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ON THREE-POINT SECOND-ORDER ACCURATE
CONSERVATIVE DIFFERENCE SCHEMES™
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§ 1. Introduction

In this paper we study 8—point 2nd-order acourate conservative TSCO difference
sohemes. The TSC schemes are named after their three computational features:

(A) They are 8-point schemes, Only three poinis are needed o determine a
point on the next time level. So they can fit convenienily the boundary oonditions
for initial boundery value problems.

(B) They have 2nd—order accuracy for smooth sclutions. So in the smooth
parts of the solwtion, we can get a better numerical resalt.

(0) They are in conservation form. By the Lax-~Wendroff theorem"®, if the
computed solution of the TSSO schemes converges boundedly a.e. to u, then wu js a
weak solution of Eq. (2.1).

In this paper we prove that the TSC scheme is not TVNI (fotal variation
nonincreasing). We prove that the 83—point s-order accuracy (s>2) linear difference
scheme is linearly L (1< p<-toco, p+£2) unstable. So a linear TSC scheme i3
linearly l,(1<p<--oco, p+#2) unstable, In addition, a rigorous proof of the
nonlinear I, instabilities for the two—step Richtmyert scheme is given. At lagt, a
suceessful modification to the Lax—Wendroff scheme, the Richtmyer secheme and the
MacCormack scheme ig got. The modified schemes retain their computational
features (A), (B) and (C) mentioned above, with an addifional property that the
limit solutions satisfy the entropy condition for all the convex smooth flux
functions f. They are Iy stable in the sense of Definition 3.2 when we choose #(s)=1
in the modified schemes (3.7), (3.9) and (3.10).

§ 2. The stability results for TSC schemes

The simplest mathematical models of inviseid compressible fluid dynamics are
given by solutions, u, of the scalar convex conservation law

{ﬂ LA ) O 1 m(u);ﬂmﬁ,
2

ot ow ot

u(w, 0) =uo(@),

where f is a smooth convex function of w.
We shall discuss numerical approximations to weak solutions of (2.1) which

(2.1)
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are obtained by (2k+1)—point explicit schemes in conservation form,
%?+1=t6}'—5\(§:+% '_'9';_%_ )5 (2.2a)
where

9:+}; = g (U] -p+1, " U7 +x) (2.2b)

Here 4] =1 ( §4z, ndt) and g is a continuous numerical flux function. We require
that the numerical flux function be consistent with the flax funetion f(u) in the
following sense

gu, ==+, w)=Ff(w). (2.20)
The olass of schemes we shall diseuss can be written in the form
wftl =uf 4 dfj";f% Adu}— df‘:‘_"% Ay, (2.3a)
where
T8
g, = A — utf_’ B At S, (2.3b)
tod+ 5 + 4
— Aa(uy), if Ayuy=0
and . -
fi—9, 1

D A e if dyuy_1#0, (2.30)

- "—i

?u-m(u;) y if .c‘l+u;_1-=0.
Here and throughout this paper, we use the standard notafion

Arsty=uper—ty; fr=F(ug); A=A/ .
Scheme (2.3) includes the TSO scheme and Harten’s TVNI scheme™.
'We say that the finite difference scheme (2.2) is total variation noninoreasing
TVNI if for all nonnegative integers n, we have

TV () <TV (u), (2.45)

where
J- 00

TV(U“)EJE | it ] -

Theorem 2.1. If the schome (2.1) 48 TVNI, then we have the following

tnequalities,
[@=gb. w0 o (2.5)
f (a) _Qgﬂ*r =+, G, b) () (25b)-

for all real numbers a and b, a+b.
Proof. If b>>a, we assume

gufs ISh o
b, j=J,
where J ig an arbitrarily fixed integer. If ujfi<<a, then

TV () > [ it — uiihess| = |5 — 8| >b—a=TV (u),
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which contradiots the assumption that the scheme is TVNI. So we have
uitis=a. (2.7)
But |
it =i s — AL (Ul ons1, **v, UF) — g (Wi gn, ) U3-1)]
=a—A[g(a, -, @, b) —g(a, -+, @)]
~a—Alg(a, -+, @, B)—f(@)].
By using inequalily (2.7) and b>>e, we have

