FAST PARALLEL ALGORITHMS FOR COMPUTING GENERALIZED INVERSES A^+ AND A_{MN}^+

WANG GUO-RONG(王国荣) LU SEN-QUAN(陆森泉)
(Shanghai Teachers' University, Shanghai, China)

Abstract

The parallel arithmetic complexities for computing generalized inverse A^+ , computing the minimum-norm least-squares solution of Ax=b, computing order m+n-r determinants and finding the characteristic polynomials of order m+n-r matrices are shown to have the same grawth rate. Algorithms are given that compute A^+ and A^+_{MN} in $O(\log r \cdot \log n + \log m)$ and $O(\log^2 n + \log m)$ steps using a number of processors which is a ploynomial in m, n and r ($A \in \mathbb{R}^{m \times n}_r$, $r = \operatorname{rank} A$).

§ 1. Introduction

Let I(n), E(n), D(n), P(n) denote the parallel arithmetic complexities of inverting order n matrices, solving a system of n linear equations in n unknowns, computing order n determinants and finding the characteristic polynomials of order n matrices respectively. Then Csanky gave an important theoretical result [1]:

Theorem 1. $I(n) = O(f(n)) \Leftrightarrow E(n) = O(f(n)) \Leftrightarrow D(n) = O(f(n)) \Leftrightarrow P(n) = O(f(n))$.

He also gives algorithms that compute these problems in $O(\log^2 n)$ steps using a number of processors which is a polynomial in n (n is the order of the matrix of the problem).

Let $A \in \mathbb{R}_r^{m \times n}$, r = rank A. In this paper, we give two parallel algorithms for computing A^+ and A_{MN}^+ respectively. The one for A^+ is based on Decell's method in [2], and the one for A_{MN}^+ is a generalization of Decell's method in [3].

The parallel arithmetic complexities for computing the generalized inverse A^+ , computing the minimum-norm least-squares solution of Ax=b, computing order m+n-r determinants and finding the characteristic polynomials of order m+n-r matrices are shown to have the same growth rate.

§ 2. The Parallel Algorithm for Computing A^+

Let $A \in \mathbb{R}_r^{m \times n}$. Then there is a unique matrix $X \in \mathbb{R}_r^{n \times m}$ satisfying

$$AXA = A, XAX = X, (AX)^{T} = AX, (XA)^{T} = XA.$$

This X is called the M-P inverse of A and is denoted by $X = A^+$.

In [2], Decell gave a finite algorithm for computing A^+ . We rewrite it as follows:

^{*} Received March 21, 1987.

Algorithm 1. (1) Parallelly compute $B = A^T A$.

- (2) Parallelly compute $B^k = (b_{ij}^{(k)}), k=1, 2, \dots, r$.
- (3) Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the roots of the characteristic polynomial $f(\lambda)$ of B. Let

$$s_k = \sum_{i=1}^n \lambda_i^k, \quad k = 1, 2, \dots, r.$$

Parallelly compute

$$s_k = \operatorname{tr}(B^k) = \sum_{i=1}^n b_{ii}^{(k)}, \quad k = 1, 2, \dots, r.$$

(4) Let the characteristic polynomial $f(\lambda)$ of B be

$$f(\lambda) = \det(\lambda I - B) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_n.$$

From the Newton formula

$$s_k + c_1 s_{k-1} + c_2 s_{k-2} + \dots + c_{k-1} s_1 + k c_k = 0, \quad k \le n$$

we have

Thus

Parallelly compute the solution of the above triangular system.

