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Abstract

The parallel arithmetic complexities for computing generalized inverse A%, computing the
minimum-norm least-squares solution of Ag==d, computing order m~+n—r deierminants and finding
the characteristic polynomials of order m--n—# matrices are shown to have the same grawth rate.
Alporithms are given that compute 4+ and Ay in O(logr-loga+logm) and O(login+logm) stepa
using a number of pI‘DEE!:EDI'EI which is & ploynomial in m, z and r (4 & BP"", re=rank A4). :

§ 1. Introduction

Let I(n), E(n), D(n), P(n) denote the parallel arithmetioc complexities of
inverting order n matrices, solving a system of n linear equations in m unknowns,
computing order n determinants and finding the characteristic polynomials of order
n matrices regpectively. Then Cganky gave an important theoretical result [1]: |

Theorem 1. I{n)=0(f(n)) < E(rn.) O(f(n)) @ D(n) =0(f(n)) & P(rn.) =
O(f(n)).

He also gives algorithms that compute these problems in O(log?n) steps using a
number of processors whioh ig polynomml in n (n ig the order of the matrix of the
problem ). -

Let A& B}, r-—r:a.nk A, In 13]:113 paper, we give two parallel a,lgﬂnthms for
computing A* and Ay respectively. The one for A" is based on Decell’s method in
[2], and the one for Ay is a generalization of Decell’s method in [3].

The parallel arithmetic complexities for computing the generalized inverse A%
computing the minimum-norm least—squares solution of Ax=>5, computing order
m—+n—r determinants and finding the characteristio polynomials of order m~+n—7
matrices are shown 10 have the same growth rate.

§ 2. The Parallel Algorithm for Computing A+

Let A€ R**, Then there is a unigue matrix X € B> satisfying
| AXA=A, XAX =X, (AX)T=AX, (XA)"=XA.
This X is ealled the M—P inverse of A and is denoted by X =4%,
In [2], Decell gave a finite algorithm for computing A¥. We rewrite it ag
follows:

* Roceived March 31, 1987.
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Algorithm 1. (1) Parallelly compute B =A%4.
(2) Parallelly mmpu‘se BY e (30, k=1, 2,

(3) Leti Ay, Ag, *-», A, denote the roots of the ﬁharaoteristio polynomial f(A) of
B. Let B ‘

=M, k=1, 2, -, 1

=1

Parallelly compute
C s=(BY =3P, k-1, 2,

=1

(4) Lﬂt the ocharacteristic polynomial f (?u) of B be
FA) =det(Al —B) =A*+c A4 4o,
From the Newton formula | |
Si,+ C18y_1+ CaSy_a*+* -+ Cy_181 +_.‘ka_ =0, k<n

wo have
r - e} 51
51 2 GE sﬂ
Sa s1 3 =—]
_Sr—1 Sp_a 't 81 P[] 6 S

Pa.rallelly compute the solution of the above triangular system.
(b) Pa.ra.llelly compute

AT = —( (ATA)"‘H_-IG (ATA) 24 —i—c,--_iI)!AT/c,. | (2.1)

Theorem 2. Let AC R and GI(m, n) dencie the pmrdﬁ&l m@mm&tw
complexity for computing the M—P inverse A*. Then

GI(m, n)=logr(logn--T/2)+ (1/2)log? q'+210g¢a+10g m+4—0(f(m 7, a’))
and the number of processors used in the algorithm is

nr/2, m<nr/2
@E{mﬂ, m=nr/2,
Pmof - (1) Paraliel enmputamon of B=ATA takes Ti——log m-+1 gteps and
Py =mn® Prooessors.
(2) Parallel computation of B* (k=1 2, --- r) takéd Ta=log r(logn+1) steps
and ¢pa=nr/2 procegsors. ’ |
(3) Parallel eomputatlon of s, (k-=1 2, e er) takes T's=logn steps and cp; =
/2 Prooessors. _
(4) Parallel computation of ¢x(&=1, 2, «-+, ) takes Ty=(1/2)log*r+(3/2)log r
steps and op, =0(r®) prooessors, ﬂ "
(6) Since B? .., B'* are already available, parallel computation of A% takes
Ts=log r+1log n+3 steps and ep; —n?m processors.
Thus

P =IMmax ep, =
1<

{-n,%/z', m<<nr/2,
mn?, me=nr/2.
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e,

T, w) =¢§ﬁ]1 7, =log r (log n-+17/2) -+ (1/2)log* r +2 log n+ log m +4.