L@ =g 00 tor 5>

&

If b<a, wo still assume u} satisfies (2.6). It ig eagy to show that u}ti<e, and

witi=a—xlg(e, ---, e, b)) —f(a)].
By assumption b <@, we can get

f(a) —-ggr_xi -ty &, b) =0 for b<a.

a

Thus inequality (2.5b) is proved. Inequality (2.5a) can be proved in the same
way.
Corollary 2.2. The Lax—Wendroff scheme, the Richtmyer scheme and the
MaocCormack scheme are not TVNI.

Proof. It is easy to learn that the numerical flux function of the MacCormack
scheme is

9(b, @) = -[F (@) +f (b—A(F(2) —F BI)].
Then, if a% 5, we have |

f(@) =g (b, @) == [f (@) —F b=2(f (@) —F(B))]

= (a— ) (142 LDTO ) [ (s 4 (1—8) (5~ 2( S (a) — B

In the process of our numerical computation, the Courant-Friedrichs-Lewy
condition is valid, i.e.,

max A« | f'(sa+(1—8)b) | <1.

Delgwz]

Then, if we choose function f satisfying f'(u) <0, f"'(u) %0 for all u €& B*, we have
12 £(2) "{ ®) o,

and

J:f' (sa+ (1—5) (b-??u(f (@) —f (b)) )ds<0.

Hence, (2.5a) is not valid for the real numbers ¢ and b, a%*5. By Theorem 2.1,
the MacCormack secheme is not TVNI. We can show similarly that the Lax—Wendroff
scheme and the Richtmyer scheme are not T'VNI.
The following important corollary is immediate from Theorem 2.1.
Corollary 2.8. If the scheme (2.3) is TVNI, then di¥ L =0, d® , >0 for

"‘I.H"]'
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all integers 4§ and ;= Use.

Theorem 2.4. If dfi‘;’% -d‘_“_";‘% =0 for all integers j and tyFUj+1, then the

schome (2.8) s only of firsi—order accuracy. |
Proof. We choose the flux function f which is & smooth one, and the initial

value uo(z) €O0=(RY) N L~(R"), uh (@) >0 for all s€ B
First we consider the following TSC scheme

“'}"'1"“?“}'@(“?: Wia1) — g (-1, uj)]
with
Lif@+f D= 5O ~f @)/ (b-a), #atd,

f (@), ' if @=5,
(learly, a numericsl flux function of a second order accurate scheme g, 1 has to

E(ﬂr b) ’{

(5l

SaTiSIy

9,3 —9( U4) =0,

where h= Az, ul =uo(jh). Assume that the scheme (2.83) is of second order acouracy.
Then we have #

i 0o
uy=uy—r{g,, 1 9?_%)

¥4 el 0
(2e+1) _ ity . — g (w0, Ujsa) - _.1_ l 2
AR =d p JIL0 ) o) = - 5 0+ 1O,

0
where E,m?».-‘é'-'*—j-@ﬁ-’-)—. In the same way, Wo have

+uj :
1
+1 1
d(ﬂz ]) ==-—-—E 8;;—]-—-

B+OMR).

For an arbitrary fixed o CRY, lot 5= [%] Here [r] denotes the integral par$ of
the real number r. Thus

jeh—>z, 4§ —>us(w) a8 h—>0,

d{mwnﬂ:g1 « B (2R+1) }[ % c;b(m) A _é_ qbﬂ(m) ] o [_%_ tﬁ(ﬂ#) . _%_ ¢,ﬂ(m)]

+s 6L i3

- % &3 () [¢* () —1] a3 k>0,

where &{x) =Aa(u(s)).

