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Absatract
In this paper, a characteristic iteration for solving coefficient inverse problems has been presented,
This method is stable and fast converging, and may be extended to the 2-D case. RExcellent
numerical results have been obtained by this method.
§ 1. 1-D Wave Equation and Its Inverse Problem
-3%( u'(a})%:'—)—u-(m) —?——E—=Q x>0, $>0, (1.1)
u(x, 0) =%~ (z, 0)=0, >0, | | (1.2)
-g:.:.(n, D=5, >0, .8
Measured data:
uw(0, 1) =f(¥). " (1.4)

Inverse problem:

To recover o (z) from f(#) and (1.1)— (1.8}, where o(z) is the coefficient of
(1.1), which belongs to o

2={o () |o (@) €00, o), 0<o<o(z) <o}
and &(7) is the generalized Delta function.

Agsume that f (%) satisfies a certain compatible condition, for example, f(0) =
—1, such that the solution of the inverse problem exists.

§ 2, Singularity of the Solution of (1.1)— (1.3)

Lemma 1.. Suppose that o (x) belongs to 3 and u(a, t) i3 the gemeralized solution
of (1.1)—(1.3). Then,

u(w, i) =a(@) H ({—=) +v(s, ¥), (2.1)
where a(z) is the jump quantity, H (+) és o Heaviside fumction, and vz, ) 4s the
" Received January 5, 1087.
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vegular part of u(w, t). Moreover, a(z) and v(o, t) satisfy respectively

() = — : (2.2)
N o (z)
wle@g)-o@ Zh-—[o@ S5+9 dalgg g, .9
v(z, 0) =2, (x, 0) =0, (2.4)
w(0, ) =—LE H@). B

Proof. Since o(x)€ 2, (1.1) is a wave equation. By [3], the singularities of
the solution of (1.1)—(1. 3) propagate along the characteristic line t=w. By (1.2)
and (1.3}, we have (2.1).

Since u(w, ¢) is the generalized solution of (1.1)-—(1.3), it should satisfy the
weak equation of (1.1)—(1.3). By the theory of generalized function™, we can
make generalized calculus on both sides of (2.1). Thus we have

-g;t = a(m}ﬁ(t—m)—}-ﬂmﬂ(ﬁ—m)-l--gz—, (2*6)
32u . 3! 9 H 321? 9 7
o =a(z)8 (i—a) —2a,8((—2) +aH ({—a) + e 2.7)
oU _ . oV
1 a(x)d(t—a) e (2.8)
& _ Pig P ' '
-a—tﬂ-—ﬂ(ﬂ:)ﬂ (f' ﬂ?) 282 _ (2'9)
Substituting (2.6)—(2.9) into (1 1) and making proper arrangement, we have
E-i-(a(m) D)o@ Zh= (20.0@) +a@)a)d(—a)
— (o () cz,,-l-a'caa) H(t—z). (2.10)
Let - _
oy ovy - |
R, ) =o(o(@ $2)~o@) 2%, (2.11)
where R(z, ¢) does not include the 3 function. This is because by (2.1) we have
= v(w, 1) =b(x)O({—a) +w(z, ?), (2.12)
in which w(z, ) belongs to O' and O ((—a) = ({—2)*. Olearly, we have
R(w, t) = (—2b,0(2) —b(@)0o) H(E—a) + (0 (@) beo+ 04bs) C (— )
o Sw Pw
| +E(a'(m) aw) o (o) s (2.13)
In (2.13), since w(a: ¢) belongs to 0%, it is obvious that there is no & function
An _(a (@) 22)—o @ Thus the coefficient of 5(f—z) in (2.10) should
vanish, i,e, | r
2a,0(z) +a(x)o,=0, o (2.14)

and we have

2 (6@ 8)0(@) 22 = — (0 @) tutowa) H(1—2),
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which is (2.8). From (2.14), we have

O
B = No @) (x) °
After using (1.3), we have
' N ())
R ON

Hence (2.2) has been proved. __
From (2.8) and (2.2), (2.5) will be obtained. It is evident that (2.4) holds.
Q.E.D. |
Corollary. Under uondﬂmns of Lemma 1, we have
(e, D=—20 pa_ SaeG B, 2.15)
* ~ o (x)
A/ o (0) ’
AT 2.16
~ o () ( )
i g e ' :
o(z) " Fogenn (2.17)
Proof. Obviously, from (2.1) and (2.2), we have (2.15). And by (2.3)—
(2.5), we have

u(x, o) =

vz, 1) =0, <z,
Finally we get (2.16) and (2.17). Q.E.D.

§ 3. Iteration

(i) Choose oo(z).
(ii) Suppose that o, (x) has been obtained in the (ﬂ-l)th step, replace o(z)
by o.(2), in the direction of increase of » solve (1.1), (1.8), (1.4) and obtain
o (0)
U2, @)

(i) opa(2) =

§ 4. The Difference Scheme of Characteristic Iteration

Subdivide the time-space domain Q into a computing net in Fig, 1:

Osmo{mik::m!{n.{mxsg, - . 2 (4_1)

‘ Tig1— h'—j{f—, ' (4.2)
O“tu{ti"itg":‘ {#ﬂﬂzﬁ, - | (4.3)

t;_,..j_— Li=. 5w (4-4)

Let r=£— be the net radio. Here we take r=1.

