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THE EXISTENCE OF THE SOLUTION AND
THE GLOBALLY CONVERGENT SHOOTING
METHOD FOR A CLASS OF TWO-POINT
BOUNDARY VALUE PROBLEMS*

Fene Guo—cHEN(:H R M) Zmane De-ToNe (K f&4k)
(Jilin Undversity, Changchun, China)

Abstract

A class of two-point boundary value problems are studied. A new existence theorsm of solution is
constructively proved and a globally convergent shooting method for it is given.

§1. Introduction

In this paper we give a new existence theorem of solution for the two-point
boundary value problem
e =g (, t1, Ua, ***, Uy), k=1, 2, <o, n, 0TI, (1.1)
%(0) =ﬂi('i'='='£1: gaiat 'i'n-r)'r 'ui(l) =d§<j=j1: T jr)r (12)
{41, -+ far} N {1, *+, et =9,

where ¢,(f, s, *+, ) (=1, ---, n) are Lipschitz- continuous on [0, f]#*R" (#,>1)

and ¢ is an empty set. We prove that if in & proper arrangement of g;, *-, g» and
ey, ***y Uny J1, °*%5 s Ea-ﬁjgfy

Em |g:(3, wa, *++, )|/ || <+co for any ¢>0, i=1, 2, -+, o
R oo
1‘“_;"':“

then (1.1)—(1.2) has at least one solution.

Qur result is proved by using a shooting function and the generalized Newlon
homotopy.

Consider the related initial value problem

u'i=3'glﬁ(#! Uy, ** ‘!.-ﬁﬂ), k=1r *0ty W, (1'3)
E.t.; (0) =G§(‘if ='ir1, ", ‘!.rn'_r), 'M,p(ﬂ) =m,, (1 & 4:)
P=1r viey Ty 396{1: R 'n}\\{'i'ir " 'i'n-r}

and denote the solution of (1.3), (1.4) by wx=u;(¢, o, A)(k=1, ++, n). Then we
gseek @ such that

F(z, 1) =(f1(z, 1), *-, felw, 1))"
=('u*:h(11 &, 1): A u'.fr(lr D, 1))1""'(‘3!11 "t d.ﬂ-)ruo- (1'5)

* Received Janunary 13, 1987.
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If z=2" i9.a o0b of (1.5), then uu(f) =us(f, o, 1) is a solution of (1.1)—(1.2).
Obviously for any solution (3, @) of (1.1)—(1.2) the value oy =1y, (0), Jo € {1, »~
4}, i8 a root of (1.5). Thus solving. (1.1)—(1.2) is equivalent to solving equations
F(z, 1) =0, Ii is clear tha$ the latter is much easier than the former, The shooting
methods are just to solve F(a, 1) =0 by some iteration. But most of the shooting
methods have only loeal convergenoce, i.e. only when the initial shooting point « is
ohosen in the neighborhood of the real shooting point a°, can the methods be
successful (see [1], [2]). Therefore an open problem, which is 4lso difficult in
shooting methods, is to enlarge the domain in which initial points can be chosen.
Any globally convergent shooting method is thus very. significant. In this paper we
prove constructively the existence of the solution of F(o, 1)=0 and thus give a
globally convergent shooting method for solving numerically (1.1)—(1.2).

For more detailed disoussion on globally convergent shooting methods, we refer

40 Watson™ and Zhang™.

§ 2. Existence Theorem and Its Proof

Consider the boundary value problem (1.1)—(1.2). Set E;={(ef, -, &) r Ey
=(el, =, or )T, {44, +*, tu_rt N {ky, -, %o} =0 and Eo=(6], -, g )7, E‘2=(e§:, “er,
o' )T, {is, *, i} N{ts, *+ bast =@, Then (1.1)—(1.2) and (1.8), (1.4) can be
writien as

U'(3) =G, TU@), G= (g1, =+ g7 U= (a3, ==+, )", (2.1)
BU(0) =0, BEJJ (1) =D, O=(ep -+, 0,,)", D=(dy, +, @)%  (2.2)
and
U'(3) =A@, U®), 0<Asl, (2.3)
EU(0) =0, EU(0)=z, | (2.4)