§ 3. The Parallel Algorithm for Computing Ay

Let ACR™" and M and N be positive definite matrices of order m and n
respectively. Then there is a unique matrix X € R}" satisfying

AXA=A XAX =X, (MAX)T=MAX, (NXA)*"=NXA.
This X ig called the weighted M-P inverse of 4, and is denoted by X = Agy.
In [38], Wang gave a finite algorithm for computing Ayy. We rewrite it as

follows:
Lot A = MY¥2AN-Y3 gnd the characteristio polynomial of ATA e

r(A) =det(AT — ATA ) = A"+ a A" 2+ + + Gy

From section 2,

(MYBAN-/2)* = At = — ((ATA) oy (ATA) 240 + a1 T AT /2,
Hence, from [4] we have

o= NV MV24 N-V2)y+ppi/e
= — ((N1ATMAY 2 +-a (N TATMA) 2+ tap gD )N AT M /a,.
Lot A¥=N"1A™M. Then
| Apy——((A*A) "+ 0y (A*A) 24t a,_1T) A% /a,. - (3.1)
Algorithm 2. (1) Parallelly compute N~

(2) Parallelly compute A*=N"1A"M and B=A*4~=(N"AT)(MA4).
(8) Parallelly compute B*=(b{}’), k=1, 2, .-, r.

(4) Parallelly compute s, =1ir(B*) ="E B, E=1, 2, <, 7,
© f=l

() Parallelly compute @, (b=1, 2, --, r), from the following triangular
gystem
[ 1 NI B

. |

| 81 Sp_2 R . T 1. @ _ _s,._\

(6) Parallelly compute Ay from (3.1).

Theorem 3. Lot ACR**" and M and N be positive definite matrices of order
m and n a‘&;pecﬁiwlg. WGEI(m, #) denotes the parallel arithmetic complezity for
compuiing the weighted M—P inverse Afx. Then

WG@GI (m, n)=GI (m, n)-+log m-+(8/2)log’n+ (11/2)log n+4
and the number of processors used in the algorithm is
/2, m<(n/2) (~1+2n—1),

B { min+mn?, m>(n/2)(v1+2n~—1).
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Proof. (1) From [1], parallel computation of N takes 7'y=(3/2)log?n+
(11/2)log n+-8 steps and ep, =n#/2 processors.

(2) Parallel computation of A* and B, First, parallel computation of N-1AT
and M A takes 1+log m steps and mPu-+mn? processors; then parallelly computing
A% = (N7A")M and B=(N"24T)(MA4). Thus it takes T,=2(1+1logm) steps and
CPa =M n -+ mn® processors.

(8) Parallel computation of B*(k=1, 2, «, ) takes T,=log r(1l+logmn) steps
and ops=nr/2 processors.

(4) Parallel computation of s, (h=1, 2, -+, r) takes T,=logn steps and cps=
rn/2 prooessors.

(8) Parallel computation of @, (k=1, 2, +++, 1) takes Ty=(1/2)log®r+(3/2)log r
gteps and ep; =0(s*) processors.

(6) Parallel computation of A%y takes Te=logr-+logn+8 stops and Ope ="M
Processors.

Thus
-izmy] /2, m<n(~/ T 2n—1) /2,
1<ic m*n—+mn?, m}n(\/m-i) /2
and

WGI(m, n)=3T,=GI(m, n)+(3/2)log*n-+(11/2)log n-+log m-+4.

$=]

§ 4. Equivalence Theorem

First of all, we give some preliminaries,
Lemma 1, ZLet ACR™* UECR™™" and VERX"" ba matrices whoss
columns form bases for N (A*) and N(A) respectively. Then

A U
ﬂﬂ(V* 0)

48 nonstngular and

(4.1)

{2 T

vt 0
2/ is called a generalized matriz (but not unique) of A. If A is nansiﬂgutw, we adopt
the conwention

. o =A,

Let adj .27 be the common adjﬂint matrix of 7. An 7 X m submatrix that lieg in
the upper left—hand corner of adj .7 is called a generalized adjoint matrix of 4, and
is denoted by Adj 7. If 4 is nonsingular, we adopt the convention
| Adj.o/=adj A.

Corollary 1, |
A% = Adj .o/ /det . (4.2)
In [5], Noble gave a method of computing bases for N(4*) and N(4),
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Definition. A4 matrie H CR™ is said to be in Hermi'e eohelon form if iis
elements hy, satisfy the following conditions:

(1) h;,-=0, ‘Z’}'j. : g |

- (2) hy is either O or 1. |

(3) If hu=0, then hg=0 for every k, 1<k<n.

(4) If hy=1, then hyu="0 for every k+1. ;

For a given matrix 4 € R**, the Hermite form H, obtained by row reducing A
ig unique; N(4) =N(H ) =R(I—H,) and a basis for N(4) ig the set of non-zero
columns of 1 —H 4, - ; : | ’ .

