SOLUTION FOR A NON-STATIONARY RADIATIVE TRANSFER EQUATION

ALAN P. WANG

(Department of Mathematics, Arizona State University, Arizona, USA)

Abstract

The operators radiative transfer equation constructed by Chandrasekhar has been extended to the non-stationary case by Bellman and Wang. The local existence of solution of such non-stationary equation is established based on the construction of scattering matrices from a co-propagation group with unbounded generator. In case the system is dissipative, the local existended to the global existence.

1. Introduction

Based on the "Principle of Invariance," Chandrasekhar [1] established differential-integral equations which govern radiative transfer of diffuse reflection and transmission by plane-parallel atmospheres of arbitrary optical thickness and stationary. Bellman [2] and Wang [3,4] have extended Chandrasekhar's result to the non-stationary case. The non-stationary scattering matrix is

$$S = S(x, y; \Omega, \Omega_0; t, t_0) = \begin{pmatrix} t & \rho \\ r & \tau \end{pmatrix},$$
 (1.1)

where x, y are the spacial point, Ω and Ω_0 are input and output direction cosines, t and t_0 are input and output times. The left-hand reflection operator ρ satisfies a differential-integro one-linear equation of the form

$$-\frac{\partial \rho}{\partial x} + \beta(x)\frac{\partial \rho}{\partial t} - \delta(x)\frac{\partial \rho}{\partial t_0} = a(x) + d(x)\rho + \rho b(x) + \rho c(x)\rho, \qquad (1.2)$$

where β and δ are propagation coefficients, and a, b, c, d are bounded compact integral operators. For more details and other operators differential-integro equations

for t, τ , and r, see Wang [4]. It should be pointed out that once ρ is solved, other operators t, τ and r can be solved by a system of linear equations. Therefore equation (1.2) is the most important and interesting one. The purpose of this paper is to find local and global solutions for ρ in equation (1.2), and more generally for S. Operators t, τ, ρ and r are nonpredictive.

2. Propagation Operator \overrightarrow{S}

Using the propgation operator [5],

$$\overrightarrow{S} = \overrightarrow{S}(x,y) = \overrightarrow{S}(x,y;\Omega,\Omega_0;t,t_0) = \begin{pmatrix} \overrightarrow{t} & \overrightarrow{\rho} \\ \overrightarrow{r} & \overrightarrow{r} \end{pmatrix}$$
 (2.1)

with stable generator

$$M(x) = \begin{pmatrix} B(x) & A(x) \\ -C(x) & -D(x) \end{pmatrix}, \qquad (2.2)$$

satisfying: (i) There is a Banach space Y, continuously and densely embedded in H with $Y \subset \text{Domain } B(x)$ and $Y \subset \text{Domain } D(x)$. Each B(x) and D(x) generate C_0 -groups of operators on H, and the families $\{B(x)\}$ and $\{-D(x)\}$ generate propagation operators on $H, G_1(x,y), G_2(x,y)$ respectively with $G_1(Y) \subset Y$ and $G_2(Y) \subset Y$.

(ii) For each x, M(x) is closed densely defined, with $Y \oplus Y \subset \text{Domain } (M(x))$, and generates a C_0 -group on $H \oplus H$, and the family $\{M(x)\}$ is stable and generates propagation operators $\{\overrightarrow{S}(x,y)\}$ on $H \oplus H$ such that,

- (a) $\overrightarrow{S}(x,y)$ is strongly continuous in x and y jointly.
- (b) $\overrightarrow{S}(x,y)(H\oplus H)\subset H\oplus H$.

(c) for
$$\binom{f}{k} \in H \oplus H, x \leq y$$
,

$$\frac{d}{dy}\overrightarrow{S}(x,y)\binom{f}{k}=M(y)\overrightarrow{S}(x,y)\binom{f}{k}.$$

To show dependencies of S and \overrightarrow{S} on (x,y) we have used S = S(x,y) and $\overrightarrow{S} = \overrightarrow{S}(x,y)$. If $\overrightarrow{S}(x,y)$ is a propagation group, we denote

$$\overrightarrow{S}^{-1} = \overleftarrow{S} = \begin{pmatrix} \overleftarrow{t} & \overleftarrow{\rho} \\ \overleftarrow{r} & \overleftarrow{r} \end{pmatrix}.$$

The following Lemmas are stated. Details of proofs are not presented here.

Lemma 2.1. If M(x) satisfies (2.3) and A and C are compact valued continuous function of x, then the operators $\rho(x,y)$ and r(x,y) are compact operators on H.