By the assumption df"’;_':% df_”‘;}% 0 for all integers § and ;% u;41, We gob

¢? (@) [$* (&) —11=0. (2.8)
Sinoe @ is arbitrary, (2.8) is valid for all zCR!. But in the process of our
numerical computation, we always require that | () | <1. Combining inequality
(2.8), we deduce that () (¢p*(z) —1) =0 for all s €RE. So we can easily find a
flux function f and an initial funotion e («) which satisfy the requirements
mentioned ot the very beginning of the proof, guch that this equality is violated for
all 2R This implies that the scheme (2.3) satisfying the assumption of the
theorem is not of 2nd-order accuracy and the proof of the theorem is thereby
completed.
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Using Corollary 2.8 and Theorem 2.4, we have
Theorem 2.5. The TSC scheme is not TVNI,
Corollary 2.6. The 3-point TVNI scheme in conservation form is only of

first-order acouracy.
Theorem 2.7. The 3—point s—order acourate (s22) lingar difference scheme is

binearly 1, (1<\p<<+o0, p+2) unstable.
Proof. Consider the following scheme
ut =0_yu} 1 + cou] + C41f 41, (2.9)
where ¢, is congtant, r=—1, 0, 1. If it i3 of s-order accuracy (£>>2) and linearly

Iy (1<p<< o0, pv%2) stable, then the amplification factor ¢(£)™ has to be in the
form e(¢) =exp(éA£+0(£*)). When we use the scheme (2.9) o approximate the.

solution of the equation g’: ‘;z Thus we have the following equality

0_10Xp( — o) + o0y 0Xp (8€) = exp (4AE +0(E)).
Henoe we get the equalities
ﬂ_1+ﬂu+ﬂ1=1, “G_1+C‘1_—"l, ﬂ_1+01=?l.ﬂ, “—ﬂ_1+01=?hn

From these equalrties we get c_;=¢,=0, ¢;=1 and A=1. Then uytt =1, A=1,

N

which implies that the numerical solution is the exact solution of equation ?;: —

But this is a trivial case. The theorem is thereby proved.

Corollary 2.8. The Lax-Wendroff scheme, the Richtmyer scheme and the.
MacCormack scheme are linearly I, (1<p<<+ oo, p+2) unstable. -

There are some nonlinearly I, unstable TSC schemes. Majda and Ogher™ have
given a rigorous proof of the nonlinear I, instabilities for the Lax—Wendroff
difference scheme. Besides, numerical examples™ illustrated that the MacCormack
scheme is nonlinearly unstable. We shall give a rigorous proof of the nonlinear I
instabilities for the Richtmyer scheme.

For the special function f(u) = —é—- u” the Richimyer scheme has the form:

a2
“?H:“?“"%L 5—[(“}‘+1+N}1)2:| | ?é“ ﬂ—[(u?+1+%?)ﬂ+(u?)ﬂ]—mﬂ [ﬁ+('u*5)ﬂ]=

=G (), _ (2.10a):
uj=gj, j=1, 2, ++, N; N1, (2.10b)

where g; and u; are periodio so that w},y =1u] a.nd i+n=¢;. At the n—th time level,
the CFL condition for linearized stability imposes the restriotion that (most
practical caloulations adops this sirategy)

a(u}) | =u<1)

L:m?,xlu}‘l <1,

where 1 is a fixed constant. _
For the sake of simplicity, we shall only define stability below for the trivial

1

state u;=0. Let |u[», denote the I, norm, defined by [u]s,s ) , p=1.
Definition™. The schome (2.10) s stable wn by sensg al the stﬁtﬂ u;=0 ¢f given
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any T >0, thers ewist Oy, he and O(T') so that for {gls <8 and A<hy we can find a
sequence {2(h) H=o, satisfying

1) A max |4 | =<1, p=const., (2.11a)
'r |
2) S K,=Ts, hmpd, 0<T:<T (2.11b)
for which the following estimate is valid:
|11 600 gl s<0@) gty (2.12)
1 2

Theorem 2.9. For the speoial case f(u)——z-u, the Riohimyer scheme ¢s

nonlinearly unstable in 1y, 1<p<<+oo, tn g neighborhood of w;=20, in the sense defined
ahove. '