(5) Parallelly compute

$$A^{+} = -((A^{T}A)^{r-1} + c_{1}(A^{T}A)^{r-2} + \dots + c_{r-1}I)A^{T}/c_{r}.$$
 (2.1)

Theorem 2. Let $A \in \mathbb{R}_r^{m \times n}$, and GI(m, n) denote the parallel arithmetic complexity for computing the M-P inverse A^+ . Then

 $GI(m, n) = \log r(\log n + 7/2) + (1/2)\log^2 r + 2\log n + \log m + 4 = 0(f(m, n, r))$ and the number of processors used in the algorithm is

$$cp = \begin{cases} n^3r/2, & m < nr/2, \\ mn^2, & m \ge nr/2. \end{cases}$$

Proof. (1) Parallel computation of $B = A^T A$ takes $T_1 = \log m + 1$ steps and $cp_1 = mn^2$ processors.

- (2) Parallel computation of B^k $(k=1, 2, \dots, r)$ takes $T_2 = \log r (\log n + 1)$ steps and $cp_2 = n^3r/2$ processors.
- (3) Parallel computation of s_k $(k=1, 2, \dots, r)$ takes $T_3 = \log n$ steps and $cp_3 = rn/2$ processors.
- (4) Parallel computation of $c_k(k=1, 2, \dots, r)$ takes $T_4 = (1/2)\log^2 r + (3/2)\log r$ steps and $cp_4 = O(r^3)$ processors.
- (5) Since B^2 , ..., B^{r-1} are already available, parallel computation of A^+ takes $T_5 = \log r + \log n + 3$ steps and $cp_5 = n^2 m$ processors.

$$cp = \max_{1 \le i \le 5} cp_i = \begin{cases} n^3r/2, & m < nr/2, \\ mn^2, & m \ge nr/2. \end{cases}$$

$$GI(m, n) = \sum_{i=1}^{5} T_i = \log r (\log n + 7/2) + (1/2) \log^2 r + 2 \log n + \log m + 4.$$

§ 3. The Parallel Algorithm for Computing A_{MN}^+

Let $A \in \mathbb{R}_r^{m \times n}$, and M and N be positive definite matrices of order m and n respectively. Then there is a unique matrix $X \in \mathbb{R}_r^{n \times m}$ satisfying

$$AXA = A$$
, $XAX = X$, $(MAX)^T = MAX$, $(NXA)^T = NXA$.

This X is called the weighted M-P inverse of A, and is denoted by $X = A_{MN}^+$.

In [3], Wang gave a finite algorithm for computing A_{MN}^+ . We rewrite it as follows:

Let $\widetilde{A} = M^{1/2}AN^{-1/2}$, and the characteristic polynomial of $\widetilde{A}^T\widetilde{A}$ be

$$h(\lambda) = \det(\lambda I - \widetilde{A}^T \widetilde{A}) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n.$$

From section 2,

$$(M^{1/2}AN^{-1/2})^+ = \widetilde{A}^+ = -((\widetilde{A}^T\widetilde{A})^{r-1} + a_1(\widetilde{A}^T\widetilde{A})^{r-2} + \cdots + a_{r-1}I)\widetilde{A}^T/a_r.$$

Hence, from [4] we have

$$\begin{split} A_{MN}^{+} &= N^{-1/2} (M^{1/2} A N^{-1/2})^{+} M^{1/2} \\ &= - ((N^{-1} A^{T} M A)^{r-1} + a_{1} (N^{-1} A^{T} M A)^{r-2} + \dots + a_{r-1} I) N^{-1} A^{T} M / a_{r}. \end{split}$$

Let $A^* = N^{-1}A^TM$. Then

$$A_{MN}^{+} = -((A^{*}A)^{r-1} + a_{1}(A^{*}A)^{r-2} + \dots + a_{r-1}I)A^{*}/a_{r}.$$
 (3.1)

Algorithm 2. (1) Parallelly compute N^{-1} .

- (2) Parallelly compute $A^* = N^{-1}A^TM$ and $B = A^*A = (N^{-1}A^T)(MA)$.
- (3) Parallelly compute $B^k = (b_{ij}^{(k)}), k=1, 2, \dots, r$.
- (4) Parallelly compute $s_k = \text{tr}(B^k) = \sum_{i=1}^n b_{ii}^{(k)}, k=1, 2, \dots, r$.
- (5) Parallelly compute a_k $(k=1, 2, \dots, r)$, from the following triangular system

(6) Parallelly compute A_{MN}^{+} from (3.1).