Lemma 2.2. Under the conditions of Lemma 2.1, $\overrightarrow{\tau}$, $\overleftarrow{\tau}$, \overrightarrow{t} and \overleftarrow{t} are Fredholm.

Lemma 2.3. Under the condition of Lemma 2.1, for each x there exist $\varepsilon > 0$, such that if $x \le y \le x + \varepsilon$, then $\overrightarrow{\tau}(x,y)$ has a bounded inverse.

It is well known [4] that if $\overrightarrow{\tau}$ is invertible, then S is single valued. And S is related to \overrightarrow{S} by the relation

$$t = \overrightarrow{t} - \overrightarrow{\rho} \overrightarrow{\tau}^{-1} \overrightarrow{r}, \quad \tau = \overrightarrow{\tau}^{-1}, \quad \rho = \overrightarrow{\rho} \overrightarrow{\tau}^{-1} \quad \text{and} \quad r = -\overrightarrow{\tau}^{-1} \overrightarrow{r}. \quad (2.5)$$

In addition,

$$\frac{d}{dy}S = \begin{pmatrix} 0 & A(y) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} B(y) & 0 \\ 0 & 0 \end{pmatrix} S + S \begin{pmatrix} 0 & 0 \\ 0 & D(y) \end{pmatrix} + S \begin{pmatrix} 0 & 0 \\ C(y) & 0 \end{pmatrix} S,$$
(2.6)

with

$$S(x,x) = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$
.

Summarize Lemma 1-3, and relations between \overrightarrow{S} and S.

Theorem 2.1. Under the condition of (2.3) with C and A continuous (in norm) and compact, for each x there exists $\varepsilon > 0$ such that $x \le y \le x + \varepsilon$ we can construct a bounded single valued transport matrix S(x,y) and S(x,x) = I. In particular we have

$$\frac{d}{dy}\rho = A(y) + B(y)\rho + \rho D(y) + \rho C(y)\rho, \quad \rho(x,x) = 0,$$

where $\rho = \rho(x, y)$.

In case the initial value of reflection operator is K instead of 0, then the solution is given by [7],

$$P(K; x, y) = \rho(x, y) + t(x, y)K(I - r(x, y)K)^{-1}\tau(x, y).$$

That the map P from B(H) to B(H) is weak operator topology continuous if r(x, y) is compact was shown by Krein [8]. The converse is proved by Shew [5].

Assuming such stability for $x \ge 0$ we may partially extend the construction of S, in the non-dissipative case [see section 4] past the point

$$z = glb\{x | \overrightarrow{\tau}(0, x) \text{ is not invertible }\}.$$

Let $z < x_0 < x_1 < \cdots < x_n < \cdots$ be a sequence of points such that $\{M(x)\}$ satisfies the above conditions on $[0, x_n]$ for each n. Define H_n by

$$H_n^{\perp} = \bigoplus_{i=0}^n (\ker \overrightarrow{r}(0,x_n)).$$

Since $\overrightarrow{\tau}(0,x_n)$ is Fredholm H_n^{\perp} is finite dimensional and restriction

$$\overrightarrow{\tau}(0,x_n):H_n\to\overrightarrow{\tau}(0,x_n)H_n$$

has a bounded inverse. Thus, $S(0,x_n)$ can be constructed on all but a finite number of dimensions, and S is partially extended beyond the conjugate point, z.

3. Non-stationary Radiative Transfer

To investigate the non-stationary radiative transfer of diffuse reflection and transmission, we shall consider, Wang [4], the decomposition of

$$M(x) = E(x) + e(x), \qquad (3.1)$$

where $E(x) = \begin{pmatrix} \beta(x) \frac{\partial}{\partial t} & 0 \\ 0 & -\delta(x) \frac{\partial}{\partial t} \end{pmatrix}$ and $e(x) = \begin{pmatrix} b(x) & a(x) \\ -c(x) & -d(x) \end{pmatrix}$.

The operators a(x), b(x), c(x) and d(x) are compact operators (on H) valued. And $\beta(x), \delta(x)$ are bounded and continuous. It is well-known [9] that each E(x), and thus M(x), is closable (identify E and M with their closure) densed defind, and generates a group on $H \oplus H$. The operator e(x) is continuous in x in the uniform operator topology on $B(H \oplus H)$, the family $\{M(x)\}_{x \geq 0}$ is stable.