Proof. Given any 8, ho and O(T') (without loss of generality, we assume that
O(T)>1 and Ty =T for any T>0), choose & fixed positive number ¢ so that

%
2 )’
& (3 -:“.60
and consider A< hg 50 that if Nh=1, N=38N. Define the initial state ae’, where
) egs=0, j=0,1, 2, -, Ef:
epy=1, §=0,1,2, -, N, (2.13)

B, f5=0, T, By ione B
Then [ae®|s ,<d. Consider any state of the form be® with 5>>0. From (2.10) and
{(2.13), we have

G (\) e’ =g(b, A)be°, (2.14a)
where
o }u]'b ?i..;zbﬂ }u?'bl
From (2.11a), we have
g(b, W>1+20E 514 7;;2  for 0<b<b. (2.15)

Assuming the stability estimate in (2.12) is valid, we use (2.18), (2.14) and
(2.15) to obtain for h<hy

: | ;LIE l=
H;(l - 32 )“"’:
By a simple inequality, we bave

- ;\.;'G
1+§3 T <C(T),

G (l:) ae® H
0

]]rw“tlm

m2 <O(T).

that is

1482 <o), | (2.18)

. : 1

¥
where g is a fixed positive constant determined by a- (%-) =<8,. So letting A—0 in
(2.16), we arrive at a contradiction. Thus the proof is completed.
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. From the results mentioned ahove, ‘we see that TSC schemes yield no good
results for stability. It seems that I, stability in the sense of Definition 3.2 is the.
best result of stability for the TS0 schems. Besides, more seriously, many TSQO
schemes can produce nonphysical solutions™ & and some can produce a solution
of the conservation law (2.1) which violates the entropy condition even when fi9
convex and the exact golution is a continpous one. Thus i} is quite necessary to add

t-

an appropriate ariificial viscosity o these TSC schemes.

== ¥

~ §3. The Main Theorems

. Throughout this section, we assume that the Aux function f(u) is & smooth
oconvex function of w. . - | -

Now we introduce a class of modified scheme:

1 o SR, S ;l‘-n n ?L'-E d+f(u?) . 1
| AR A] A [C6(s) - | dsa(u) | . 4] ~ (8.1a)
Aoty =541 —ty_y, A_vy =1y —y_y, Ay =1y 1 — iy,
» : : 2
'y a(w) = f'(u),
'A+f(u}‘)== ] | .
AF{.{.}} ﬂ(‘l&j), if d+'1&j 0,
and O is an appropriate constant. #(z) is a funoction defined by
0, <1
& (a) ={ | 2 "
1i [t =1,

and g= lﬂgf il , & 19 a constant satisfying —31-<rx=§1, and k= A4z the spacial step—

length. A} satisfy '

1) : a Rp=h(uf; wfa); (3.1b)
2 A_{h}+A,uj] =0O(h®) for smooth solution wu: - (3.10)
3) | P3| <pBldia(u;)| where B is a fixed constant. (3.1d)
We define the fixed constant R to be the Courant-Friedrichs-Lewy number
Z,-mfaxja(u}’) | = R<1. (32)

Tt is easy to find that the scheme (3.1) has the following properties
:a) 3-point scheme;

'b) 2nd-order acourate for smooth solution; .

‘@) in conservation form.

Definition 3.1 (Entropy éﬂegualé;ﬁy)i.. If the numerical solution of a finite-
défference scheme {u}} converges boundedly a.e. to u, then u is a weak solution o f(2.1)
wivich satisfies the entropy inequality Jor any p€ Cj, p=0,

~[([22. 0y +-22. . 7 () Tdoe e 5
gy, ® Ij[ Y U(u)_+ﬁ-_- _F(u)]dm <0, (3.3a).

