Vol. 6 No. 3 JOURNAL OF OOMPUTATIONAT, MATHEMATICR July 1988

CONVERGENCE OF DIFFERENCE METHODS FOR
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Abstra.ct

In th1s paper, ihe dlﬂ’erence methods :Eor mlvmg the inverse pmb]em nf g one—dlmensmnal
hyperbolic system of first oxder are discussed., Some difference schemes are constructed and

the convergence of these schemes is proved.

§ 1. Introduction and Summary

In [2], the inverse problem of a ﬂnedlmen910nal lmaar hyperbolm Bystem of
first order is discussed. This problem can be transformed into a semilinear initial-
value problem by using a relation obtained from the propagation of singularity.
The theorems of existence and stability are proved there. In this paper, we discuss
the difference methods for solving this inverse problem as a semilinear initial-value

problem.
Consider the following system

(G +e @ ai' -0,
i x>0, $>>0 (1.1)
3P (a:)
gt !
with the initial conditions
W{(w, 0)=P(z, 0)=0 (1.2)

and the boundary conditions
W0, 1) =0()+Wu(s),
{ (0, %) (2) o{?) (1.3)
The inverse problem is to determine W, P and ¢ satis{ying (1.1) and (1.2) from

the given data (1.8) and a given constant ¢(0), here we assume ¢(0) =1.
Set D=P+¢W and U=P—cW Then (1.1) becomes

oD _
""38(55) (-D U):

o 3“; 2>0, 1>0, (1.4)

U 20 —pa) (D-D),
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where
_ ¢ (=)
and the corresponding initial and boundary conditions become
D(z, 0) =T (z, 0) =0 (1.6)
and

D(G t) 23 (2) —!—Dn (t)
{U(O £) =Us(t), @7
where Do) =Po(2) +Wo(3), and Us(®) =Po(?) —Wo(32). So we need only o solve

(1.4) under the conditions (1.6) and (1.7). Obviously the solution of (1.4) with
(1.6) satisfies

D(z, t) ——;U(m, f) =0, for o>1>0. (1.8)

By the theory of propagation of singunlarity (see [6], Ch. 6), we can get the
important relation

Uz, ) =B@)oxp | B()ds, 50 (1.9)
and D can be decomposed as N |
By, 1= za(t—m)expj 3@)@-—}3@ 5, (1.10)

where D(z, ¢) has a dlscontmmty of the second kmd on z =4 (see A“ppend;lx)

Now we consider our problem only in the domain Sg,n={(z, %) |t>2,
0<z<<T}. Then the original inverse problem is transformed to the following
initial value problé:ﬁ:

gD , 8D _ -
2D + 20 _p@-(0-D),

oU _ 80 _ gy (D~
U _ 9 _g(z)-(D~T)

with the initial conditions (in the z—direction)
{D(ﬂ, ) = Do (%),
U(0, &) =Us(#),
where B(m) is determined by U(m m) B(m) exp j B(s)ds |
Set

(1.11)

(1.12)

ita) =exp [ BG) i (1.1%)
Then by (1.5), we have
d(z) =exp E-%—ds =2/ c(x),
i.e.  E _mm g
d?(z) =c(z).
On the other hand,



228 JOURNAL OF COMPUTATIONAL MATHEMATICS Yol. 6

& @) =B(@)exp |, B@)ds=B(2)d (@) =U (=, ).

d(m)—1+j:'U(s, ds - (1.14)
and |

B(z) =d™*(z) U(z, o). (1.15)
- Substituting (1.15) into (1.11) and mtegratmg them along characteristics in
'hhe interval [0 ], We ge'b

{D(ﬂ!, #) :—D.;}(fr"-m) +J’:dj‘-1@‘; 3)0'(3,-3) (D—-U) (ﬂ;t“m_l_.'s)dﬁ: (1 )
.16

Uz, £) =Us(t+) _j:d-l(_s, DU (s, 8) (D—T) (s, $+5—8)ds.
Sot o - :
Di(w, t) =d™(2)D(z, ), Ui(w, £) =d*(2)U(, 1).
From system (1.11) we have =~ .
0000 RLOLROMODEEIAC 2)Us(a, £),

&gl._ e ﬁ(m)ﬂ 1(ﬂﬂ)li'(m ) =U4(z, a})Dx(m £).

