AN ACCELERATION METHOD IN THE HOMOTOPY NEWTON'S CONTINUATION FOR NONLINEAR SINGULAR PROBLEMS*

YANG ZHONG-HUA (杨忠华)

(Shanghai University of Science and Technology, Shanghai, China)

Abstract

The nonlinear singular problem f(u) = 0 is considered. Here f is a C^3 mapping from E^n to E^n . The Jacobian matrix f'(u) is singular at the solution u^* of f(u) = 0. A new acceleration method in the homotopy Newton's continuation is proposed. The quadratic convergence of the new algorithm is proved. A numerical example is given.

§ 1. Introduction

We consider the nonlinear singular problem

$$f(u) = 0. (1.1)$$

Here f is a C^3 mapping from E^* to E^* and u^* is a singular solution of (1.1), i.e. $f(u^*) = 0$ and the Jacobian matrix $f'(u^*)$ is singular

Newton's method and its acceleration in the neighborhood of a singular solution have been studied by many authors (see [2]—[9], [11], [13]—[15] for details), under the requirement that the initial guess not only is near u^* but also belongs to a special cone

$$W(\rho, \theta) = \{u \mid 0 < \|u - u^*\| < \rho, \|P_{x}(u - u^*)\| \le \theta \|P_{N}(u - u^*)\| \}$$

for small ρ , θ , where N is the null space of $f'(u^*)$, X is the complement of N in E, P_N is the projection onto N and P_* is the projection onto X.

We assume the dimension of N is one, i.e. rank $f'(u^*) = n-1$. This is the case we usually meet. Denote

$$N - \{\alpha \phi \mid \alpha \in R\}, \quad \phi \in E^*, \quad \phi \neq 0,$$

$$M - \operatorname{Range}(f'(u^*)) = \{y \in E^* \mid \psi y = 0\}, \quad \psi \in E^*, \quad \psi \neq 0.$$

We introduce a homotopy continuation mapping $G(u, \lambda) = f(u) - \lambda f(u^0)$ from E^{n+1} to E^n . A point $(u, \lambda) \in E^{n+1}$ is called a regular point for G if $DG: E^{n+1} \to E^n$ is surjective. A point $v \in E^n$ is a regular value of G if each point of $G^{-1}(v)$ is a regular point for G.

Our idea is to transform the singularity in the original problem into the singularity in a scalar equation which is simply treated by an acceleration method. Compared with the other algorithms ours does not require that the initial guess must lie in a special cone $W(\rho, \theta)$ for small ρ , θ . Also, some combination of our

^{*} Received January 22, 1985.

algorithm with the other algorithms is possible. The initial guess for other algorithms can be obtained by our method.

§ 2. Pseudo-Arclength Continuation

We construct a homotopy

$$G(u,\lambda) - f(u) - \lambda f(u^0), \qquad (2.1)$$

where u^0 is chosen in such a way that 0 is a regular value of $G(u, \lambda)$. According to Lemma 2.15 in [10], we can choose such u^0 with probability one.

Our purpose is to find a path $u(\lambda)$ from $\lambda=1$ to $\lambda=0$. Obviously $u(1)=u^{\epsilon}$, and u(0) is just a solution of f(u)=0 that we want to solve. An auxiliary equation introduced in the pseudo-arclength continuation method is

$$N(u,\lambda;\sigma) = \dot{u}_*^T(u-u_*) + \dot{\lambda}_*(\lambda-\lambda_*) - (\sigma-\sigma_*), \qquad (2.2)$$

where (u_*, λ_*) is a point on the homotopy path at $\sigma = \sigma_*$, $u_* = du(\sigma_*)/d\sigma_*$, $\lambda_* = d\lambda(\sigma_*)/d\sigma_*$, u_*^T is the transpose of u_* .

§ 3. Computing the Root σ^* of $\lambda(\sigma) = 0$

In order to get the solution of f(u) = 0 we are concerned only with the root σ^* of $\lambda(\sigma) = 0$ and the corresponding computation for $u(\sigma^*)$, rather than the whole homotopy path $\Gamma(\sigma)$: $[\lambda(\sigma), u(\sigma)]$.