Theorem 3. Let $A \in \mathbb{R}_r^{m \times n}$, and M and N be positive definite matrices of order m and n respectively. WGI(m, n) denotes the parallel arithmetic complexity for computing the weighted M-P inverse A_{MN}^+ . Then

$$WGI(m, n) = GI(m, n) + \log m + (3/2)\log^2 n + (11/2)\log n + 4$$

and the number of processors used in the algorithm is

$$cp = \begin{cases} n^4/2, & m \leq (n/2)(\sqrt{1+2n}-1), \\ m^2n + mn^2, & m > (n/2)(\sqrt{1+2n}-1). \end{cases}$$

Proof. (1) From [1], parallel computation of N^{-1} takes $T_1 = (3/2)\log^2 n + (11/2)\log n + 3$ steps and $cp_1 = n^4/2$ processors.

- (2) Parallel computation of $A^{\#}$ and B. First, parallel computation of $N^{-1}A^{T}$ and MA takes $1+\log m$ steps and $m^{2}n+mn^{2}$ processors; then parallelly computing $A^{\#}=(N^{-1}A^{T})M$ and $B=(N^{-1}A^{T})(MA)$. Thus it takes $T_{2}=2(1+\log m)$ steps and $cp_{2}=m^{2}n+mn^{2}$ processors.
- (3) Parallel computation of $B^k(k=1, 2, \dots, r)$ takes $T_3 = \log r(1 + \log n)$ steps and $op_3 = n^3 r/2$ processors.
- (4) Parallel computation of s_k $(k=1, 2, \dots, r)$ takes $T_4 = \log n$ steps and $cp_4 = rn/2$ processors.
- (5) Parallel computation of $a_k(k=1, 2, \dots, r)$ takes $T_5 = (1/2)\log^2 r + (3/2)\log r$ steps and $cp_5 = O(r^3)$ processors.
- (6) Parallel computation of A_{MN}^+ takes $T_6 = \log r + \log n + 3$ steps and $cp_6 = n^2m$ processors.

Thus

$$op = \max_{1 < i < 6} op_i = \begin{cases} n^4/2, & m \le n(\sqrt{1+2n}-1)/2, \\ m^2n + mn^2, & m > n(\sqrt{1+2n}-1)/2 \end{cases}$$

and

$$WGI(m, n) = \sum_{i=1}^{6} T_i = GI(m, n) + (3/2)\log^2 n + (11/2)\log n + \log m + 4.$$

§ 4. Equivalence Theorem

First of all, we give some preliminaries.

Lemma 1. Let $A \in \mathbb{R}_r^{m \times n}$, $U \in \mathbb{R}_{m-r}^{m \times (m-r)}$ and $V \in \mathbb{R}_{n-r}^{n \times (n-r)}$ be matrices whose columns form bases for $N(A^*)$ and N(A) respectively. Then

$$\mathscr{A} = \begin{pmatrix} A & U \\ V^* & O \end{pmatrix}$$

is nonsingular and

$$\mathscr{A}^{-1} = \begin{pmatrix} A^{+} & V^{*+} \\ U^{+} & O \end{pmatrix}. \tag{4.1}$$

A is called a generalized matrix (but not unique) of A. If A is nonsingular, we adopt the convention

$$\mathcal{A} = A$$
.

Let adj \mathscr{A} be the common adjoint matrix of \mathscr{A} . An $n \times m$ submatrix that lies in the upper left-hand corner of adj \mathscr{A} is called a generalized adjoint matrix of A, and is denoted by Adj \mathscr{A} . If A is nonsingular, we adopt the convention

$$Adj \mathscr{A} = adj A$$
.