Consequently

(1.17)

{Di(m, £) = Do (t — ) —]:Ui(s, YU (s, t—m-i;s)da,

T iln, ) =Tk m)—'j:zfi(.s, ) Dy (s $4+0—3)ds.

Definition. o* s called @ singular point of problem (1.11) éf J: B(s) |ds i

findte for z<<z* and tends to +coo as x—>x". The imterval [0, T') is called normal if
there 48 no singular point in 4t. The normal interval (0, T) ds called the largest
qwormal inderval of T is a singuler point.

Bemark, For (1.16), if “:5(3) d;\; 400, then j:,e_(s)ds=+m or —oco. By

(1.13) they correspond fo d(z*) = +-co or 0 respectively. If Ho :1€) ds‘ is finite,

‘then d(2"), gimilarly e¢(z*), is also finite. It implies that the varistion of ¢(z) id
anbounded. For (1.17), as B(sz) =Ui(wx, z), a singular point z* is such that

j T il, ) i 400,

The problem (1.17) has been studied in [2] The following result is obtained.

For any Do (¢), Uy (2) € L*(0, o), the problem (1.17) has a unique solution in
8,1, where (0, T) is the largest normal interval of this problem, and if [Do|z
and |Uol s are sufficiently small, then T = +-c0,
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S,

§ 2. Difference Schemes and Lemmas

We now construct difference schemes for the problems (1.16) and (1 A7) in
the domain Sr={(, ) [0<2<T, s<t<2T—z}.

Take dz =4t =h=T/J, where J is an integer,

For the problem (1.17), we have

Scheme I,

{D;;=D2:%-'kU£:iU::}, 2.1)
Ui=UlLi—WRSDEH, k=1, -, J; n=k, -, 8T —F, |

where U} and D; are approximations of U, (Bdw, ndt) and D, (kdz, ndt) respectively.
The approximate value 8, of B(k 4z) can be determined by

. Bi=Usx. (2.2)
For the problem (1.16) we have
Scheme II.
D= DR+ hdi " URS (D - U,
{Uzﬂ T — kLU (Dpt — U , (2.3)

de=dy_1+AUZ], k=1, o, J; n=F, o, 2J ~k,
where U}, D} and d, are approximations of U/ (kdz, ndt), D(kdz, ndt) and d(kds)
respectively.,

Obviously, Schemes I and IT are the first order approximations of (1.17) and
(1.16). The numerical solution of these schemes can. be obtained step by step in
advancing in the z—direction. In the next section we will discuss the convergence of
these schemes. Before that we introduce some lemmas.

I.emn;a 1. Let a non—negative series {E,} satis fy the following imequality

BBy 1+ O0:0(0,E}_+ Os B3 1 +0.E_q) +Ogh N | (2.4)
and
Eu'ﬁau'?}. (25)
Then | |
E,<Cperrn, for brh<,, (2.6)
where
s (A—1)0, @2.7)
| CoO1A (O (Oorn)?+ 03 (Ogrhn) +0,) +0; *

and A(>>1) és @ constant. |
Proof. We shall prove this lemma by induction with respect to k.

Obviounsly (2.6) holds for ¥=0. Suppose thas (#+1)-h<7y and (2.6) holds for
all §<Z. Then by (2.4) we got

By 1 <Ey+ Oth(Os B+ O3 B2 OB, +Oshn
<Eo+0yh g_ (OF5} + O3 B+ O,E,) +05 (k+1) by
S Uon+ 19 {(010A (03 (Ood) 2+ 030An+ 0 +O5)
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R —C T, —

< kil g it i E—

o 0{]7? 5 (34 R 1) On?} e ?‘.,Ou‘?}.

