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_. Abstract

in solving elliptic problems on hounded convex domains by higher oxder

We are interssted .
for the application of the Richardson

" methods using the Richardson extrapolation. The theoretical basis

E

~ extrapolation is the agymptotic error expansion with a remainder
¢ " has been derived by the method of finite differance, '

must reject the elementary difference analogs and adopt _
finite eloments, where no additional boundary approximation is needed but '
the higher order boundary approximation is Teplaced |

we turn o the method of
an easy triangulation is chosen, i.e.
triangulation. Specifically,
by the linear finite
decompoging the domain first

l a global error expansion with a remainder ¢
"&lement discretization oOVer s chosen triangulation, which is obtained by
and then subdividing each subdomain almost uniformly. A fourth order

| _ ‘of higher order, Such an expansion
wheve, in the neighborhood of ‘the boundary ons
complex ones. This plight can be changed if

by a chosen
of fourth order can’be derived

method can thus be constructed by the simplest lLinsar finite element approximation

over the chosen
iriangulation using the Richardson extrapolation. - R

gl e
L.h'-'-!.

§ 1. Problem aﬁd Result

The Richardson exfrapolation 10 the limit 18 a common Wway of increasing the

of low order Minite difference schemes applied fo ordinary differential
the two—dimensional model

&COUTA0Y
equations®, For elliptic equations, for example,

problem

~Mu=f inQ, u=0 on 052 (1)
on & curved domain €, the elomentary difference analogs do not, near the boundary,
allow us o expand the approximation error in pewers of the mesh size k. Therefore,
near the boundary we must reject the elementary difference analogs and adops
complex ones which usually lead to a Jarge number Of noNzero coofficients in the
equations near the boundary. In so doing we shall succeed in obtaining an
expression for the approximation error-’ """

W (2) —u(z) =h (2) +0(h*)

(2)

at nodal points z.
What will happen

order boundary approximation be
Let us recall the Ls—error estimate for linear finite element

W —u=0(p?) in
Tt is hopeless, in contrast to the usual imagination,

to the method of finite oloments? Can the additional higher

avoided by choosing a proper triangulation?
approximation ut,

S — N L
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expansion like
g @ —y=h+0O(kY) in Ly-norm _\
gince the combination-of approximations on two iriangulations (denoted by T* and
™3 vegpectively) is still a piecewise linear function over T™2 which does not give
an O{h*) approximation of 4 in L. - :
Let us turn to the pointwise estimate | i -
g H - @*(2) —u(2) =0(h*|log h), “
where the factor log & cannot be moved at the nodal points anless the sarrounding’
meshes have strong symmetry®*® (forming a six-pelygon at least). So, it seems
that we cannot hope fo find a united error expansgion (2) for all nodal points of a
general (regular) triangulation. | p _, e o
- 8o, the problem is how to choose a triangulation such that there will exist a
united error expansion (2) for all nodal points. : wm® > 5
In [6], [14] and [15] a piecwise uniform triangulation, and in [17] & piecewise
almost uniform triangulation are constructed in order to obtain the united error
expansions like (2). These kinds of triangulation are easy to be constructed for the
polygonal domains, for instance, by first choosing coarse triangles or quadrilaterals
and then subdividing each triangle or quadrilateral almost uniformly. E B
~ An interior uniform triangulation hasg been used in [6, 16] for the curved:
domains. By an arbitrary arrangement of triangular meshes near the boundary we.
get only an interior error expansion with a reduced .order O(A®*|logh}) for the.
remainder. It seems that unproper meshes near the boundary pollute the remainder:
even in the interior of L. o™
+ In [2], a transformed uniform iriangulation was introduced in combining
wilh a t:ansformed_bilinear element approximation. It is the purpose of this paper ta>
describe how 0 recover usual linear elements from the transformed linear elements:
used in [2]. y F | e P om oy F | |
- Define a triangmlation T* by first ‘decomposing the domain and then:
subdividing each subdomain almost wniformly, for example, by the following :
possible process (see Fig. 1). ¥ g, © -
. _Suppose, for simplicity, that &2 -is a, star
domain with respect to a point O. Firstly,
ochoose a square £, with ite center at O and
divide @2\, into four pieces {&;, 1<i<4} by
four rays passing through O and the four
vertices of £2;. Secondly, make n—equipartition
along each edge of Q, and draw n—1 rays
through O and the n—1 equinddes. Linking
the n—equinodes along each ray lying in ; we
obtain an almost mhiform triangulation T
over Q,. Finally, let T} be & uniform friangu-

il :_ |-
h_,r b

Fig. 1

lation over Q. We obtain a piecewise almost uniform triangﬁiaﬁun by
ce e el edosan Pllees o ®

over P = {J{K & T*}. o R Kot sl mn mg w ek

-
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The result is '