Corollary 1.

$$A^{+} = \text{Adj} \mathscr{A}/\det \mathscr{A}. \tag{4.2}$$

In [5], Noble gave a method of computing bases for $N(A^{\bullet})$ and N(A).

Definition. A matrix $H \in \mathbb{R}^{n \times n}$ is said to be in Hermi's echelon form if its elements h_{ij} satisfy the following conditions:

- (1) $h_{ij} = 0$, i > j.
- (2) h_{ii} is either 0 or 1.
- (3) If $h_{ii}=0$, then $h_{ik}=0$ for every k, $1 \le k \le n$.

(4) If $h_{ii}=1$, then $h_{ki}=0$ for every $k\neq i$.

For a given matrix $A \in \mathbb{R}^{n \times n}$, the Hermite form H_A obtained by row reducing A is unique; $N(A) = N(H_A) = R(I - H_A)$ and a basis for N(A) is the set of non-zero columns of $I - H_A$.

Algorithm 3. Let $A \in \mathbb{R}_r^{n \times n}$, this algorithm computes a generalized matrix of A.

- (1) Row reduce A to its Hermite form H_A .
- (2) Form $I-H_A$, and select the non-zero columns v_1 , v_2 , ..., v_{n-r} from this matrix, $V=(v_1, v_2, \dots, v_{n-r})$.
 - (3) Row reduce A^* to its Hermite form H_{A^*} .
- (4) Form $I H_{A^*}$, and select the non-zero columns u_1 , u_2 , ..., u_{n-r} from this matrix, $U = (u_1, u_2, \dots, u_{n-r})$.
 - (5) Form nonsingular matrix

$$\mathscr{A} = \begin{bmatrix} A & U \\ V^* & 0 \end{bmatrix}.$$

Although Algorithm 3 is stated for square matrices, it is easy to use it for non-square ones. Add zero rows or zero columns to construct a square matrix and use the fact that

$$[A : 0]^+ = \begin{bmatrix} A^+ \\ \cdots \\ 0^* \end{bmatrix} \text{ and } \begin{bmatrix} A \\ \cdots \\ 0 \end{bmatrix}^+ = [A^+ : 0^*].$$

Let F(U, V) denote the parallel arithmetic complexity for computing the submatrices U and V in generalized matrix $\mathscr A$ of A.

Lemma 2. Let the number of processors used in Algorithm 3 be

$$(n-1)(2n-j_1-j_1^*).$$

Then

$$4r \leqslant F(U, V) \leqslant 2(n+r),$$

where j_1 and j_1^* are the numbers of first nonzero column of A and A* respectively, n is the order of A, and $r = \operatorname{rank} A$.

Let GI(m, n) denote the parallel arithmetic complexity for computing A^{+} . From (4.2), there are $n \cdot m$ order m+n-r-1 determinants and one order m+n-r determinant to be computed. They can be computed in parallel; hence we have

Corollary 2. GI(m, n) = D(m+n-r) + F(U, V) + O(1).

Let $A(j\rightarrow y)$ denote the matrix obtained by replacing the j-th column of A by the vector y.

Lemma 3. Let $A \in \mathbb{R}_r^{m \times n}$, $b \in \mathbb{R}^m$ and $b \in R(A)$. Then the component x_i of the minimum-norm least-squares solution of inconsistent linear equations Ax = b are

$$x_j = \det \mathscr{A}(j \rightarrow \tilde{b})/\det \mathscr{A}, j = 1, 2, \dots, n$$
 (4.3)

where \mathcal{A} is a generalized matrix of A, and $\tilde{b} = \begin{pmatrix} b \\ O \end{pmatrix} \in R^{m+n-r}$.