By the definition of K., Ei, E;, E’, -
Throughout we will assume that G(¢, U(¥)) is a Lipschitz continuous function
on [0, {,]#R*(1,>>1), D=0 and |2} = (14, -, —l—m;’,)‘}. |
Definition 1. Mairic B=(by) is oalled an Ind (Indication) mairiv of G ¢f B
s defined as follows: |
Given g, if indezes 4y, -, G € {1, +-+, u} satisfy that for any g>0 there ewisis
a(qg) such that # L |
-1 B [gl/|u] =a(g)<+oo,
wl<q, - (2.6)
Fadie B ow Y Beon ¥ e j-jh ',“"? j’?
3 ={11 j“'jir Y j’l
if . ;
0, 2%J31 " Js
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By (2.8), b;;=0 (i+j) implies that g, is bounded with repect to variable u; and
by=0 implies that

Hm [gi| /|| < +o0. |

-u;i-qrm

Remark 1. Since G is continnous on [0, 1]«R" indexes f1, ***, 4p in Definition
1 exigt. Thus the Ind matrices of G are well defined but may not be unique, e.g.

function
G =( - )
ol SN 241

has the following two Ind matrices

1. 3 L 1
B’“=(0 0)’ B“=(1 0)‘
Definition 2. The direcied graph Iy of mairiz B consisis of n poinis py, pa, v,
P and some paths. The paths are defined as follows:

If by=0, then E, s @ path directed from p, to p;+p; i named as the stariing
point and p; the end poini. e.g.

1

Ps

0 1 1y - '
B=|0 1 1| Iy /\
000 .PI ip*

Here p, is a starting point, ps is an end poin} and p, is & starting point ag well ag
an end point.

Definition 8. @ is called a B-T (Boundedness—Transmission) function if there
s an Ind mairiz B of G such that ils directed graph doss not include any closed chain,

that is, there are no such indexzes iy, «++, §, that by, =bi,, =« =b, =1,
For instance, funotion
g1(t, 1. 2. tg) g 8iN 2 + 229+ &
Gt={ ga(8, w1, Us, ) | =] 2y +us+ Dbt —gin 2%
ga(¥, w1, Us, ts) 1N £ -+ COs 43
hag the following Ind matrix B and the directed graph
W U  Ug P
0 1 1\g
B={1 0 1), 5 /\
O 0 0/, o2 . P,

In 'z there exists a closed chain plg;; pﬂg;i. It is easy {0 prove that every Ind matrix
of G has at least a closed chain; thus G is not a B-T function. But funetion

gi(ta U, Ua, uﬂ) Ein'l&;[ i fig 7
G=| 9a(3, %1, us, Ua) | =]tz 4153+ 5¢—sin 2%
ga(Z, wy, s, wg) \  #in § 4 008 s
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is a B~ funotion. One Ind matrices of @ and its divested graph are

% Yy Uy

Dﬁlg{-
B=|1 0 1|4 /\

* Abou the Tad it

Lemma 1. G'itﬁﬁwi’fmm'bmsfmdoﬂy ftheraars an Ind matriz B of G
and a product P of some permulation matrices such that PBPT is a siricily upper
matrie.

Proof. Let G be a B-T function and B be its Ind matrix whose directed graph
I's has no closed chain. Then. in I’y there is at leagt one point which ig only an end
point (if not, sinoce the number of points in I'p ig finite, there must exist a closed
chain). Thus in B there exists at- least one 0 row, say, the ¢—th row. Exchanging
this row with the last row and the ¢-th column with the last column, we obtain
PoBP, (Py is the corresponding permutation mafrix). Since the difference hetween

I's and I'p,pp, is only in the position of two points P, and P,, see the figure, the
directed graph of PyBP, has no closed chain,

]
P i 'y S { |
~ i | ~ ! ] I
.- ] J b { b : ! I' ,
\\ i 7 1 I Y 7 7 1 /
NS, ¥ AP, 72 2
1P j Rl il /
/ F o\ o P\
4 oA i v
4 7 /
’ / \ / / T )
y \ d \

Let B; be the first (n—1)#(n—1) main submatrix of PoBP,. Then Iz has no
closed chain; thus B; has at least one 0 row. Exchanging this row with the last row
and the same coiumn with the lagi column, we get P, B, Py (P, is the corresponding
permutation matrix). Let B, be the first (n—2)#(n—2) main submatrix of P;B,P;.

In recurrence, we have permutation mairices Py, Py, -, P, 5 such that PBP” ig a
striotly upper triangular matrix, where

_'?"‘_" 0 % P"-“‘ 0 s Py
P'( 0 ’L._.) ( 0 L._a) (0 i)P"

The sufficiency is obvious.