Lemma 2. Let T>0 be an arbitrary positive wumber and {I,} satisfy (2.4)
and (2.5) in Lemma 1. Assume n<A~°. Then we have

B<N Oy, for kh<T, (2.8)
where o = [{-]1} +1,
- (A—1)C,
4 CoC1A (Oﬂo g + 506+ 04) + g ) (2 g 9)
Proof. Set

ot (?9—1)1.‘"101; Bl i
01003,* (02 (Ooﬁ,in) 2 __I__ 030 01"&1? + 04) + Oﬁ 2 ’ 3
By assumpiion, we have

AL AT,
and
CoC3A (O (Corin) 2+ CeOpMin+C,) + O
SATH(CoOA (Ca02+ 030, +C,) +05).
Hence
' - (A—1)C, _
O10A(CoC i+ 000+ 0 + 05
- A (3“1)0070-1 — S
U100 (Oa (Ol +-0300'n+0,) +C;
 Denote Oo=0, §;=i+%,1=1, 2, .+, . Now we shall prove that
By<ACyn, for k& [5i.1/h, 8,/R],
by induction with respect 1o 3.

For ¢=1, it is just Lemma 1. Suppose the assertion is true for 4~1. Then there
exists %k, such that |

T

koh <<Oi_1 (bo+1) A
and
Hy, <A 0 gm,
Set i,=H,,., Then {&,} satisfies (2.4) and (2.5) with CoA*? as a new C,. In
this case, 74 i8 replaced by +*. Now from Lemma 1 it follows that
B a0 n=00pm, for jeh<r<st.
Returning 0 E,, we have

E.<Co\'y, for k€8, 1/h, 5,/F].

Remark. This lemms is different from Lemma 1 by introducing the
resiriction n<<A"° on . Without this restriction we are only able t0 estimate E, in
the interval [0, z,]. But in Lemma 2 we can make estimation on X, in the interval
[0, 7] for any T >0 so long as 7 is sufficiently small,

1) Here [a] represents the integer part of the number a.
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§ 3. Convergence

We now discuss the convergence and the stability of the difference schemes
constructed above. |
Denote briefly D (%, n) = D(kdw, ndt), Uk, n) =U (kdz, ndt) and d(k) =d(kdz),

D] =max| D3|, U} ~max|T3],

D;=Di—D(k, n), Up=Uz—U&, »n),

Ek = d;-; e d (k) *
Firgt assume that D(z, £), U(w, $) is the solution of the problem (1.17) and D1,

U7 is the discrete solution of Scheme I.
Theorem 1. 1) If D(w, ) and U(z, t) are continuous in Sy, then Ve € (0, 27°),

J6>0, such that as h<<8 and

ﬂi‘)uﬂ + 10| <8, (3.1)
we have
1.0 + | Uy <2%, fork-h<T, (3.2)
where o= [g] +1, 7= (2+10M)™, M=max (| D|cw,, [T]oms)
2) If D(x, t) and U (x, 3) are Holder continmous of order , then as h*< 2~ an/
| Do + | Uo | <h2, (3.3)
there holds the énequality |
| Dl + U] <27k%,  for k-h<T, (3.4)

where o-l—[f]ﬂ vi= 2 +6M+4 MM, My =max([D]uzs [UTas)?.
1
Proof. -
Dy=D;— D&, w)
=Dyl — R0l — D(—1, n—1)+j Us, U (s, (n— k)% +s)ds

(k—1)h

=Dy A+ U o1, b—D) T+ T (h—1, n—1))
-L {UG—=1, k—1) ~U(GE—1Dh+s, (b—1)h+8)}T k-1, n—1)ds

-—J:U((Ic—l)h—l—s, (k—1)h+3){U (b~ 1, n—1)

—Ul—1Dh+s, (n—1)h+s)}ds. (8.0a)

Similarly,
Up=Usti—r Ui +U -1, k— 1) D+ 21Dk~ 1, n+1))

_.L {Uh—1, k—1) ~U((k—1)h+s, 3—1)h+5)}D(k—1, n-+1)ds

R O i

1) [f)a,p represents the Holder coefficient of f in the domair D, i.e.
| {flap= sup U(Q) —.ﬂﬂL

P,QeD,Prq |P—Q]o




232 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 6

il -

—J:U(Uﬂ—l)h-l-s, (k—1)h+s) {D(k—1, n+1) —=D((F—1)h+s, (n+1)h—s)}ds.
(3.5b)