Theorem 1. Suppose the solution w€ W™ (Q).. Let u" be the usual hmer ﬂrn.ete
elomeni approzimation o uw over & iriengulation defined - as. o (8)+ Then the
eppreeemeteee error can be ewpandsd in the form

() —u(s) =We(x) +O(R|logr]) . @
at nodal points 2 uniformly bounded away from the vertices of Q. In partiouler, &

fourth order method can be obtained by the combimaizon ef Imeer ﬁneﬁe element
o eweemteees over o bréangulations T and T™°: . - e B

3 (- (2) =u(a) +O(A | log B]) - (‘s)“‘:

m% nedel pemts ze T"l ung formly bou»nded away from the vertices of .Qn
: - Therefore, the Richardson exirapolation (B) to the h—~version of the finite
elemont method is worthy of recommendation. Since, in the h-method, gucoessive’
refinement of the meshes has been used, ‘why not use Richardson extrapolation?

Wa now compare the tredtments ef finite element and finite difference.
¢ (1) On the uniform meshes the finite "element approximation of elliptia’
problems with constant coefficients reduces to & special finite difference method:
gsinoce all equations for interior grid points are” the same™!. The essential difference
ik that the ‘expansion (4) holds for the finiie ¢lement analysis even at nodal points
in £, (+0, shownrin Fig. 1) where ‘the triangulation is not uniform. 8o, the’
finite elemént treatment admits more flexibility -in thé choice of the meshes whiéh:
can he used fully to avoid the higher order-boundary eppremmet&en needed in the?-'
ﬁmte difference treatment. : LR R
- (ii) The:finite element analysis needs much ™ weeker emeethneee agsumption of
u then the finlte differenee.analysis, whleh ig ueeful in deeh_ng mﬂi extrepeletlen
methods on reentrant domains™. fo apwew w7 e

(iii) In oontrast o most of the proofs in the ﬁmte dlﬂ‘erenee eontext -Ho’
discrete maximum: prinociple. is needed; Therefore, it is possible to défive asymptotio
expansions for second order problems whioh are not eepere.ble and elee for eeeend

order elliptic gystems™® 4, '- i
At the end of this paper we compate- the extrepelatlen ef hnee.r elemente a.nd

the eupereenvergeeee of que.dre.’e.q elemente w0 | el

G
= !_
r

-

§ 2. Preparatlons tmd Lemmas

- The eueceee ef 6rTOT expansion (4) is heeed on the ePecia.l type of tnengula.hen
as ehewn in Fig.- 1. In fact, such kind of tnengule,tlen comes from a uniform:,
tnengule.men over a unit square in the fellewmg sense. | |

FelIe:wmg [2], we eﬁeume that @ can be represented as a eelleetlen ef
transformed Tinit squares. To this end we make the following assumption on &
there is a finite number of subdomains _Q; _(e=-0 1, 2, +--) such that

(i) QN&&=2V 'H‘j,

(i) Q=18

‘(iii) there 1e an invertible transformation ¥: 2,~>[0, 1]* which, toge’ﬁher with
its inverse ¢,=1;", is sufficiently smooth; __ . -
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(W) 'Qi ‘}"’i((ﬂ 1)2)
) |le) — ¢;(y}|=[t,b;(a:) ~, ()| Y=z, ¥y EQNGD
Let T" be a umform mangulatmn over [0, 1]? with node set ﬁ" a.nd lot

' Nt = (ﬁ *).
Linking the nodes in N} we obtfain a triangulation T; over Q; By condition (v),
'the nodes along the common side Q;N G, coincide:
Nhn angi==N_f n Q;n Q;.