Keller [9] proposed the secant iteration

$$\sigma_{j+1} = \sigma_j - \frac{\sigma_j - \sigma_{j-1}}{\lambda(\sigma_j) - \lambda(\sigma_{j-1})} \cdot \lambda(\sigma_j)$$
(3.1)

after σ_0 and σ_1 , which satisfy $\lambda(\sigma_0) \cdot \lambda(\sigma_1) < 0$, are computed. Of course we can use Newton's iteration for $\lambda(\sigma) = 0$,

$$\sigma_{j+1} = \sigma_j - \lambda(\sigma_j) / \dot{\lambda}(\sigma_j). \tag{3.2}$$

The practical computations show that both methods converge slowly in our singular case because of

Theorem 1. Along with the homotopy path $\Gamma(\sigma)$: $[u(\sigma), \lambda(\sigma)], \lambda(\sigma^*) = 0$ if $\lambda(\sigma^*) = 0$.

Proof. uo was chosen in Section 1 such that

$$DG(u, \lambda) = (f'(u), f(u^0))$$
 (3.3)

is a surjective mapping from E^{n+1} to E^n . So

$$\operatorname{Rank}(f'(u), f(u^0)) = n \quad \forall (u, \lambda) \in \Gamma.$$
 (3.4)

Noticing

we have

Rank
$$f'(u^{\bullet}) = n-1$$
 at $\sigma = \sigma^{\bullet}$

$$f(u^0) \in \text{Range } f'(u^*).$$

Otherwise $f(u^0)$ is a linear combination of each column of the matrix $f'(u^*)$, and therefore

Rank
$$(f'(u^*), f(u^0)) = \text{Rank} f'(u^*) - n - 1$$

That contradicts (3.4).

Differentiating (2.1) with respect to σ at $\sigma = \sigma^*$, we get $f'(u^*)\dot{u}(\sigma^*) - \dot{\lambda}(\sigma^*)f(u^0) = 0.$

So

$$\dot{u}(\sigma^*) = 0,$$

$$\dot{u}(\sigma^*) = \alpha \phi \in N(f'(u^*)) \text{ for some } \alpha(\neq 0) \in \mathbb{R}.$$
(3.5)

Q.E.D.

Theorem 2. Assume $f''(u^*)\phi\phi\in \text{Range}(f'(u^*))$. Then

$$\tilde{\lambda}(\sigma^*) = \frac{d^2\lambda(\sigma)}{d\sigma^2} \bigg|_{\sigma=\sigma^*} = \alpha^2 \psi [f''(u^*)\phi\phi] / \psi [f(u^0)] \neq 0. \tag{3.6}$$

Proof. Differentiating (2.1) with respect to σ at $\sigma = \sigma^*$ twice, we get

$$f''(u^*)\dot{u}(\sigma^*)\dot{u}(\sigma^*) + f'(u^*)\ddot{u}(\sigma^*) - \ddot{\lambda}(\sigma^*)f(u^0) = 0. \tag{3.7}$$

Substituting (3.5) into (3.7) and multiplying ψ on both sides we have

$$\ddot{\lambda}(\sigma^*) - \alpha^2 \psi [f''(u^*)\phi\phi]/\psi [f(u^0)] \neq 0$$

because $f(u^0)$ and $f''(u^*)\phi\phi$ are not in Range $(f'(u^*))$. Q.E.D.

Expanding (3.2) at $\sigma = \sigma^*$ we get

 $\sigma_{j+1} - \sigma^*$

$$= \sigma_{j} - \sigma^{\bullet} - \left[\frac{1}{2} \ddot{\lambda} (\sigma^{\bullet}) (\sigma_{j} - \sigma^{\bullet})^{3} + 0((\sigma_{j} - \sigma^{\bullet})^{3}) \right] / \left[\ddot{\lambda} (\sigma^{\bullet}) (\sigma_{j} - \sigma^{\bullet}) + 0((\sigma_{j} - \sigma^{\bullet})^{3}) \right]$$

$$= \frac{1}{2} (\sigma_{j} - \sigma^{\bullet}) + 0((\sigma_{j} - \sigma^{\bullet})^{3}).$$

Newton's iteration (3.2) converges at most linearly, and it is the same with the secant iteration (3.1).

§ 4. A New Acceleration Algorithm

Naturally, an acceleration iteration

$$\sigma_{j+1} = \sigma_j - 2\lambda(\sigma_j)/\lambda(\sigma_j) \tag{4.1}$$

is proposed.

Lemma 1. There exists an inequality

$$|\sigma_{j+1} - \sigma^*| \leqslant \mathcal{O} |\sigma_j - \sigma^*|^2 \tag{4.2}$$

for the iteration (4.1) provided σ_0 is near σ^* ; here C is a constant.