T@=F, Fy=["sa®as.  (3sp)
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Definition 8.3 (I, stability). A finite—difference sohema i8 ls slable ¢f {uj}
satisfies B -

N = Y _ (3.48)
where . :
urla= (33 317 B ' (3.4b)

for all nonnegative dntegers n. |

Theorem 3.8. Suppose {u]} é8 detormined by the soheme (8.1). Then

(i) there ewisis a constant Ro<1. When R<R, and O=C(R) is a proper positive
constant, the scheme (3.1) satisfies the eniropy inequaléty in the sense of Definttion - 2 -

(ii) fO(s)==1, then there exisis & constant Re<<1. When R<Ry and O=0(R) s &
proper positive consiant, the scheme (8.1) satisfies la stability in the sense of Definition
3.2.

Remark. To ensure the validity of Theorem 3.3, we can choose only a small
R, at present to give a theoretical proof. Perhaps it is merely a theoretical
problem maybe by a better method, we can prove that a larger R, conld be
obtained. Numerical,examples indicate that R, can be chosen larger than 0.4.

We shall postpone the proof of the theorem to the end of this seotion.

Weo now show that the Lax—Wendroff scheme, the Richtmyer scheme and the
MacCormack scheme can be written in the following form

“?ﬂ"‘“?“-%'— do f (u5) ;;z 4_ [-A*'ig,—?) . ﬁ+f(u}‘)] 4+ A (A7 dufl, (3.5)

where A} satisfy (3.1b), (3.1¢) and (3.1d).
Throughout this paper, we denote
wh=nd- [00(s) + | dra(ed) | A5 (3.6)

Theorem 3.4. The Richimyer scheme can be writien in the form of (8.5). So-
the eonclusions of Theorem 3.3 are valid for the scheme 3f we add an artificial viscosity
w} to 4t. That is, the soheme

-t 1 " -?"n n "
{“H,}‘E'(“?H'I‘MJ) -—ﬁ—-[f(ﬂwu) — f(up)], 3.7)
wptt=uj— e [F (8, , 1) — F (8,_p) ] +oh,
has the conclusions of Theorem 3.3.
Proof. The Richtmyer scheme has the form
B 2= (e ) — 2L () = (D],
7 2 2 (3.8)

L o 45 _ st
‘ij+ tg }.-"[f(ﬂj"__}) f(ﬁj_%)].
We shall drop the superseript # wherever convenient. Let
I;=[min(u,, tiy41), T0AX (8, ty41)]-
Bince A max |a(y;) | = R<1, it is very easy to verify that EH_%EI,; u,—l—@(ﬁﬂ_}-—u,}

y
€Iy uy+-604,u,€ 1, for all #c [0, 1]. Now we give the definition of the divided.
differences ag follows™:
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i) .
S (&, ﬂ&)E{ ul;j{.@; if wywezy,

| I’ (@o) if @o ==y
I (s, ﬂ’i "—_;o(ﬂ-"o;_‘bi)_’ if Eo,ﬁﬁ’
f(ﬂ’o; @3, &g) R pAC ::11) m{ (@) if @om= g, @y,
37" @) i 2y =

Let
hy= (EH%‘ﬂn:t)f (E,_,_ 1 Y, Y1) =f (E,; ,}5, Uy) "'f (2, %s41)

= |, Lo+ 6, s ~)) —a(uy+0(ts13—v5))1d8.
Since f is & convex function, we have |
1
‘ E.f‘ ﬁJ’O lﬂfuf T 9(15,_?%—1_51)) —d(@&;+9(t&,+;-_f£;)) |d9
el
. QJG | dra(uy) |d0=|d,a(x)|.