Lemma 1 shows: If @G is a B-T funﬁtmn, by exchanging the position of g; and w

we can get-a new funoction & = (g;, -+, g.)* whose one Ind matrix is a striotly upper
triangular matrix. Thus for any g there exist «;(¢) and P such that

9] <a|w| when JU|>p, |u]|<g, j=i+1, -\ n, O<i<i.
~ Let Ma(q)-tlgglﬁa(t, %, *:, t)|. Then

[} <Mg) +a(g) |wm], for |us|<g, j=i+1, +, n, 0KE<y, §a1 -, n. (2.6)
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If & is & Ot function on [0, {,]#R" and its derivative satisfies

Iﬁ gi|/|w| =0, j<4,
iLyi—reo

Hm |gi| /|| = oo,

|4 ¢ [ =0

then & is a B-T function,
Lemma 2. If G is a B-T funciion, then for any A€ [0, 1] and any initial value
O =(cy, ***, Cn), the initial value prodlem
U =MF(3, U(E)), (2.7)
U0)=0 (2.8)
has a unique solution on [0, 1]. -

Proof. Since G is Lipschitz continuous, there is b>0 such that (2.7)—(2.8)
has a unique solution on [0, b). To prove that |0, b) is not the maximum interval
of solution for any b<f,, we need only to prove that U(#) is bounded on [0, 5). By
the assumption that F ig a B-T funection, we may assume by Lemma 1 that there
oxists an Ind matrix of G whioh is a strictly upper iriangular mairix. Thus there
oxist from (2.6) M,>0 and «,>0 such that |ga| < M, 4+, |} . From

a1 < |, 0)] +2 [, |galds< IO+ Mt an | || ds

we have by Bellman’s inequality |
|| < (1O} + M, )e**Agn,  O<A<I, #<d.

Sinoe G is a B-T function, from (2.6) there are M 1(q) >0 and a._1(g.)>0 such
that | ge1| < Ma-1(ge) +Ga_1(gs) |#4,-1|. Using Bellman’s inequaliiy omce more, We
e \ttpo1| < (O] + Myo1)e™Lgn, O<SAK, 2<0. (2.9)
Let gn_1=ma.x{g,,', g.}. In recurrence; we obtain the boundedness of U on {0, b). By
t+he extension theorem of solution the maximum interval of the solution of (2.7)—
(2.8) is not [0, b) for any 0<b<it,. Thus by #,>1 the conclusion of Lemma 2 ig
frue. |

Lot @=(zy, s, +-+, @u)T and TU(S A&, ) be the solution of the inifial value
problem

U'(t) =AG (¢, U(%)),
EU0)=0, EU()=a.
Define the generalized shooting function #: Rr«[0, 1]—>R" by
‘ F(z, \)=EU(1, A, 2). (2.10)

Due t6 Lemma 2, F(z, A) is well defined on R'+[0, 1]. |

Lemma 8. If G is a B-T funclion and E,=F, then the shooting funciion
F(a, L) has the following properiy: '

If MR is bounded, then

M ={z; F(s, &) EM, AE[0, 1]}

és also bounded. | ;

Procf. Let the set M be bounded and N>>0 such that |F(z; lﬁP{N when
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F(o, \)EM, and |O]<N. We may assume by Lemma 1 that B being one Ind
mairix of @ is a giriotly tril.ngnlaa: matrix. Let M,>0 and a,>0 saeh that [ga] <

d-lu.|+ﬂ Then from - . |
R u-(* A, w) =, (0, A, m)+&fgnds,

| u,.('t Ay m)-u,.(l %, m)+:~.j , ds

and E'l—E, wh:lch :lmPheﬂ mther u,.(ﬂ A, @) =(e,_, U0))=c,, or u(l, A, @)=
(¢, F(2, A)), we have

4
0, (3, A, o) <N+, L | | ds-+M

1
(4 A, 2)<N+a, L || ds+ M,

By Bellman’s inequality,
us(t, A, 3) <(N+M,)e*Lg., I<i<l. (2.11)
Sinoce B is a strictly triangular mairix, there exist M, i(g.) and a,_1(g.) such that
lyn—-il <M, _1(gs) +%-1(qn) ‘u‘n—il . Thusg |
|tta-a(t, A, @) | <(N+M,_1)6™Lq..