The characteristic iterative method described in Section 3 requires calculating
u(z, #) in each step of iteration. In order to mmputﬁ u(®, &) we establish the
following special explicit difference scheme: e
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' axis-X
Hig, 1
ﬂ‘j-l +ITH_1 I'J'j_]_' ' |
Uy = —— I () ~—2 o}, (4.5)
20-3 1 o 1
+-§ .f'f‘r
gl 8, ooy M1, (4.6)
n=4+1, §+2, =, N—gj—1, (4.7)
1£3=‘f(t“), ﬂ.==0’ 11 _21 " N; _ (418)
ui=g, wn=l1,3, o, N—1, - (4.9)
By (4.5)—(4.9), we can calculate in the kth step of iteration (i)— (iii):
: 'uk(mh mi) =u.'f‘:ilﬁ j=11 2, et M, | (4*10)
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o axis-T |
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Then, by using (4.10) and (iii) in Section 3, new iterative values oi 1=
0p1(z) (§=1, 2, «-», M) will be obtained.

§ 5. Numerical Simulation and Discussion

b.1. Numerical simulafion

The procedure has been tested for many examples. We select five characteristic
ones, which show very well the numerical effect of our method.
FEzrample 1. We choose

a=1,
o(w) =—202+20+1, z€[0,1],
h=ﬂ?§+1—ﬂﬁj=9.1, j=0, 1, 2, <, M-1,
In the case that the impulse response is calculated by solving numerically (1.1)
—(1.8) and is given in Fig. 2, the initial guess oy Is taken 10 be
oolz) =1, «€[0,1].
After five iterations we obtain excellent results listed in Table 1, where

o; denotes the exact ¢ (2;),
(® denotes initial guess oo(z;),

P e SRS NRE NRERE LSS R R SR e gdakd sl Nap

(™ denotes the results of the dth iteration o5 (@),

(b.1)
(6.2)

(5.3)

- Table 1

z; 0.0 0.1 0.2 03 |oa Jo.5 . lose Jo7 |08 0.9 1.0

1.0 1.18 1.32 1.42 1.48 1.5 1.48 1.42 1.33 1.18 1.0

1.0 1.0 1.0 1.0 1.0 1.0 (1.0 1.0 1.0 1.0 1.0

1.0000

1.1560

1.3174

1.4103

1.4601

1.4607

1.4421

"1.8807

1.2881

1.1671

1.0196

1.0000

1.1800

1.3200

1.4200

1.4800

1.4800

1.4799

1.4196

1.3193

1.1791

0.9992

Figs, 3—4 show that the convergence of the it»e;'a.tiun is very fast,

1.0000

1.1800

1.3200

1.4300

1.4800

Ezample 2. In this example, we take
a=2.0,

and initial guess oe(z) =1.0, z€ {0, 2].
The results listed in the following Table 2 are also satisfactory:
In the following examples, o (x) € L., i.e. o(«) is a staircase function, and the

1.5000

1.4801

o (@) =-§- +1, =z€[0, 2],

1.4202

1.3202

1.1802

1.0003

(5.4)
(5.5)

datum are contaminated by noise in example 5, but we also obtain excellent results
using the method described above. The three examples illustrate the effectiveness of

the algorithm of characteristic iteration (CI) in reconstructing a layered medium of
the earth.
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Table 2

z; 0.0 0.2 0.4 0.6 1.4

of |1.0 111 (1.2 |13 (1.4 |15 |16 |17  lis |1.9 2.0

of '[1.0 1.0 - 10 o |10 (1.0 |10 1.0 1o |10 1o

o | 1.00000 1.09096 | 1.19948 [1.20778|1.30449 11.48912(1.58131 1.67077 (1.75731]1.8407511.92105

o [1.00000|1.10001[1.20008|1.30009 | 1.40019 1.50033 | 1.60053{1.70076 | 1.80107 | 1.90133|2.00178
ol 1.00000 1

1.10000 1 1.20004 | 1.30000 | 1.40030 | 1.50036 | 1.60057 1.7008211.80117 [ 1.90157 | 2. 00206

Ezample 3. We take _
a=1.0, (5.6)
o(®) =14+H (¢—0.2), =zc€[0, 11, (6.7)

and inijtial g;ueﬂs'u'u(m) =1.0, 2€ [0, 1].

The impulse response is shown in Fig. b. Figs. 6 and 7 show the process for
iferative convergence of example 3.
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Ezample 4, The impulse response is shown in Fig 8. The computing results for
the example are plotted in Figs. 9—10.

Hoample 5. In this lagt example, the first graph (Fig. 11) shows the impulse
response contaminated by some noise of 10%. The second and third graphs (Fig, 12
and Fig. 13) show the computing results of the 1st and Bth iterations respectively.
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5.2. Discussion

Recent contribuiions on the compuiing method of the inverse problems of a
wave equation include [3]—[4] and [6]—[8]. The algorithm of [4] is very satis-
factory in the one—dimensional case. However, it is difficult to extend this method
to high dimensions. The method of r3] has led to excellent results for solving one—
dimensional inverse problems. Especially, it is easy to be extended to the high
dimensional case. For the singular infegral equation, the method of [B] is efficient.
This paper is a development of [3]. The method is not only stable and fast
converging, but also very simple. Particularly, even if the given data are
contaminated by noise, satisfactory resulis are also obiained by adopting the method
of CI. Moreover, the method in this paper may be extended to the 2-D case, though
i+ is necessary to use Tikhonov’s regularization method® in the high dimensional
" case. When properly modified the method can be applied to solve the imverse
problem of a wave equabion. with nonhomogeneous initial conditions.
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