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Abatract

The nonlinear singular'problem f(u) =0 is considered. Here f is a O mapping from E= to Bw.

. The Jacobian matriz #'(%) is singular at the solution u* of (%) =0. A new accaleration method in the
hOmotopy Newton’s continuation is proposed. The qua.dratm convergence of the new a.lgunthm is

proved. A numerical example is given.

§ 1. Introduction

We consider the nonlinear gingular problem -

f(w) =0. - (1.1)

Here f is a O° mapping from E* to E* and u* is a singular solution of (1.1), i.e.
J (") =0 and the Jacobian matrix f'(x") is singular

Newton’s method and its acceleration in the neighborhood of a singunlar
solution have been studied by many authors {(see [2]—[9], [11], [18]—([15] for
details), under the reqnirement thHat the initial gness not only is near «" but also

belongs to a special cone
- Wip, &) ={u|o<u—u"] <p, HPs(ﬂ-u')H‘@lPx(u—u')ﬂ}

for small p, 8, where N is the null space of f'(u*), X is the complement of N in E,
Py is the projection onio N and P, is the projection onto X. -
- We sssume the dimension of N is one, i,e. rank f'(u") =n—1. ThlG is the case

we usually meet. Denote | |
N—{ap|a€R}, $CI, $+0,
M=Range(f' (u")) ={yc E*[Yy—=0}, $CAh", 0.

Wo introduce a hometopy Gﬂntinuatlon mapping & (u, A) =f(w) —Af (&%) from
E** o B, A point (u, A) € E**! is called a regular point for G if DG: E***— E* is
surjective. A point v € E® is a:regular value of @ if each point of G~*(v) is a regular
point for @.

Our idea ig fo transform the singularity in the original problem into the
singula.rlty in a scalar equation which is simply treated by an acceleration method.
Compared with the other algorithms ours does not require that the initial guess
mugt lie in a special come W (p, §) for small p, #. Also, some combination of our
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algorithm with the other algorithms is possible, The initial guess for other
algorithms can be obtained by our method.

. § 2 Ps&udo——Arclength Cohtinuation .

We construot a homotopy
G, =W -Af), (2.1)
where «” is chosen in such a way that 0 is a regular value of G(u, A). According
0 Lemma 2.15 in [10], we can choose such «® with probability one.

Our purpose is to find a path u(A) from A=1 to A=0. Obviously «(1) =«*, and!
©(0) is just a& solution of f(u) =0 that we want to solve. An auxiliary equation
introduced in the pmudo—arclenglih continuation method is

N (u, A o) =uf (u—u) +A,(A—4,) — (o ¥ (2.2)

where (u,, }..) is a point on the homotopy path at o=o,, u,=du(c,)/do, A =
dA(o,) /do, ub is the transpose of u,.

§ 3. Computing the Root o” of A (o) =0

In order to get the solution of f(u) =0 we are concerned only with the root ¢*
of A(c) =0 and the corresponding computation for u(¢*), rather than the whole

homotopy path I'(a): [A (q::r); u(o)].
Keller [9] proposed the secant iteration

- i S - (3 1. .

| O311=0G}4 A(oy) —A(o 5—1) (a") &1 |

a,fter T a.nd o1, which satisfy A(go) *A (1) <0, are computed Of course we can use:
Newton’s iteration for A(o) =0,

a11=05—A(as) /A(o)). (3.2)

The practical computatmna show that both methods con'verge slowly in our singular

case because of |
Thaorem 1 Alcmy mth tha homotopy path I (cr) [u(o'), a.(o-)] A(o*) =0 if

a(a®) =0,
Proof. u® was chosen in Section 1 such that |
- DG (u, A) = (f'(w), f (u")) (3.8)
is a surjective mapping from E** to0 E*. So Yo -
| , Rﬂﬂk(f (u),f( ))=n. V(u A) EP | (8.4)
Noticing " - | | -
we bave - = E g R.a.nk f WY =n—1at c=0"

. f (@) ERango f' (). |
Otherwise f (u“) is & linear combma’mn of each culumn of the matnx f'(w"), and
therefara

B B g n Rank(f ", f(u“))=33nkf(u)=n—L
That contra,dmts (3.4).
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. Differentiating (2.1) with respect to o at o=c¢*, we got' ~
F (wDu(o®) —A(e™) f (W) =Q.

ke =0, ' ST @5
u(o®) =apEN(f' (W )) for somie a %0) ER. AT L

Q.E.D.
Theorem 3. Assume 1" (u*) p¢ & Range (f’ (u*)). Then

Mo =ThO | iyl sHIEIIR0. (B0

Proof. Differentiating (2.1) with respect to o at o=0" twice, we get
' () ale®ale®) +f W)u(c") —A(c*)f (1) =0. (3.1
Substitu’sing (8.5) into (3.7) and nmultiplying s on both sides we ha.va " &
| - Ao =L (W) 1 /LS ()] #0

b&causef(u“) and f" (u") ¢ are not in Range(f’ (u")). Q E. D
Expending (3.2) at o=o" we get

Gip1— 0

—o-0" —[L 10" (1= +0((es~0"% ] / [A(e" (e1=0") +0((0y =071

""—(0‘1—0")"1‘0((5; o*)?)..

Newton’s iteration (3.2) converges at most linearly, and it is the same with thi
socant iteration (3.1).