Thus, T*= |JT? is a regular iriangulation over Q.
Fig. 1 shows a possible partitioning of a star d

the construoction of triangulations 77%. -
Then, the properties of T* can be desoribed through .

We use some local notations in the reference domain. For an

ﬁ' < f”' we infroduce the notations:
pa=vertex of K, &=side of K opposite t0 P4,

R ﬁ¢=length of 85, h=mmax ﬁd, |
J o m==outer normal unit vector alﬁng s,;,
 #g==tangent unit vector along S4,
| §d=midpoint of 84, § =center of K.
Corresponding 10 K, let K€ T? be a friangular element with vertices
. D= Da) G Q;, 1<d<38.
We use a for it area and %4, h‘ ng, tags, g for its side, leng'hh, outer normal vector,

tangent vector, midpoint, center, respeotively.
Note that all Ke T will coinocide under translation and reﬂaetlon Let us ohowa

the reference veotors.?g such that either
ta=4%4 OF t.;=- —%, 1<d<S8.
Yor K = 4pipaps ﬂorreﬂpondmg 10 K= Afpl p,pg we deﬁne
| (K =ter%s
and we have, for any two adjacent triangles K and K ¥ o g
5(K)=—-8(K"). (6)

The difference of the lengths, the normal vectors and the areas between K and

K' are of higher order: |
hy=h,+O(R?), tg= — 8 +0(h), a=a +O0(h®).

¢ fhe rigrmal Vector can be expressed as a combination of tangent veotors along

omain £ into subdomains £; and

y fixed triangle

two sidesB®.
Lemma 1. On the triangle K, there hold
(1) ﬁ1=ﬂﬁ1+ﬁi‘: ﬂ} ﬂ"'ié—f:fﬂ' t1°ts, B= h;zar

i 2a |

(]J..) t]-'ﬂ'ﬂ= hj_hﬂ-, ; ti.'n'ﬂ- ! h],hg-

For a function v defined on £2;, let
@@
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and we will use the simple notation

.. o 2(2) =5(2).

8o, a function defined on £, can be regarded as a function defined on [0, 1]? and
the inverse is also true. Thus, it is needless to make a dlamnctlon, for a funotion,
between the definitions on [0 1] ? and on £,

The lengths A4 or vectors i, are umted for all E & . Correspondently, ke or #,
are almost united for all KX €7T™,

Lemma 2. There evist smooth functions @, b,;. and oy defined on [0, 1]‘II and
{0, 112 % [0, 172 dndependent of h such that, for all K€ T?,

(i) he=haa(gs) +haa(gs) +O(RY),

(ii) o= 8(Ba1(qa) +h*bas(gs)) +O(RY),

(i) a=ai(ds gs) +has{gs, gs) +O(R®).

Proof. Let K =-Ap1p,p3 with ps=¢(ps). By the Taylar expansion at midpoin$
9’1, there hold ;.

$(5) —$(8) =D (@) (o= ) +5 D$() (o )" 5 DB (Ba—G2)*+O ()

¢ (Ds) — ¢ (q1) =DP(q4) {:5:-51) +% D’¢(51) {_ﬁr‘fi)’“"%-ﬂa‘f’@i) (Pa—q1)*+O0(A*).
By subtraction we have

Ps "‘1?1’5131‘;5 (QI)ti'i" ﬁg sﬂf’ (g 1) t1+0(h*)
where ﬁ;— 7?;2-, and hance

b= | ps— pa| =ha11(¢1) +h*a1s(q1) +O(R*).

Note that
_ Ps— P g 3¢'
2 »"’——f-hi , O1p=8-1 4

1

(ii) follows by an analogous argument.
Note thai

tisdg

T T Taxts]

(iii) follows from (ii).
We now define & geometric point set X consisiing of the pomm with the same

geometric position for all K € T}. X may be, for example,

{ps}, {gs}, {p(g)}, {g}, {$@D} *.