Seb ¢,_1=max{g., ¢.}. In recurrence, we have constants M,(gi;1) and o (g:ie1) such
that |

[w(t, A, 0) | <(N+M(gia)e® @), i=1, -, n—1L. (2.12)

Thus, combining (2.11) and (2.12) we have
UG, & 2)| <~/ n(N+K)e", K= max {Mi(gm), M.},

leicgn—1

d= max {&(gis1), o}

1<i<n—-1

Particularly,
|z] < |T(0, A, z)| <~ n(N+K)e".
Therefore, M~ is bounded.

Theorem 1. Assums @ isa B-T funetion and By =H,. Tiwn the boundary value
problem (1.1)—(1.2) has at least one solution on [0, 1]. Moreover, if G is a o2
funoction, then for almost all o® € R", there is a C' one—dimensional manifold (2(s),
A(s)) such that

(1) H((s), 2, A(s) =F(a(s), A(s)) — (1—A(s)) F(a®, 0) =0,

Rank H'(o(s), 4%, A(s)) =r, H'=(Hj, H});
(i) (2(0), A(0)) =(a° 0) and there is (2", 1) G [(z(s), A(8)); 0= (3)<1} such
$hat F (", 1) =0;<
(181) 4f dod !’,(m‘, 1) =0, thon (2(8), AM(8)) s finitely long.
me We Fve the proof for G € 0%([0, {,]»R", R"). Consider homotopy
~ " H(s, o, M) =F(z, \) - (1—1)F (2", 0). (2.13)

Differentiating (2.13) with respect 10 2°, we obiain




288 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 6

it

L

Hi(z, a° A) =—(1—A) Fla(a®, 0)=—(1—2)[B U, 0, a°)])mw=—(1-A)I. (2.14)
By the generalized Sard’s Theorem™ for almost all #°<R there is a {° one-
dimensional manifold (z(s), A(s)) with («(0), A(0))=(a°? 0) which satisfies (i).
Now, we turn to (ii) and (iii).

Sinoe (@(s), A(s)) satisfies F(x(s), A(s)) =(1— I\.)F(m“ 0), by Lemma 3 there
is B>0 such that #(s) € B(R/2) = {m; |x|<R/2} as A(s) € [0, 1). Consider the limit
points of (z(s), A(s)) in the closed set B(R)«[0, 1]. Bince F(z, A) =H,U(1, A, ) ==

1
EU(0, A, ) +H\ J:G ds=m+lEﬂLG‘ ds, (x(s), A(s)) interseots R'={0} at only one

point by F(=, 0) = and (w(s), A(s)) is not a homeomorphism of a cirele by Fl(z, 0)
= I. Thus there exist other limit points of (a(s), A(s)) in B(R)=(0, 1]. By =(s) €
B(R/2) the points do not lie on 8B(R)«[0, 17. Since Rank H (#(s), A(s)) =T and
by the implicit funetion theorem the limit points also do not lie on B(R)»(0, 1),
they are on B(R)#{1}. Denoting them by (2", 1) we have from (2.13) F(a" 1) =
H{z* 1) =0,

To prove (iii) we take the arc length as parameter s. If some connected
component of (z(s), A(s)) with (2(0), A(0))=(a° 0) is not finitely long on
R'+[0, 1), then lim|A(s) | =0, If not, there are a>0 and s5,>0 snch that A(D) | >a

B—on

as s>s5,; thus |A(s+8/a)|>>a#8/a—A(s)>8—1=2. It coniradiots |A(s)[<1. Bus
from [6] the nonsingularity of Fl(z*, 1) implies lim|A(s)|+0. A contradiction..

g —rom

Therefore (iii) follows.
For the multi-poini boundﬂ.ry value problem

U'(t) =G4, U(t)) | (2.15)
EyU(ay) =0, B (as) =Cs, +++, Bl (Gm) ==0.., | (2.16)
let F(x, A) =(EU(as z, A), ++, BU(an, 2, %))T-—(Ua, ., O0n)T, where U(¢, =, A)

is the solution of (2.8)—(2.4). Then we have

Theorem 2. If G is ¢ B-T function and Rank(E{, «-, Ep)=n, then for
(2.18)—(2.16) all conclusions in Theorem 1 are valid.