By using Newton’s interpolation formulﬂ.m, we have

.f (u! + g 1) e f(uﬁi) + (u; ¢J+1) At_{_&?) + (uj-l- 4 *t&;)ﬁ;,
FGy_y) =f (s} +i(E, _y— u,-i)i’a{ 2 Gy =i
and from (3.8), we get '
E!_'_% — U= -%-—4+HJ—%' d+f(ﬁf):

L

1 A '
u‘j_,_é_ iz uj_lﬂ-g. ‘d-l-u'.f—iu'z— Af‘f(uf-l)'
Then the scheme (8.7) can be written in the following form

it dof )+ 2 [4F 0D 4, )]

u} —u
A |
TEW N o s 3 YRV R
Let N
L
o T
h! 1.’1.'.!.&, ?‘;h
Then

B <R} <|dsalu) |,
and the requirements (3.1b) and (3 lo) are satisfied obviously. So bawed on
Theorem 3.3 this theorem is proved.
Theorem 8.5. If f is strwtlg conves fumtwn and a(u) satisfies Lipsehiiz's
oondition or a(u) <0, the MacOormack scheme can be written in the form of (3.5). So
the soheme also has-the conclusions of Theorem 3.3 if we add an artificial viscosity w}




114 ' JOURNAL OF COMPUTATIONAL MATHEMATICS Yol.. 5

B e el e S PETOTETE

io ¢t. That is, the scheme ey
uj*é‘ur}'-?iﬂmf(%}‘),
. - (3.9)

has the conclusions of Theorem 3.8 In. pwrt@cu.lmr, ﬁhe mn%sc@d Burgers equation can
obtain the stable physical numerical solution by using #}w scheme (3.9).

Proof. We prove this theorem in the same marmer ag before. By the modified
MaocCormack scheme (3.9), ?ire can obtain

u;*ﬂ-uf—'-;,— fof (u)+22- 4 [""*f "t‘”*'-m.f(u;*)]

’“ﬂ Do 4L Lf Gy o, es) i )+ (Bt JH o0 '-
Let

.’uE—g ﬁ;{ﬁf) Rh h.fEf (“i: “d: ”’fﬂ) (“f '”’“1)

T
By sy ) = £ @iy ) = | [y +0+ (iy— 1)) — @ ey =+ 8- Ayi) 1.
(i) If a(u) =<0, "t is very easy to verify thad
11y € [Eliﬂ_(-ﬂis 255+1): max (?-G:f; Use1) ] 5

BRIV RICHIHS |hf|'€—|ﬁ+ﬂ(us)|

(ii) If a(u) satisfies LIPSGhIﬁZ g cond_ltmn, then there oxists a constant L>0
guch that ' -

| |cz(m) —a() | <L Im—y[, for aJl z, yC R
Since f is a strictly convex funﬂtmn, there exists a constant §>0 such that
- \d(a) |8, for all mERi
We can easily obtain that
| Ay | <| E(HJ)—E(HJ) |+ | @(ws) — E(MJH) |"€L Uy —us| +5 -4+f-'ﬁ(“;)l

'Q;L Rlﬂ,;ﬂgl + |d+u(u_;) [‘Q(l = ) lﬁxi-ﬂ(u!)l

Then

. |hf‘<<‘R( LSR_)_ .

and the requirements (3.1b) and (3.1c) are sa.'lnsﬁed obviougly in both cases. In
particular, for the inviseid Burgers equatlon, L=1 5=1. Thus, based on Theorem
3.3, wo complete the prooi. - -

But, unfortunately, at present we are not able to give the best results for the
modified MacCormack scheme (3 9) That is, in Theorem 3. 5, we cannob remove
the restriction on a(u). ;

. "Theorem 3.6. The Law—Wendq'oﬁ' sﬂh&mﬁ can. ba written dn the form of (3.5).
So the scheme has the conclusions of Theomm 3. 3 4f we add an wt@ﬁ%ml 'zmcm;ty fw, 10
4t. That@s the scheme. | : B f -

“?H"ui ?; A.ﬂ.;(“j) + 3'2 ” [ ("'; +“5-1.-1. ) d+f(u?)] '_ ) (3 16)

2
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b o -_m = m ¥ et : ___

has the conclusions of Theorem 3.8.
Proof. We merely need. to notice thab .