1} By assumption, D and U are uniformly continuous in 8r. So V>0, J6>0
guci: that as lﬂii—mgl < and Iﬁi_tﬂ‘ "’-:3,
ID(.‘.’E]_, f-l) —'D(mg, tg) I{E, |U({I}1, tl) —U(‘.’Ej, tﬂ) |{3-
Take h< 3. Then by (3.5) |
Dz < | Dect| +A(| 0%t | Tzt | + M URR| +{URSE)) +2M eh
| Hence -
UE“ "éﬁﬁmu +h(llﬁu_1|l’+ﬂﬂf “[_’Tk—1||) +2Msh. (3.6a)
Similarly we have | |
| T34 < | Usal) +5 (1 0p-1] + | De-1] + M ([ Dyea] + | Up-al)) +2 Meh.  (3.6b)
Denote E,= | Dy} + [Usl. Then by (3.6) we get
E;,QE,,_1+};(E§_1+3ME;_1) +4 Mhe,
B}"’ &SSHIIIP'HUD., Eugﬂ, 50 E;; gatisties (24) and (2.5) with G’“=O’1=03#1, O'g=-=0,
0,=3M and Os=4M. Hence the corresponding »= [24+10M]*(Aa=2). If 8<<277,
then it follows from Lemma 2 that as 2<<d(e) we have
NDu| = U] <2%8, for kAT, .

where o= [%] 4-1.

2) In this case, by (8.5) we have _
| Dp| < | DR=i +h (U | Uz-% +IM(I‘_§:}| + | Te=i ) +2MM1E:H'
Therefore | | 'y
| Dl < | Dacall +2 (| Unes* +2 M |Une. ) +2M M0

Analogously,
| Tl < Us-2] +A({ Dr-a

| Uioal + M (| Dic ||+ Tal)) +2M M2,
Then | | | | |
B<Ey 1+h (B2 +3ME,. ) 4-4MMp*
By assumption, Eo=|Dy| +|Uo|<h*. Thus the conditions in Lemma 2 are satisfied
with Og—=0y=C3=1, C3=0, Oy=BM and Oy=4MM,, n="h, and 7;—= (246 M+
4 MM, ~* Then as A*<C277, |
X | D + | U] <27h%, for k-A<T,

where g4= [{—1—] 4-1. |

Corollary. Under the assumption of Theorem 1, the solution Dt and Uy i9
uniformly bounded, i,e. 3M>>0, such that

\Dr| <M, |Url<M,

for all & and A satisfying k-A<<T'.
Theorem 2. Let D%, Uz and Dp, U7 be solutions of equations (2.1) corresponding
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to different initial conditions Dy, Uy and By O respectively. If one of these solutions
has & uné form bound M, then as h<<2~° gnd
| Do— Do + |To—T,| <,

we have
| Du— Do + [T — O] <27 (| Do— Do + [T — T, ), for k+h<T,

where c~=o (M, T).
Proof. Assume D} and Uf have a uniform bound M. Since

=N — RO UL,
r=Dpt— U0
then | | |
Di =D} — Dy = Dpt — h(Uic U1+ ULs iUt + UamiTec)y.
Therefore | i
1D <| Dosll +A(|Tos|*+2M )T,y ).
Bimilarly, -

1Tl <1Tscal + R ({05 sl+ | Byosl + M (| Dy + 1T ).
Set Hy— | Dy| + |U,l. Then -
By <Ey 1+h(Ei_1+8ME, 4.

Take o= [—i—.’] +1 and 7= (24+-6M) 1, Then the conditions of Lemma, 2 are salisfied.
The theorem follows immediately. -

We now discuss the convergence of Scheme IT. From ROW on, we always assume
that D(z, 1), U(z, £) and d (#) i9 the solution of the problem (1.16) and D7, 7} and
dy i8 the discrete solution of Schemse II. For given Lo and U,, the solutions D2, 17
and dy of the problem (2.3) depend on the step—size % as a parameter. We denote
this one—parameter family of solutions by {D;, Us, du; A}.

A family of solutions {D?, Ui, d; A} is said 10 have the property PLB
(positively lower bound) in the interval [0, ] if 38>>0, ¢>0 such that ag h<3,

| dp=>co>0, for keh<y. (3.7)
Sometimes in o~der to emphagize the parameters & and o, Wo say that {D: U d,; ht
“hag the property PLB(3, ¢,) in the interval [0, v]. It is obvious that if {Dz, Uz, dy
k} has PLB(S, ¢,) in [0, +] then so does it in [0, '] for v/ <~.