§ 4. A New Acceleration Algorithm

.- Naturally, an accalerﬁtion iteration

d'3+1-a',—23.(0',)/i (oy) - 4.1
is propnaed : .
- Lemma ). There exisis an megwhrty . B
§ C {ﬂ'3+1"'ﬂ' |QO|U; ¢ 3 Il ; (4'_2)
for the éteration (4.1) provided ag@smra' here C 48 a consiani. , ;
Proof. Expa.ndmg (4.1) at c=0" We have |
Cip1— 0‘ .

SR J\.(ﬂ')(ﬂ', o +0( (o~ a)ﬂ)l/z}-(ar')(w-a)+0((au o)

‘;O]ﬂ' §— & II
Q.E.D.
| Lemma 1 shows that the 1tera.t1un geguence {os} of (4.1) converges 0 o’

quadratically. |
Now we summarize our new acceleration algonthm as follows:

1°- Choose t =u®, A, =1.
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2° Compute A, = = (1+ | f' (v.) "1 () | %) ~2/2, (4.3)
| uy=A, f' ()72 (),
where the sign of A, depends on the sign of det (' (u,)~%f (u,)).
8° 8ot 4=0, g,=1.
4° Predict Mo (o0 =A,+ o,
i g (o)) =u,+ ﬂ'ﬂ:h- k_
5° Use [uy(0:), Mo(oy)] as an initial guess for the solution [w(a)., A(c)] of
(2.1), (2.2) by Newton’s method, which is called inner iteration.
"~ 6° Compute A(ey) and u(c,) by
Ao) =1/ (h+ul=f’ (%(m)) f W),
| (o) =A(o)f (o)) ~1f ().
e Cﬁmpute Soi=—20(c)/A(ay), Cruaa=—ci+day, | ,
which is called the outer iteration, and a new initial guess for the solution A (i),
u(oi,1) of (2.1), (2.2) is

Mo (ain) =A(ay) +8aih (),
tho (0441) =u(oy) + o (o). (4.4)
8° If 3¢, ] <107, then wu(oy) is the approximate 50111131011 of f(u)=0.
Otherwise set 4=¢+1, and go to step b. .

Note 1. . (u,, A,) is fixed in our algorithm.

Note 2. The inifial guess (4.4) in step 7 by using the update data without any
pdditional work is increasingly better during the computation. |

§ 5. Combination Procedure

If the initial guess does not lie in a cone W (p, §) for small p, 8, the algorithmg
in [2]1—[9], [11] and [18]—[15] do not work gonerally.
The combination of our algorithm with those algorithms is possible. The reason
is that the point u(o) on the homotopy path near o* can be expressed as

u{o) =u(a") + (o — oM ulc ") +h.o.t. of (o—0").

We can deduce u{(a) EW (p, §) for small p, 8, provided |o—e®| is sm-n.ll enough,
becanse u(c™) =u" ig the solution of f(u) =0 and u(o*) lies in the null space N of

J ().
No matfer where the point of departure is, a fow pomts on the homotomr path

can be got by our algorithm. Such a point on the path can be used as an initial
guess for the previoud algorithms (e. g, the Kelley—Suresh mathod in [11])

§ 6. Numerlcal Example
'We congider the Chandrasekhar H —equation (see [1], [11], [12] for dﬂtailﬁ)

* " L e —0. |
D (o) = H (i) ~ (1 _[ = +pH(p)dv) 0. (6.1)
According to [12], (6.1) has a unique solution H>1 and F/(H) is a Fredholm

operator of index 0 with one—dimensional null space N spanned by ¢ (u) = wH ().
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oy

'MQI'E_!QV'EI', the range of F'(H) is grven by
{fEOEO; 1] |J:f(,w) H (;.b)dp=-0}.

1
We approximate the integral LH — %J p,w e H(»)dy by the eight-poin¥

Gaussian quadrature formula. This reduces (6.1) to a system of eight nonlinear
algobraic equations in eight' unknowns. If LH is reinterpreted in thig getiing, N
gtill has dimengion one (gee [12]). To compare with. the results in [1], .[11], [12]
wo tabulate H = (I — LH)"(w) for u=0, 0.1, ---, 0.9, 1 with H®(u) =H,(n) =1as
8 point of departure on the homotopy path.

A the times of 7 values of H () @ values of H(u)
1.0 F+0 inner iteration 0.0 1.00000 0.6 2.19414
0.56459 £ +0 S 0.1 1.24735 0.7 2.37398
0.20b664 K —1 4 0.2 1.45036 0.8 2.6b62T1
0.2564b0 K —4 8 0.3 1.64258 0.9 2.73060
0.62109F — 9 2 0.4 1.82928 1.0 2.90782
fotal 12 0.5 2.01278

The total fimes of inner iterations by Newiton’s method for A(c) =-U are 38,

which is much more than 12,
Simple calculation shows that Hy(w)=1.8438058 does not lie in W(p, #) for
any p, ¥ becaunse

[ (HoCu) ~ H (u)) B () d=0.

But we take Ho(u)=1.8430563 as a point of deparfture on the path. One outer
iteration of our algorithm leads to a point (1.45624, 1.54819, 1.67929, 1.88328,
1.99169, 2,1356b65, 2.24746, 2.81420)7 whose components are the values of H (u) a#
the ({augsian points in the interval (0, 1), on the homotopy path. Such a point can
be used as an initial point for the Kelley—Suresh algorithm., The combination
procedure works very well in this case.
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