=§[ﬁ( “J+HJ+1 AA{LTJ) } ’ -i-f(u.f)’

d#‘i 20w
Ihil ﬂ“”ﬂ@x) |- |

Then the proof can be finished easily. s
Remark. Our modified Lax—Wendroff scheme (3. 10) ig sllghly different from
the modified Lax—Wendroff scheme presented by Majda and Osherm
Finally, we prove Theorem 3.3.
Froof. We shall drop the superseript in »} wherever convenient. Suppose {u?}
is & sequence. of numbers of permd N (i.e. fu,, =Uj4x) . Lot
A =uj—22 4o () + 22 B | 3{ 5;’*’) 4,5 @) |
+-OMA_[| 4,0 () -,d+u,]
We shall prove conclusion (ii) of Theorem 3.8. The proof of conclusion (i) is

similar and hence ig omitted. -
If §(s)=d, the scheme (3.1) can be written in the following form

wjtt = A () +hne A_[R]- Aeuf]. | @aan

2:;" uun-l'l"i

2; )||h+2-A(MJ)A [hﬂ _+H’JJ+ ?-, Z["-’l (h" 4,u7)]*

= [I] 4~ [11] + [TI1]
where kb, = 4t,, the time Step—lengﬁh From [1] ; we have |

A P
4+ +-‘-_1-R-‘='(1+2R | ;}211 -R(1+'R) }
A’; [ 6111‘“—(1-—339—-* 2510 ]Z(A+f(ui) ‘d+-f(“f‘1))2

where by, by are arbitrary fixed positive constants. Now we estimate the terms
[11] and [TIT].

, é[—idofcum YN ER ORI RIS

. .ﬂ+i-i-j _ o
=315 o oty [ (40 () — 4, f () (11 L)
+ (4 ) = A f ) (1422 ) ] _
L ke A0 ftsss) o AfCu) | As fus)
_Eilhrdi_widi'f(uj) '[ ﬁ{;:ii - - 4¢:‘+‘li":|uEf N N7 :I

<} ; buir A+ f (W) — s £ (ts-1))?

+R[(+R)* £+ 38R |3 0 () |- (40,

bHI
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where 8 is a constant as in (3.1&) '
N
E O-A_[| dva(uy) |« ders] » A_(hye dyuiy)

-EO.;, [2] A4a(us) | ohys (Asti)®— | Aea () | +hyas Auttys Aty g
— | dra(uts_q) l oFigs (dyry) + (A+“J—'1)]
qg O [28] deau) |2+ (Asy)*+ | Ava(ug) |2+ (i) * B} (Bis)”]

Then it is eagy to veryfy that
I <(g+RA+RY -—-—+26R”+20 R(L+8)" 2 dvalus) | (4’

+'§' E burs (A4 f () — 44 f (43-1) )%

N
[TIE] < S A DA (s — byt~ Ayt <20 B (A

<48°R g| A.auy) | (daey)?.

Then, we obtain the following estimate

NSNS W

2Kk k.
<[ o*(ar+RER )00 (- 1 +2R+2R(1+E)) +

y8 B

bHI

+-1—Rﬂ(1+zR' R(1+R)*)+B+R(+R
4 11

b
+2RB+4B°R 3| dua(w) |- (vup)?

+%’—-[25111—%(1—3Rﬂ—2611) ]g(ﬁ+f(ﬂ'f) — A f(145-4))°

= [A(R)-0*+B(R)-0+D(B)] 3| da(ug) | - (sa)*

+E(R) - 24+ f () =44 F (w3-2))"
Thus we only need the following inequalities for the validity of Theorem 3.3:
(i) E(R) <0, (8.12a)
(ii) A(R)O*+ B(R)0O+D(R) <0. (3.12b)

'We require that R{%. Then we can ochoose proper constants bu>>0, bmu>0 such

that B(R) =0, In addition, we have the following facis:
A(R)>0 for all 0(34:/1?, (8.13a)

lim A(R) =0, K (3.18b)

-0+
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lim B(R) = —1, (3.13c)
R0+
Iﬂﬂ(ﬁ)=m+3 (3.13d)
From (3.13), there exists a constant 04&{7%, such that if B<R,, then
B (R) B(E)
D(R)~— AR <" “sam % (3.14)
60 we can ohoose U=0(R) = QBE“?%) >0. Then the requirement (3.12b) is

satisfied. The theorem is proved.
Since (3.12) is too complicated o be analysed more clearly, it is very difficull

to give a definite Ry=Ry(8). But for a given scheme, such as schemes (8.7), (3.9)

and (3.10), we can give a definite By,. We shall give a simple example in the next
section. |

§ 4. Example

We shall sjudy the modified Richtmyer scheme (3.7) for the inviseid Burgers
equation -

o, 2(r/2) _, -
{at . o : (4.1)
u(w, 0) =uy(@).

