+2) € B{H ® H,H ® H). S(z;,%i12) € B(H® H,H ® H] and is
* a solution of (2.8) related to (3.1) on the interval (z;,zi1+2). By repeating, we have
7 (z,y) has a bounded inverse and result followed.

The remaining section will apply the above theorems to the time-dependent

radiative transfer equation. We shall establish the existence of a scattering solution
based on a local dissipative condition obtained by the following analysis.

1 O

M, with M given in
o -1

Let us consider the generator for S, M = (

(3.1). Then local regularity for S, 1.e.,

lim 2(S(z + h,z) - E) = M(z). (4.4)
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If S = S(z,z+ Az) is locally dissipative, then for €Y @Y, then
0> &' [M"(2) + M(z2)]®, (4.5)

where the notation ¢* Ay, means inner product < Ay, 4 > in H. We assume strict
locally dissipative, i.e. > in (4.5) is replaced by >. Then (4.5) reduces to

0> &*[¢*(2) + 2)]® (4.6)

for § and & are independent of ¢.

Lemma 4.1. If the condition of theroem (2.1) and (4.6) are satisfied then
equation (1.2) has a solution for all finite y > x, i.e. the strict locally dissipatrve
condition smplies the global extstence of selution.
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