Proof. Expanding (4.1) at $\sigma = \sigma^*$ we have

 $\sigma_{j+1}-\sigma^*$.

$$= \sigma_{i} - \sigma^{*} - 2 \left[\frac{1}{2} \ddot{\lambda}(\sigma^{*}) (\sigma_{i} - \sigma^{*})^{2} + 0((\sigma_{i} - \sigma^{*})^{2}) \right] / [\ddot{\lambda}(\sigma^{*}) (\sigma_{i} - \sigma^{*}) + 0((\sigma_{i} - \sigma^{*})^{2})]$$

$$\leq C |\sigma_{i} - \sigma^{*}|^{2}.$$

Q.E.D.

Lemma 1 shows that the iteration sequence $\{\sigma_i\}$ of (4.1) converges to σ^{\bullet} quadratically.

Now we summarize our new acceleration algorithm as follows: 1° Choose $u_* = u^0$, $\lambda_* = 1$.

2° Compute
$$\dot{\lambda}_* = \pm (1 + ||f'(u_*)^{-1}f(u^0)||^2)^{-1/2},$$

 $\dot{u}_* = \dot{\lambda}_* f'(u_*)^{-1}f(u^0),$
(4.3)

where the sign of λ_* depends on the sign of det $(f'(u_*)^{-1}f(u_*))$.

3° Set i = 0, $\sigma_i = 1$.

4° Predict

$$\lambda_0(\sigma_i) = \lambda_* + \sigma_i \lambda_*,$$

$$u_0(\sigma_i) = u_* + \sigma_i u_*.$$

5° Use $[u_0(\sigma_i), \lambda_0(\sigma_i)]$ as an initial guess for the solution $[u(\sigma_i), \lambda(\sigma_i)]$ of (2.1), (2.2) by Newton's method, which is called inner iteration.

6° Compute $\lambda(\sigma_i)$ and $u(\sigma_i)$ by

$$\lambda(\sigma_i) = 1/(\lambda_i + u_i^T \cdot f'(u(\sigma_i))^{-1} f(u^0)),$$

$$u(\sigma_i) = \lambda(\sigma_i) f'(u(\sigma_i))^{-1} f(u^0).$$

7° Compute

$$\delta \sigma_i = -2\lambda(\sigma_i)/\lambda(\sigma_i), \sigma_{i+1} = \sigma_i + \delta \sigma_i,$$

which is called the outer iteration, and a new initial guess for the solution $\lambda(\sigma_{i+1})$, $u(\sigma_{i+1})$ of (2.1), (2.2) is

$$\lambda_0(\sigma_{i+1}) = \lambda(\sigma_i) + \delta\sigma_i \lambda(\sigma_i),$$

$$u_0(\sigma_{i+1}) = u(\sigma_i) + \delta\sigma_i u(\sigma_i).$$
(4.4)

8° If $|\delta\sigma_i| < 10^{-10}$, then $u(\sigma_i)$ is the approximate solution of f(u) = 0. Otherwise set i = i+1, and go to step 5.

Note 1. (u_*, λ_*) is fixed in our algorithm.

Note 2. The initial guess (4.4) in step 7 by using the update data without any additional work is increasingly better during the computation.

§ 5. Combination Procedure

If the initial guess does not lie in a cone $W(\rho, \theta)$ for small ρ, θ , the algorithms in [2]—[9], [11] and [13]—[15] do not work generally.

The combination of our algorithm with those algorithms is possible. The reason is that the point $u(\sigma)$ on the homotopy path near σ can be expressed as

$$u(\sigma) = u(\sigma^*) + (\sigma - \sigma^*)\dot{u}(\sigma^*) + \text{h.o.t. of } (\sigma - \sigma^*).$$

We can deduce $u(\sigma) \in W(\rho, \theta)$ for small ρ , θ , provided $|\sigma - \sigma^*|$ is small enough, because $u(\sigma^*) = u^*$ is the solution of f(u) = 0 and $u(\sigma^*)$ lies in the null space N of $f'(u^*)$.

No matter where the point of departure is, a few points on the homotopy path can be got by our algorithm. Such a point on the path can be used as an initial guess for the previous algorithms (e.g., the Kelley-Suresh method in [11]).

§ 6. Numerical Example

We consider the Chandrasekhar H-equation (see [1], [11], [12] for details)

$$F(H)(\mu) = H(\mu) - \left(1 - \frac{1}{2} \int_0^1 \frac{\mu}{\mu + \nu} H(\nu) d\nu\right)^{-1} - 0. \tag{6.1}$$

According to [12], (6.1) has a unique solution $H \ge 1$ and F'(H) is a Fredholm operator of index 0 with one-dimensional null space N spanned by $\phi(\mu) = \mu H(\mu)$.