We prove the following theorem in a similar manner to Section 3. The details
of the proof are omitied. |

Theorem 4.1. Oonsider the soheme (3.7) and f(w) —-—1-—-1.5“. The sohems bs stabla
gn the sense of Definition 3. 23:4’0%::3&6 that Ry and O satmsfy the resiriciions

(i) b*— 4ad>>0, (4.25)
(ii) =boNb—dad g —bt Vb —dad — (4.2b)

2¢ 2a

where |
a= 8.1y, (4.20)
b= —.2+3Ru+4R§+2R=* . (4.2d)
1 R, . |

d= + TG R) R+ Ro-l— -[- R (4.2e)

In particuler, such a nmb@r O én (ii) above ewists pmmded that Rﬂ=§0.20.
For the inviscid Burgers equation (4.1), we choose the initial condition ag

(@) { —1, &<,
] ==
- 1, &>0.

The Lax—Wendroff scheme and the MacCormack scheme produce the steady
expansion jump function u(zx, £) =uy(z) for all ¢, which is a nonphysical solution of
problem (4.1) and (4.3). Fig. 4.1 shows the numerical solution obtained by
applying the difference equatior (3.9) to this initial value problem with BE=0.4,

(4.3)
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3

| F1g 4.1 Comparison of the numerical and exact physical solutions of the inviseid
Burgers equation at $=50h/ug, uy=1, with E==0.4 and (.2 regpectively

O(R)=0.2 and R=0.2, O(R)=0.4 respectively. The schemes (3.7), (3.9) and
(8.10) produce almost the same numerical solution for this problem, so we only
presont the result ofathe modified MacCormack scheme in Fig. 4.1. We find that
the numerical solution is a stable and physical one. In addition, the Courant
number R can be chosen larger than R; mentioned in Theorem 4.1.

Acknowledgment. The auther would like to thank Professors Hu Zu-—chi
and Teng Zhen—huan for their instruction and inspiration. The author is greatly
indebted to the referses for their careful reading of the manuseript and many
valuable suggestions,

- References

[1] A. MaJda, . Dsher, Comm Pure aﬂd Appl Math., 32 (1979) ; 793——333

[2] A. Majda, 8. Osher, Num. Math., 80 (1973}, 429—452,

[3] T.D. Taylor et. al., J. Comptit. Pky& 9 (1972), 99-—119. -3

[41 R.W. MmOurmack, AL J. Paullay, Compt, Fludds, 2 (1974), 339—361.

[61 A. Harten, J. Comput. Phys., 49 (1983), 357—393.

[6] R. D. Richtmyer, K. 'W. Morton, Iinite Difference Methods for Initial Value Problems, 8nd ed.,

. Interscience, New York, 1967.

[7] J. Stoer, R. Bulirsch, Introduction to Numerical Analysm, Springer—Verlag, 1980, 43—40.

[8] Zhow Yu-lin, Li De-yuan, Gong Jin—fang, Num. Methods and Compt. Appi., 1 (1980), 16—25.

[9] Brenner, Thomee and Wablbin, Besov Spaces and Applications to Difference Methods for Imitial Value
Problems. -

[10] P. D. Lax, B. Wendroft, Comm. Pure Apol. Math 18 (1960), 217—237

[11] A. Harten, J. M. Hyman, P. D. Lax, Ibid, 29 (1975) 297-~323.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg
	File0012.jpg
	File0013.jpg
	File0014.jpg