Then, we can iransfer one geometric point to another,

Lemma 8. Let f be a smooth function defined on QF and {Xi1, X, X} three
geomeiric poimt sets. Then there evist functions fi(0<<d<38) defined on L, independent
of h such that, for all K €T3, -

7@, 4) =) 1(e) +0(9),
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where £€ X4, y€ X5 and 2€ X3 in @ iriangle K.
Proof. For clarity, let us take the concrete example

Xi=Xs={¢p(q0)}, Xa= {ﬁb('?ﬂ)}
Thus, by the Taylar expension

f(ﬂi: -'?3) '_f(gir 91) +Dﬂf(§11 5?1) (62*51)
+L D3f (G, 62 (@a— )+ DIf (G ) (Ga—G)°+O(R%).

Bince
~g1= —-12-(53 P1) = ) E fa =g S}EBT“’
weo have L .
 Fy @0 =F s iD= FDaf (@ Gt
—% R3D3 f (41, 51)'?3-?38- RiD; £ (@1, 41)#+0(H9)
and henoce . %

@y §s) -i(ﬁh)"fﬁ(&lj +0(A%).

The line integral can be expanded in an area integral with a remainder of

higher order line integral. | )
Lemma 4. For v O K5, there hold -« -+ - .~ -

(F J wds=—J vdo— %’ j dgvds+0O(Rh®); + -

';ii)"[lr v ds— hiv(gi)+—-hﬂj o2 ds+O(h%).

"The proof is based on the Bramble Lemma. We refer to [16] for detail.
We will use some obther notations: -

= U K, 8Q2}=a0}\aQ"* I's= | 3, V= | (&N82;N%02).
Eeﬂ IﬂCE':"ai‘ < i< :
§ 3. Proof of Theorem 1
Let @"u g,, ‘and y, be the mterpolan.t of u, the discrete Green functmn and the

regularized Green function over T, respeotwely, as defined in [6]. Then, by ihe
definition, |

(—w) (@)=, V(u- @"u)?g"dm-=2 S [ vu-tvgds

EeTY

-3 2 _J:E (4 é"u)j%yﬁd@

¢ Fem}v?®

_ .

2P KE,, na

Inserting the Euler-Maclaurin formula

gzj (u u)da.
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o T = g UE Sn e =

‘L‘ (u—d™u) ds = b hdj aguds—i-hﬁ Ldo(s:]aéudg

12
into the last term we obtain |
(e — M) (2) =EE 3 (“_hzjﬂagd“@%??ds) :_

¢ Kerh
+33 S # | oo gids
¢ Fcm Ony

For the remainder, replace g: by g, and note from g,& H2(£2) that

a ot | : 6 ~
h‘J' Gfﬂ 3415'———- ,ds-'—- - h4J 3
EE’# ¥z k") | Ong d aggﬂf ’ o O 7 | (7)

and from a trace theorem and the estimates for ¢i and g, that

V(=G |ds<oht [ [(gi~ ) |ds+o j V9.l de<cfloghl.  (®)

EeTi
‘We obtain -{' ¢ . .
0
o — %) (2) = —_hﬂj 2 pds)+0*1ogh]).
(=) (2) 22@( = umg“) (4*[10g h])
Henoe, it remains to derive asymptotic expansions for terms like (d=1)
7
Il-’ : hﬂ
HE’!‘ ’ Ony

Break up the integral in I*, by Lemma 4, as follows:

j afuds—ﬁu(gijhﬁ--}—-hij Sluds-+-0(h%).

For the second term in the right hand side there holds, by using the argument in
D, (8) |

E ki
HeT? an;,_

y;j 3§ude‘<ch*lloghl-.

Hence, we obtain.

- 0 hi-—-y‘ﬁ’u(gx)w(k*lloghl)

Kel}
Reduue the norma.l vector, by Lemma 1, to tangeni vectors along two sides,
=~ 3 ah?digtBulg) + S Bh3 Oags 01u{g1) + O (h*|log h|).

T KEe&T? Ker}
‘We want to derive asymptotia expangions for terms

2 ahﬂ 619' 32'“(91) ¢
KeT%

Mh= 2 ,Bhﬁagg‘;‘@i’u(gl).
. KeT?