One takes the space Y to be

$$Y = H'((-\infty,\infty),R^n) = \{f \in H : \frac{\partial}{\partial t} f \in H \text{ and } ||f||_Y^2 < \infty\},$$

where

$$||f||_{Y} = \int_{R} (1+|z|^{2}) \left[\frac{1}{\sqrt{2\pi}} \int_{R} e^{izs} f(s) ds\right]^{2} dz.$$

Noting that Y is continuously embedded in Domain $(\frac{\partial}{\partial t})$ [cf. 10] and that Y is dense in H and that B, D and M are identified with their closures we may take Y to be Domain (B) and Domain (D) and $Y \oplus Y$ to be Domain (M). Since $\{M(x)\}_{x\geq 0}$ is stable, conditions (2.3 (ii) a and b) of Section 2 are satisfied [cf. 11]. It remains to show that the forward and backward propagation operators $\overrightarrow{S}(x,y)$ and $\overleftarrow{S}(x,y)$ so generated by M(x) satisfy the regularity condition of (2.3 (ii) c) of Section 2, i.e.,

invariance of Y under \overrightarrow{S} and \overleftarrow{S} and the differentiability with respect to the second argument.

To this end, note that $k = \left(I - \frac{\partial^2}{\partial t^2}\right)^{\frac{1}{2}}$ is an isometry from Y to H, [10]. Let

$$K = \left(\begin{array}{cc} k & 0 \\ 0 & k \end{array}\right),$$

then K is an isometry from $Y \oplus Y$ to $H \oplus H$. Let \mathcal{L} denote the Schwartz class of rapidly decreasing functions at infinity. Then for $\begin{pmatrix} u \\ v \end{pmatrix} \in \mathcal{L} \oplus \mathcal{L}$, and each x, it can be shown that

$$KM(x)K^{-1}\binom{u}{v}=M(x)\binom{u}{v}+(KE(x)-E(x)K)K^{-1}\binom{u}{v}+(Ke(x)-e(x)K)K^{-1}\binom{u}{v}.$$
(3.2)

Since $\beta(x), \delta(x), a(x), b(x), c(x)$, and d(x) are independent of t, and since K commutes with $\frac{\partial}{\partial t}$, the operator actions on $\mathcal{L} \oplus \mathcal{L}$ determined by the commutators (KE - EK) and (Ke - eK) can be extended to bounded operators from $H \oplus H$ to $H \oplus H$, [12]. Since $\left\| \frac{\partial}{\partial t} \left(I - \frac{\partial^2}{\partial t^2} \right)^{\frac{1}{2}} \right\|_{H} \le 1$, and β and δ are bounded continuous in x, and a, b, c, d bounded continuous in x in the uniform operator topology of B(H) we have by (3.2), for $\binom{u}{v} \in \mathcal{L} \oplus \mathcal{L}$ that

$$KM(x)K^{-1}\binom{u}{v}=M(x)\binom{u}{v}+P(x)\binom{u}{v},$$

where $P(x) \in B(H \oplus H)$ is continuous in the uniform operator topology. We can extend (3.3) to $Y \oplus Y$. Details are not presented here. And

$$Domain(M(x) + P(x)) = DomainKM(x)K^{-1}.$$

Hence

$$KM(x)K^{-1}=M(x)+P(x).$$

where $P(\cdot) \in B(H \oplus H)$ is strongly continuous (indeed, norm continuous).

Under this condition, the work of Kato [13, 14] and (see theorem 6.3.7 [11]), assures that the propagation group $\overrightarrow{S}(x,y)$ associated with (3.1) satisfies the regularity condition (2.3 (ii) c), and the construction of the scattering operator S(x,y) follows the development in Section 2.

4. A Dissipative Case

If the output energy is always less than or equal to the input energy, the system is called dissipative. It is equivalent to the condition $||S(x,y)||^2 = S^*(x,y)S(x,y) \le 1$. S is called locally dissipative (at x) if there exists a $\Delta(x) > 0$ such that S(x,y) is dissipative for $x \le y \le x + \Delta(x)$.

Theorem 4.1. Under the assumption of Theorem 2.1 and S locally dissipative for all $x \le y$ the result of Theorem (2.1) can be extended to all finite $y \ge x$, i.e. the solution for (2.6) exists for all finite $y \ge x$.

Proof. The finite interval (x, y) is partitioned into $x = x_0, x_1, x_2, \dots, x_n = y$ such that for all i,

$$x_{i+1} - x_i \leq \min[\Delta(x_i), \varepsilon(x_i)]$$

where $\varepsilon(x_i)$ is as given in Lemma 2.3 and $\Delta(x_i)$ is as in the above definition of locally dissipative. For convenience, let $\overrightarrow{\tau_i}$, $\overrightarrow{S_i}$ and S_i and etc., denote $\overrightarrow{\tau}(x_i, x_i + \Delta x_i)$, $\overrightarrow{S}_i(x_i, x_i + \Delta x_i)$ and $S(x_i, x_i + \Delta x_i)$ and etc. It follows from Lemma 2.3, $\overrightarrow{\tau_i} \in B(Y, Y)$ is nonsingular for all i and $\tau_i = \overrightarrow{\tau_i} \in B(Y, Y)$ is also nonsingular, and,

$$||\tau_i||^2 = \tau_i^* \tau_i > 0.$$
 (4.1)

Since each S; exists and is locally dissipative, it follows that

$$||r_i|| \le 1$$
 and $||\rho_i|| \le 1$, for all i.