Algorithm 8. Let A€ RY™, this algorithm computes a generalized matrix ol A.

(1) Row reduce 4 to its Heormite form H 4.

(2) Form I—H, and select the non-zero columns v, s ***; Vn-r from this
matrix, V= (01, v ***, Vnr). ol

(8) Row reduce A* to its Hermite form H 4. o

(4) Form I — H 4, and seleci the non-zero columns 2y, s, ***, Us-r from this
matrix, U= (w4, %a, ***, Un-r).

(6) Form nonsingular matrix

ﬁ,:[A U}
L B

Although Algorithm 3 ig stated fof sqﬁé,re | matrioes, it i3 eagy to use it for non—
square ones. Add zero rows or zero columns t0 cONSITues & SGUATS matrix and use the
fact that

T
.-+ .| and
: 0* O

i B * Rl el

Let F(U, V) denote the parallel arithmetio complexity for compuiing the
gubmatrices I and ¥V in generalized mairix 7 of A.
Lemma 2. Let the number of processors used in Algorithm 3 be

(n—1) (2n—j1—J1).

»ap

4} 0]* = - [4%: 07,

Then

dr<F (U, V)<2(n+r),
where j1 and fi are the numbers of first nonzero column of A and A" respectively, n s
the order of A, and r=rank A.

Let GI(m, n) denote the parallel arithmetio complexity for computing A”.
From (4.2), there are n-m order m+n—r—1 determinants and one order m—+4n—o
determinant to be computed. They can be computed in parallel; hence we have

Corollary 2. GI(m, n)=D(m+n—1)+FU, V) +0(1).

Let A(j>y) denote the matrix obtained by replacing the 4-th eolumn of A by
the vector y. 3

Lemma 3. Lst ACR™" BLER™ and b R(A). Then the componens z; of the
" mindmum—-norm least—squares solution of inconsistent linear equations Azx=b are

2= det .7 (j—b) /det S, j=1, 2, -+, m : (4.3)
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b
where o is a generalized matric of A, and 5=( )ER”'*""’.

O
Proof. LetU and ¥ be mairices whose columns form bases for N (A*) and
N(A). Bince = A*b € R(A*) =R(A*) =N(A4)L, we have
V=0, (4.4)
From A*= (AAYA)*= A*(44%), we have
A*(b—Az)=0, b—AzEN(A").
Set
b—Aa=Ul, TC R, (4.5)
From (4.4)—(4.5), the minimum-norm leagst—squares solution of .dz=p

satisfieg
A U\/=\ (b o
(V* 0)<z)‘(o)' s

A U
) 18 nonsingular, and (4.3) follows from the common

From Lemma 1, (
y* 0
Cramer’s rule.

Let GE(m, n) denote the parallel arithmetic complexity for computing the
minimum-norm least-squares solution of the inconsistent linear equation Ax=p,
From Lemma 4, there are n+1 order m+n—r determinants 10 be computed. They
can be computed in parallel; hence we have

Corollary 8. QE(m, n)=D(m+n—r)+F(T. V)+0Q@).

Let GP(m, n) and GD(m, n) denote the parallel arithmetio complexities of
finding the characterigtic polynomials of order m-+n—+ matrix o7 and computing
the determinant of order m--n—7r matrix /. Then the following results are
obvious.,

Corollary 4. GD(m, n) =D(m—+n—r)+F(U, V),

- GP(m, n)=P(m+n—r)+F U, V).

From Corollaries 2—4 and Theorems 1—2, we obtain the following important
result immediately.

Theorem 4. GI(m, n)=0(f(m, n, r))SGE(m, n) =0(f(m, n, 7))

SGED(m, n) =0(f(m, n, r))SQAP(m, n) =0(f(m, =, r)).

In [6], Wang showed thai the matrix

» [ A Mg
ooy o)

L

V*N 0
is nongingular, and
- jﬂ:( 4 MTU )"‘ =( Ay V(V*NV) -1)
V*N 0 (UM -y 0 ‘
The component w; of the minimum-norm (N) least-squares (M) solution a of
Aw = b gatisfies
w;=det.s (j—B) /det.o7,
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If we use .7 instead of 7, then results gimilar to Corollaries 2—4 may be
obtained, and from Theorems 1 and 3, we have the following important result
immediately; '

Theorem 6. WGI(m, n)=0(g{m, n r)YSWGE(m, n) =0(g(m, n, r))

SWGED (m, n) =0(g(m, n, r)H)SWGEP{(m, n)=0(g(m, o, 7)),
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