Lemma 8. Let D}, UL and d, be a solution o f equation (2.8). If d;,>0 for some

jﬂ ﬂbﬂﬂr
g | Dsvsrl + [ Ul <2(| Dy, |+ U401,
dh-l-ll?%' a‘{!u fﬂ‘?' k'hg‘r}
| ) - d,
s " 16 () D[+ ULD

PTOﬂf. Set Epﬁ= HDH H 3 ”Ulﬁ ” : SUPPQEE that E;_HQZ‘E,, and d;,_,,;?% (Z_{. for 'I-r'—"].,
g, »+, k—1, é-A<v. Then hy (2.3),
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U Dy, ] < Dyosiea | + 2055511 U segimal (| Dol + | Tsogimali
k—1
< H'Df' “ +h {=Eﬂ tz;n]:l-i H U.fn-l-i " ‘Eh-{-h

b—1
Uﬁ--ﬂu" < ”Uﬁ-“ +h :-_Zn d?.l-l-i [[ Uh+l HE!-M:

K1

dh«i-k? d:‘--l-lﬁ—i —h ” Uf--f-l'r—i " ;’ds‘- —h igﬂ " Uf.+¢ﬂ .

Hence

k-1
By <BEp+2h 2 a0 B < By t20 k- 245 (2E,)°
=
< E;,+16¢d; B}, <2E,,
By, — ko2, >4 — 1 di> 2 &
Taking jo=0 in Lemma 8, we may see that for any initial value there always exists
7o Such that the family {D;, U%, dy; A} of the problem (2.3) has the property PLB
in the interval [0, v]. On the other hand, for any 7o, there always exists H* such
that as |Do| + |[Us| <E* the family {Di, Uj, &; h} has the property PLB in the
interval [0, 7,]. But in general, we do not know whether or not the family {Dx, Uz,
d,; h} has the property PLB,
Theorem 8. Let [0, T] be the normal interval of the problem (1.16) and
suppose { D%, UL, dy; k} has the property PLB (8, o) in the énterval [0, P
1) If D, U and d are continuous in Sz, then Ve € (0, 279), 20>0 such that as
h<min(3, 8) and | Dol + [ To] <s, _ |
| Dol + U] + |d| <278, for k-h<T.
2) If D, U and d are Holder continuous of order o in Sr, then as A*<<min(5,,
2%) and | Do} + Tl <P*, ,
| Dy + [Ux] + | ds| <27h%, for k+h<T,

1,

where a'=-[-i:-]+1, a‘i-——'[ Tt

o= (4m~1(c (1 +3M +4M?) +2+3M) +8M (M +4m™)) 7,
v1= (Adm (s (1 +8M +4 M%) +24+-3M) +SMM (M +4m 1)),
m = illf d(m): M——'IIJEE(”D“E, “Uum "dﬁﬂ):

= [0,T]

Mi=max([D],.z,, [U]a,z. [d]av0,m) -
The proof is similar to that of Theorem 1 and is omitted here.
Theorem & Let [0, T*) be the largest normal interval of the problem (1.16)
and T<T"*. If the solution of the problem (1.18) is continuous én the domain Sy then

the solution of Scheme I1 converges to it as h—0,
Proof. By Theorem 3 we need only to prove that the family {Dz, Uz, di; A}

has the property PLB in the interval [0, T7].
By hypothesis,
M*=max (| D|cwy, [Ulosp, [8]owm) <+,
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m*= inf d(z)>0.

ec[0,T]
Denote I ={T"<T|{D}, Uk, d.; h} has the property PLB in [0, 77]}. It is obvions
that I is not empty and if 7" €I then [0, T"]cI with the same parameters & and

<.

Set T =gup I, Of course 7°>0. For any T, <7, Theorem 3 holds in the domain
{(z, t) |0<a<T,, o<t 2T —z}. Notice that in Theorem 3 we may use the uniform
bound M* and m", i.e, 79, 8 and o depend only on M*, m*, ¢;(T'y) and 8§, (T,), where
©1(T4) and 8,(T"y) are parameters of PLB(8y, ¢;) in the interval [0, T';].