Let us consider L* first. Using Lemmas 2 and 8 we can expand the function
ah132u(g1) ml‘.’iﬁhl V’u gljtﬂ
by the united functions We(g1):
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1_-____—-‘_____——______—-._——-————_——-—_-_-_

< A ~ . ; i
o - ahidtu(g) éhﬂg} (ab)dwd(gi) +Ok5§)"' y R
“Then ' |

e i i o :
I} =h? 2 2 h;(ﬁk)“&g Wi(!h)'*'OUf)
A4S0 peqm
We split I as follows

Lre 2 ZLH—O(h"), L= 2 ajngu(qﬂhL -

.E' ET;

Note. that 9= — &} for two adjacent triangles K and K’ with a common side #.
"'I‘he sum in L} over interior Eld'BS s4 i8 cancelled. Hence, L} reduces to | '

- ) aiggwo (9’ 13711

: lj,C#lm

in view of

s T W) =We(9(@), ¢ —qi<eRt, 1 (@)
L tarns back to an jntegral form: TR g , - " G e

= 3 210iWo(ge) b1 +O{R*|logh|)

lﬂ:ﬂ‘ﬂ?

e Eia;aigh,{ Wo ds+0(h’|ldgk|) | . R E S

[ agwos O og )

- _q,@iFV.;.dﬁ-i—(g"Wn)[;.+O(h”llogh[),
where b and ¢ denote the endpoints of Iy, Set |

- 5 1 ; | e .Ln J 9': 31Wﬂds+ (QHWB)J

We obtain, for dist (z, V) "QETPO by Lemmas A3 and A4 in [6]
C @=Ll +0(oghl). L
For I} we ha.ve obsarvlng (9)? o

> ahalgzwitql)hi YR &y;vtficasw(h’lloghl) (10)
R abe by o R v i ERTly W - . , .
Note tha.’a & F
x 3==-—5’ 31-——81 T I-

for two adjacen’ﬁ tna.nglea K and K’ with a ¢ommon gide 3;. The sum in I} over

interior sides s; cannot be cancelled. We have to reduce, by Lemma 4, the line
mtegral in L" 1o an area mtegral

j 3:19)!W1f38= L{_ 31.9: 10 -_“ __hz_ L 3192F35W1d3+0(k3)

. _—;ﬂ g".BlWida;—I— hil J‘ gﬁﬁfiﬁ&-ﬂda

ﬁ-..a

- ) J aig,aﬂwidwc)(hﬂ i (1)
L A ﬁ
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For line integral in (11) we have, in view of {;+n;=0 and Lemma 1,

% 4
j:% .L. gﬁ¥W1t1'ﬂad3= —-%- -L- gﬁWIds
. 1 g |
—&?—“- 'Ll g':Wifi'ﬁg d6==—h:- Jl: ﬁth ds. |
For the first formula we have, ob%rving 8= —&  and g;—interior sides,
> 52 J GW 1 ds=0. a (12)
3 +h

Kem

For the second formnla we have, observing that the lang'hhs ks along I‘ﬂ are tho
game, |

) B j Wy dem 22 j 7*W s ds. (13)
KeTh 3 .
For line integral L in (11) we use the following estimate: for twu a.djaﬁent

Liep

friangles K and K’ with a common side s;, A L E o« T
k,L oW rds—h, | OigieWads|<ch| - |g|da.

KEuK'’

Bo, the sum over interior sides s; is almost cancelled, and hence

>3 ah,j 8, 0sW s ds= 3 ﬁh,L 8,9 0,W 1 ds+O (| log ).

KT} e c#‘ﬂ}
Using a trace thmram

LY J 2 |ds<:cj |vg"]dm-<cllogh|
we conclude that '
> Ohg L O19: 03W 1 ds ]'{chllngh]. (14)

KEeT}.

For area integral JI in (11} we use the following expansion: |

| 102 5= (oW s(g)a+ O [ | vt da.

Aga.m, we ;iﬁand the un—umted funotion -;:?1- 31W1(g), uﬂmg Lemmas 2 and 3, by
united functions ve(g):

aWa(@ — 3 (3 u(g) +O(R).
Hence
b [ oW dz= B 0u(e)g(a) +avi(9) g2 (e) +O(H +oa=)j | Vg da
Thus

3 (-2 | goWids)= 3 alog) @)+ 3 sha(egh) @) +O().

Kem EeT? Kem?