Furthermore,

$$1 \ge S_i^* S_i$$
 and $1 \ge r_i^* r_i + r_i^* \tau_i$. (4.2)

Therefore, $||r_i|| < 1$ and $(E - r_{i+1}\rho_i)^{-1} \in B[Y,Y]$. Hence, by the star product, [cf. 7],

$$\tau(x_i, x_{i+2}) = \tau_i (E - r_{i+1}\rho_i)^{-1} \tau_{i+1} \tag{4.3}$$

is well defined as an element of B(H,H) and has bounded inverse $\overrightarrow{\tau}_i(x_i,x_{i+2})$. Therefore $\overrightarrow{S}(x_i,x_{i+2}) \in B[H \oplus H,H \oplus H]$. $S(x_i,x_{i+2}) \in B[H \oplus H,H \oplus H]$ and is a solution of (2.6) related to (3.1) on the interval (x_i,x_{i+2}) . By repeating, we have $\overrightarrow{\tau}(x,y)$ has a bounded inverse and result followed.

The remaining section will apply the above theorems to the time-dependent radiative transfer equation. We shall establish the existence of a scattering solution based on a local dissipative condition obtained by the following analysis.

Let us consider the generator for $S, \hat{M} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} M$, with M given in (3.1). Then local regularity for S, i.e.,

$$\lim_{n\to 0} \frac{1}{h} (S(x+h,x)-E) = \hat{M}(x). \tag{4.4}$$

If $S = S(z, z + \Delta z)$ is locally dissipative, then for $\Phi \in Y \oplus Y$, then

$$0 \ge \Phi^*[\hat{M}^*(z) + \hat{M}(z)]\Phi, \tag{4.5}$$

where the notation $\psi^*A\psi$, means inner product $< A\psi, \psi >$ in H. We assume strict locally dissipative, i.e. \geq in (4.5) is replaced by >. Then (4.5) reduces to

$$0 > \Phi^*[e^*(z) + e(z)]\Phi \tag{4.6}$$

for β and δ are independent of t.

Lemma 4.1. If the condition of theroem (2.1) and (4.6) are satisfied then equation (1.2) has a solution for all finite $y \ge x$, i.e. the strict locally dissipative condition implies the global existence of solution.

References

- [1] S. Chandrasekhar, Radiative Transfer, 1960 Dover Publication, New York.
- [2] R. Bellman, H. H. Kagiwada, R. Kalaba, M. C. Prestrud, Invariant Imbeding and Timedependent Transport Processed, 1964 American Elsevier, New York.
- [3] R. Redheffer, A. P. Wang, Formal Properties of Time-Dependent Scattering Processes, J. Math. Mech., 19, No. 9, 1970.
- [4] A. P. Wang, Nonstationary Multiple Scattering, J. Mathematical Phys., 18 (1977), 47-51.
- [5] S. Shew, Transport Impedance, Doctoral Dissertation, Arisona State University, 1975.
- [6] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1966.
- [7] R. Redheffer, On the Relation of Transmission-line Theory to Scattering and Transfer, J. Math. and Phys., 41, No. 1, 1962.
- [8] M. G. Krein, J. Smul'jan, Fractional Transformations with Operator Coefficients, Studia.

 Math., 31, 1968.
- [9] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Colloquium Publications, American Mathematical Society, Providence, R. I., Vol. 31, 1957.
- [10] A. Bellini-Morante, Applied Semi-Groups and Evolution Equations, Oxford University Press (Clarendon), London and New York, 1979.
- [11] J. Jerome, Approximation of Nonlinear Evolution Systems, Mathematics in Science and Engineering, Vol. 104, Academic Press, New York, 1983.
- [12] A. P. Calderón, Commutators of Singular Integral Operators, Proc. Nat. Acad. Sci., 53, 1965.
- [13] T. Kato, Linear Evolution Equations of Hyperbolic Type, J. Fac. Sc. Univ. Tokyo, 17, 1970.
- [14] T. Kato, Linear Evolution Equations of Hyperbolic Type II, J. Math. Soc. Japan, 25, 1973.