We want to prove 7°=7., If it is not true, i.e, T°<T, then take Ty satisfying

m
a» 58 3 T A
By Theorem 3, Ve €& (0, 279), 386<8:(7"y), such that as h<3,
| Del + Uk + | 0| <2°8, for keh<T;,

where o =0 (M", m*, ¢s(Ty), Ty). Take g sufficienily small such that

2U80€Iﬂj_ﬂ (.M', -% 'm.*).

Then
| Dull + U] <2 M*®, (3.8)
d,>d (k) —zwsﬂ;-%. m*,  for ke h<Ti. (3.9)

; L m

For any fixed h(@mm (6 (8g, 01), T1—T71 158 3
<koh<T;. By (3.8) and (3.9),

1

|Dul + [Tl <22, du> 7 m,

G m
)), take ko satisfying 7™ 158 M

It follows from Lemma 3 thai

| Drogill + | Usenss || <4M*, dhﬂ;"} m*, for j+h<7,

where ¢ = s.ln j;, . It shows that for such 4 the difference equation (2.3) is solvable
in Syaer and d;;;:a% m* for k+h<koh+%. In other words, {D;, Ui, dy; A} has the

property PLB in the interval [0, 4o2+7]. Hence koh+ 7€ I. But

¢it ' i

This contradicts T°=snp I. It implies that 7°=17",

Similarly, if D, U and d are Holder continuous of order «, we can show that in
Sy the solution of (2.8) converges 0 them in the rate of 2* as A—>0, Of course, it is
Dnecessary to assume T <7,

Remark, Here we only analyse two difference schemes. Other similar
difference schemes for solving the inverse problem numerically can be analysed in
the same way. The numerical simulations of Schemes I and II are satisfactory. We

¥

=0 TR <0
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will show them in another paper together with numerical results of other difference
schemes.

Appendiz. By the theory of propagation of singularity (see [6], Ch. 6), D, U
can be expanded as
D(@, £) =3(t—2)9i"(2) +7(i—2) 91 (2) + 9 (s, 8), (A. 1a)
U(a, 1) =8(t—2) 95" (@) +n(t—a) g + ¢ (=, 1), (A. 1b)
where g’ (x), 95 (, ¢) (4, j=1, 2) are snitably smooth functions and gz, t) (4=
1, 2) are at least continuous in the domain {w>>0, #>0}. Differentiating (A 1a)
with respect to ¢ and z, we get

L2 =¥ (t—a)gfP+5(t — @ g+ DL,
(1) (E} (3)
L2 & (4~ 2y g+ (1—a) (2L — ) +n(t—2) 2L 5
Substituting them into the first equatmn of (1.4), we get
5(t—2) Bg; n (8—2)2L— g5 +in
- B(2)8(t—=) (g“’—y&”) +B(m)ﬂ(#-m) (95— 9) +B(2) (¢ — ¢8).
(A. 2a)
Bimilariy, we have
28 (1 — ) g5 + 8 (i — 2) (2 gr- 28 O 4 _y_i g
oz at 7 T om
=B(@)8(t—=) (g1’ —gt) +B(@)n(t—a) (9 — g8 +.8(:v) (977 —g8).
(A. 2hb)
Hence,
950 =0,
{1)
i B9,

205" = B(2) g5P.
By the boundary condition (1.7), we know g¢{¥ (0) =2, Therefore from the above
equations it follows that

gV (z) =2 exp J: B(s)ds,
g5% (@) = B () exp J: B(s)ds.

L

Then (A. 1) become |
Dz, t) =8(t~x)+2 Bxpj:ﬁ(s)ds+ﬁ(m, t),

U, &) =n(t—2)-B@)exp | B)ds+T (s, 1),

where D(z, #) has a discontinuity of the second kind on z=¢ and Oz, 1) is
continuous in the domain {#>0, ¢>>0}. By the initial condition (1.6),
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Dz, t) =U(a, £) =0, in z>1>0,

It implies U (&, ) =0, so

(1]
[2]
{3]
[4]
L5 ]
[6]
[7]
L8]

[8]

Uz, 2) ~B(@) exp | B(&)ds.
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