Moreover, the range of F'(H) is given by

$$\{f \in O[0, 1] | \int_0^1 f(\mu) H^{-1}(\mu) d\mu = 0 \}.$$

We approximate the integral $LH = \frac{1}{2} \int_0^1 \frac{\mu}{\mu + \nu} H(\nu) d\nu$ by the eight-point Gaussian quadrature formula. This reduces (6.1) to a system of eight nonlinear algebraic equations in eight unknowns. If LH is reinterpreted in this setting, N still has dimension one (see [12]). To compare with the results in [1], [11], [12] we tabulate $\overline{H} = (I - LH)^{-1}(\mu)$ for $\mu = 0, 0.1, \cdots, 0.9, 1$ with $H^0(\mu) = H_{\bullet}(\mu) \equiv 1$ as a point of departure on the homotopy path.

λ		the times of	$oldsymbol{\mu}$	values of $\overline{H}(\mu)$	$oldsymbol{\mu}$	values of $\overline{H}(\mu)$
1.0	E+0	inner iteration	0.0	1.00000	0.6	2.19414
0.56459E+0		3	0.1	1.24735	0.7	2.37398
0.29564E-1		4	0.2	1.45036	0.8	2.55271
0.25450E-4		8	0.3	1.64253	0.9	2.73060
0.62199E-9		2	0.4	1.82928	1.0	2.90782
		total 12	0.5	2.01278		

The total times of inner iterations by Newton's method for $\lambda(\sigma) = 0$ are 38, which is much more than 12.

Simple calculation shows that $H_0(\mu) \equiv 1.843053$ does not lie in $W(\rho, \theta)$ for any ρ, θ because

$$\int_0^1 (H_0(\mu) - H(\mu)) H^{-1}(\mu) d\mu = 0.$$

But we take $H_0(\mu) \equiv 1.843053$ as a point of departure on the path. One outer iteration of our algorithm leads to a point $(1.45624, 1.54819, 1.67929, 1.83323, 1.99169, 2.13555, 2.24746, 2.31420)^T$ whose components are the values of $H(\mu)$ at the Gaussian points in the interval (0, 1), on the homotopy path. Such a point can be used as an initial point for the Kelley-Suresh algorithm. The combination procedure works very well in this case.

References

- [1] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
- [2] D. W. Decker, C. T. Kelley, Newton's method at singular point I, SIAM J. on Numer. Anal., 17 (1980), 66-70.
- [3] —, Newton's method at singular point II, SIAM J. on Numer. Anal., 17 (1980), 465—471.
- [4] —, Convergence acceleration for Newton's method at singular point, SIAM J. on Numer. Anal., 19 (1982), 219—229.
- [5] D. W. Decker, H. B. Keller, C. T. Kelley, Convergence rates for Newton's method at singular point, SIAM J. on Numer. Anal., 20 (1983), 296—314.
- [6] A. O. Griewank, Analysis and modification of Newton's method at singularities, Thesis, Australian National University, 1980.
- [7] —, Starlike domains of convergence for Newton's method at singularities, Numer. Math., 35 (1980), 95—111.
- [8] A. O. Griewank, M. R. Osborne, Analysis of Newton's method at irregular singularities, SIAM J. on Numer. Anal., 20 (1983), 747-773.
- [9] -, Newton's method for singular problems when the dimension of the null space is >1, SIAM J. on

•

Numer. Anal., 18 (1981), 145-149.

- [10] H. B. Keller, Global homotopies and Newton methods, in "Recent Advances in Numerical Analysis" (ed. C. de Boor and G. H. Golub), Academic Press, New York, 1979.
- [11] C. T. Kelley, R. Suresh, A new acceleration method for Newton's method at singular point, SIAM J. on Numer. Anal., 20 (1983), 1001—1009.
- [12] T. W. Mullikin, Some probability distributions for neutron transport in a half space, J. Appl. Prob.,
 5 (1968), 357-374.
- [13] L. B. Rall, Convergence of the Newton process to multiple solution, Numer. Math., 9 (1966), 23-37.
- [14] G. W. Reddien, On Newton's method for singular problems, SIAM J. on Numer. Anal., 15 (1978).
- [15] —, Newton's method and high order singularities, Compu. Math. Anal., 5 (1980), 79-86.