The proof of Theorem 2 is similar to that of Theorem 1.,

The reason we introduce parameter A in (2.10) is to guarantee that (x(s), A(s})
doos not go to the initial level R'#{0} and does not form a closed path. See the
figures. -

With parameter Without parameter
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$3. The Numerical Algorithm for Following Curve
{(x(8), A(s)) and Examples

Let (z(s), A(s)) satisfy (1), (ﬁ) of Thaumm 1. Differentiating H (x(s), 2° A(s))
={ with respect 10 8, we have
Hi(a(s), 2°, A(8))z(s) +H(a(s), a;“ L(s) Ya(s) =0, (3.1)

| (2(0), A(0)) = (2" 0). ‘ (3.2)
Assume 3 is the aro length of (z(s), A(s)) starting from (z° 0). Then (3.1)—(3.2)
can be written as

(w(s), A(s)) =T"(a(s), A(s)), (3.3)
(#(0), A(0)) = (2" 0), (3.4)
where I'(2(s), A(s)) is obtained as follows: .
(H, (z, ), H (@, A))YT =0, [T] =1,

' Ho(z, MH (z, DY\ . Hl{(2° 0O)H (" 0)
Slg“(deﬁ( T(z, 27 ))"Slg“(d“( T(, 0)7 )) -

o7, T (2°, 0)>0.
There is a neighborhood of (x(s), A(s)) on which T (w, A) is Lipsohitz
continuous, See [7].

Now, we can obtain 7 (&, A) by snlvmg (8.5). While H, and H;, are obtained
as Tollows:

F(z, A)=EJU(1, o, A), where U(%, =, .Z.) solves (2.3)—(2.4),
Fa(2, A)=EY (1, =, ), where Y (4, #, A) solves the initial problem,

Y'()=AG U G, U, 2, 0)Y (), (3.6)
- EBY(@)=0, B¥(0)=1, ' (3.7)
Fi(2, A) =Hy(1, 2, A), where y(i, =, A) solves the initial problem,
V() =G, UG, o A)FAFUE, TG o M)y, (3.8)
y(0) =0, | (3.9)

where U (2, », A) in (8. ﬁ)-—(3 9) i thﬂ solution Of (2 3)—(2.4). By the definition
of H, we ha.ve

Hi(a, o, Ny =Fi(a, 3), Hi(z, 2, ) =Fy(0, M)+ F(, 0).  (3.10)
The discussion on the computation of 7 and the numerical algorithm for
following curwe (2(s), A(s)) can be found in [3], [T7].

Ezample 1, Consider a thin incompressible elastic rod olamped at the origin

and acted on by forces @, P and a torque M on (14, 1s).See the following figure. The
governing nonlinear equations are

(e 2\ ((QUU—2)—p(i—y)+M)/E
Z'(s) =Gi(s, Z)-(j.@, Z))=( cos . (3.11)

E(Sr Z) _

sin 4



2(0) =y(0) =0, 6(1) =a(Q, P, M). (3.12)

Here o(P, Q, M) is a prescribed function, Z(s)=(6(s), =(s), y(s))*, EI is the
flexural rigidity. In this problem the Ind matrix of &

0 1 1
B={0 0 0)
0 0 O

ig a strictly upper triangular matrix, Thus @ is a B-T' function,
Let

0 1 ¢
e Hew=(1 "
El (0 0 1)r 3 ( 0 0)

Then

8(0)
E,Z(0) =B, m(O))=(m(0))= ( ) )

0) %(0) 0
7 (1)\

EyZ (1) =Es (1) }=6(1) =a(Q, P, M).
(1

Thus, we know by E;=F, that the boundary value problem (8.11)—(3.12)

satisfies the condition of Theorem 1.
Bxample 2. Congider a high order equafion

u®=F(%, u, o, -, ¥"), (3.13)
C uO0) =0, uP(1) =dy, i=is, Gy J=a I (3.14)
Lot thyy=u®, =0, 1, «-», n—1. Then (3.13) can be written as
z 0
01 [
U'(t) =G, U) = e U@+ 0
0 .. 1 :
0 \ -
J

If f is & bounded function, then G(#, U) is a B-T funciion. More discussion on
(3.18)—(3.14) will be given in another paper.
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Example 8. In mechanios the following boundary value problem offen cocours

o (z) = fo(u(z)) =f.(u(z))¥ (<),
u®(0) =¢, ¥?(1) =d, 0O<g, I=<1,

Let & = v, then G = (v, fi)* is a B-T function when f. is bounded.

(1]
[2]
[3]
[4]
(5]

[6]
[7]
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