Proof. Let U and V be matrices whose columns form bases for $N(A^*)$ and N(A). Since $x = A^+b \in R(A^+) = R(A^*) = N(A)^{\perp}$, we have

$$V^*x=0.$$
 (4.4)

From $A^* = (AA^+A)^* = A^*(AA^+)$, we have

$$A^*(b-Ax)=0, b-Ax\in N(A^*).$$

Set

$$b-Ax=Ul, \quad l\in R^{n-r}. \tag{4.5}$$

From (4.4)—(4.5), the minimum-norm least-squares solution of Av=b satisfies

$$\begin{pmatrix} A & U \\ V^* & 0 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}. \tag{4.6}$$

From Lemma 1, $\begin{pmatrix} A & U \\ V^* & 0 \end{pmatrix}$ is nonsingular, and (4.3) follows from the common Cramer's rule.

Let GE(m, n) denote the parallel arithmetic complexity for computing the minimum-norm least-squares solution of the inconsistent linear equation Ax = b. From Lemma 4, there are n+1 order m+n-r determinants to be computed. They can be computed in parallel; hence we have

Corollary 3. GE(m, n) = D(m+n-r) + F(U, V) + O(1).

Let GP(m, n) and GD(m, n) denote the parallel arithmetic complexities of finding the characteristic polynomials of order m+n-r matrix $\mathscr A$ and computing the determinant of order m+n-r matrix $\mathscr A$. Then the following results are obvious.

Corollary 4.
$$GD(m, n) = D(m+n-r) + F(U, V),$$

 $GP(m, n) = P(m+n-r) + F(U, V).$

From Corollaries 2—4 and Theorems 1—2, we obtain the following important result immediately.

Theorem 4.
$$GI(m, n) = O(f(m, n, r)) \Leftrightarrow GE(m, n) = O(f(m, n, r)) \Leftrightarrow GD(m, n) = O(f(m, n, r)) \Leftrightarrow GP(m, n) = O(f(m, n, r)).$$

In [6], Wang showed that the matrix

$$\mathscr{A} = \begin{pmatrix} A & M^{-1}U \\ V^*N & 0 \end{pmatrix}$$

is nonsingular, and

$$\widetilde{\mathscr{A}}^{-1} = \begin{pmatrix} A & M^{-1}U \\ V^*N & 0 \end{pmatrix}^{-1} = \begin{pmatrix} A_{MN}^+ & V(V^*NV)^{-1} \\ (U^*M^{-1}U)^{-1}U^* & 0 \end{pmatrix}.$$

The component x_i of the minimum-norm (N) least-squares (M) solution x of Ax = b satisfies

$$x_j = \det \widetilde{\mathscr{A}}(j \rightarrow \widetilde{b})/\det \widetilde{\mathscr{A}}.$$

If we use A instead of A, then results similar to Corollaries 2-4 may be obtained, and from Theorems 1 and 3, we have the following important result immediately.

Theorem 5. $WGI(m, n) = O(g(m, n, r)) \Leftrightarrow WGE(m, n) = O(g(m, n, r))$ $\Leftrightarrow WGD(m, n) = O(g(m, n, r)) \Leftrightarrow WGP(m, n) = O(g(m, n, r)).$

References

- Csanky, L.: Fast parallel matrix inversion algorithm, SIAM. J, Comput., 5: 618-623, (1976).
- [1] Decell, H. P. Jr: An application of the Caylay-Hamilton theorem to generalized matrix inversion, [2] SIAM Review, 7: 4 526-528, (1965).
- Wang Guo-rong: A Finite algorithm for computing the weighted Moore-Penrose inverse A_{MN}^{+} , [3] Applied Mathematics and Computation, 23: 4(1987), 277-289.
- Ben-Israel, A.; Greville, T. N. E.: Generalized Inverses: Theory and Applications, Wiley, New York, [4] 1974.
- Noble, B.: Applied Linear Algebra, Prentice-Hall, New Jersey, 1969.

[6] Wang Guo-rong: A Cramer rule for minimum-norm (T) least-squares (S) solution of inconsistent linear equations, Linear Algebra Appl., 74 (1986), 213-218.