Again in view of 8= —& and a—a’ =0(%), there holds
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3 Sha(vgh) (g) =O(R?|log h). '
| _ Kert o . "
Then, the area integral in (11) can have a nnited expansion:

> (-2 [ gtow:da)=|, vida+OGloghl). . (15)

KEcT} &
Oombining (15), (12), (18) with (14), we obtain from (10), (11) that

I vogtao+ 22 | W .ds+OGR 1og b))

hs
Set

5 23 j -
¥ jm voguda-+ 22 | g, uds

where -%— is a constant gince the lengths Ag along I's are & constant. We obiain, for
a4
dist (z, V) >8>0, by Lemmas 4 and A4 in [6], -
L}(z) = Ls(2) +O(h*|log A] ).
For L we have, by the same treatment for Ik
Li=h® 3 8igiW3(1)ha=0(H*|log h|).
Eel? . | .
As a result of the above discussion, the following expansion
IM2) = k2 (Lo(2) + Ls(2)) + O(A*[log h]) (16)
holds true for dist (2, V)=e>0. = - | :
A similar expansion like (16) can be obtained for M * by observing
2 2 -
Bh 08 (gs) = — ha ey b} Vhu(g)fl=hah® 23 (38)*ra(ds) +O(H)-
This completes the proof of Theorem 1. ‘

§ 4. Comparison with Quadratic Elements

An error expansion for quadratic element approximation to Poisson equation
(1) can be derived in the same way as in [16] for the eigenvalue problem. Below,

wo shall consider uniform triangulation 7, generated by a set of three—direction
veotors. N | |
Let S? be the piecewise quadratic element space over ™ and ¢*'u€ S} the
interpolant of «. Consider the integral - 5 -

wm s I(v) -L ?(_u-j-ﬂ"rz)vfu&w for v€ 93
'We split I as: follows: - o, |
| I-_-%I;, Tom— 3 L(ﬂ—-@"ﬂ)dwdm,

L= 3 [ -ty 2ods 1<d<3.
We consider first the line integral I, say I;. By Lemma 1
' L=3a [, @-P)onds+ T8 (u-dw)omds.

i
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All line integrals in the first sum over interior sides s, are cancelled, since ;= —
01 on the adjacent triangles. And v=0 on 8Q, It remains to expand the last sum in

Zi. By Proposition 2 (with an inverse estlmate) and Lemma 9 in [16], we have
Iy=cyBhi ? L B1udy ds+cq BhY E 7"’; . 3?“_33‘!? ds+O0(4°) |v]2)1. (17)
For line integral in the first sum there holds, by Lemma 10 in [16], -
_[ P daw ds=. j Otudzv ds-+ ’”1’33 L 85(8"u8gv) das.

After snmmation, all line integrals in the first term on the right over interior sides:
85 are cancelled, and the laﬂt term gives

hikﬁ (I, 94 D000 ds+3 | otudsomda).
Dea.ling with the aecond term in (17) in the same way we obtain ﬁ:na.lly
Giﬁ h kg J 336115331?&@4‘;'[ Q[@ﬂaﬁ‘ﬁ'dﬁ) |

"53 A3 z‘,(hmj 25 D v dp — famj Bgalua%dm)-l-()(h“)ﬂwﬂ’,:. -

We now oonsider the ares integral T, Again by Lemma 9 in [16], i.e. dv —E m o0,

we have

Io=— 303 | (u—ita)afvda,

g=1

By Proposition 4 in [16],
L.um (u—tPu) do=h* Drudz+0O(R) [ v]s,1, 50K

KUK’
Hence, wo have | '
To=htS L Dy Dy dz+ O (k) |vlh, 10

The resnlt is | | |
I(p) =pht (Jﬂ_Dﬁu D dw+§IK Dby Dy dm)—l—O(h“) o)k, 10 -~ (18),

Taking o= g2€ 83 (the diserete Green function), we have
(= Mu(z) =I(g}) =O(R*|log k), (19)

l.e. the quadratio element approximation vw* has a superconvergence with the same

order as the extrapolation from linear elements.

A local result of (19) has been developed, for example, in [26].
We can establish an error expansion with the dominant term of O(r*).

We can see from this section that the error expansion method is also a powerful
tool for observing the SUperconvergence phenomenon.
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