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Abatraect -

T'wo types of combination methods for accelerating the convergence of the finibe difference method
are presented. The first is based on an interpolation principle (corrsction method) and the second one
~on extrapolation principle, They improve the convergenca from O(h%) to O(A%). The main advantage,

when compared with standard methods, is that the mmputa.hnnal work can be splitted into independent
parts, which &an then be carried out in paraliel.

§ 1. Introduction

We study the finite difference approximation of the solution, u, t0 the model
problem

{ﬁlu=f, in Q, (1.1
u=g, on 82 1)

in the 2 or 8-dimensional domain © with boundary 2Q. Suppose that © consists of
pome squares in the 2-dimensional case and of some cubes in the 8-dimensional case.
Furthermore, suppose that the solution of (1.1) is smooth enough.

Lot u, be the solution of the approximate finite difference analogy to (1.1)with
mesh gize A:

{Ahuh"—"’fp in QE, d=2, 3,
'Hh=g, Oon 39:.
Here 4, denotes the 5-point approximation of the Laplace operator 4 in the

2-dimengional case, and the 7-point approximation in the 3-dimensional case as
usual.

I$ is well known that
°— u;.—hﬂe-kO(h*) in 2% for h—0, (1.8)

where ¢ is the solutfion of a correction dlﬂ‘erential equation independent of A
([8, 7]). Function ¢ can be estimated as

(1.2)

—Wo=-g-(ta—tna) +O(AY). (-4

The more accurate solution, u, /., may be corrected by é (uass—uy), and the correc-

tion taken as an error estimate. The disadvantage of the above extrapolation
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procedure is the computation of another solution with a smaller parameter (h/2),
which involves solving once again a finite difference equation of much larger size
than the one corresponding 1o the original & for multidimensional problems.

In this paper two methods are presented which lead to accuracy O(h*) but
which are of a lower computational complexity than the standard extrapolation
method. They are especially efficient when parallel architecture of the computer
system is used. The methods consist of a prediotor—corrector type method, and a
splitting extrapolation method. The methods will be introduced in sections 2 and 3.
Finally, in section 4 we give some results of numerical tests. In the two—dimensional
case we have compared the presented correction and splitiing extrapolafion methods
with the standard 5—point scheme and multigrid method; in the three—dimensional
case we have compared our method with 9-point and 16-poinb schemes, and with
the standard extrapolation method. All computations have been carried out with
the conventional computer system. Consequently, the parallelization properties of
the correction method and the splitting extrapolation method have nob been
utilized. In spite of that, the methods presented here seent to be superior compared
with siandard ones. | | e, o | | .

For a survey 2f extrapolation methods in FE and FD-schemes we rofer 10
survey work [6]« Especially, see [1] for FEM and [111 for FD in connection with
multigrid method.

§ 2. P;'e_dictar-__Corrgt;tor Type, Prm_:e_durg.-__ ,

Define the (uniform regular) latiice domain
2=0(h, -, k) A -
— {(@3, @) ER®|mmmeh, my=0, E1, vy km, §=1, o, d, wh=1}.
Let operators 43 and Af be approximations for the Laplace operator L=4 at point
&Cint 2 (where int @ denotes the interior of Q). For d=2, 4 is the 5—point
difference operator, where | '

Aiu(@s, ©) = L, o) =g (@1 hy @3) Fulorth, 2)

—I—H(ﬁa, mﬂ_"h) +'EL(:E1, ﬂ?g—|"h) -4‘25(&31, mﬂ)}:
~and 45 the 5-point difference operator, where

(@, v) =L (e, @) = o {u(@i—h, @a—h) Fu(@sths, 2a+h)

tw(@y—h, Za+h) +ulzy+h, va—h) —du(, o)}
For d=8, 4} is the T-point difference operator, and
Siu(wy, Ta, xs) =Lhu(ws, Ts, T5)
_ 1
hﬂ
+ul(zy, 29+ h, o3) -{-u(a&i; xg, Tzg— h)
+u (@, 2a, ws+h) —6ul®y, za, @s)},
and with 4% ag the 9-point difference operator, we have

{u’(mi_h: ﬂ?ﬂ: 417-3) M(ﬂ?1+h, Ta, mﬂ) "I.—!.&(l.’ﬁh mﬂ_"h: Eg) |
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—_._______.______—H——-—_——-——#ﬂ_—_——-—'__'

- ﬁnu(mh %3, @p) = L2y, @a, @s) = (u(@1+h, 2a+h, B3 +h) +u(er~h, 2a+h, sth)
A1y +h. Ga—h, @g+h) +ules—h, 2a—h, os+h)
+ulws+h, sa+h, oz—h) +u(@ws—h, za+h, 3—h)
tuley+h, oa—h, ag—h) +u(e—h, ea—h, cz—h)
—8Bu (@4, za, z3)) /4H°. |

Corresponding to these difference operators we set the followmg approximation
problems for (1.1)
Find «; such that

B (2.1)

;,,H';. —'f_, in Qi, d='2, 3;
{ » =9~ 719 f, on 20,

Find u} such that | |
{dfuf=f, in £, d=2, 8;

e 2.2
u}”f==g—-—f§f, on 90%. \2.2)
Tt is generally known that e :
feo— i | z~op ==-G‘ (h y for h-—+0+ (2.3)

4

and that .
Ju—ui] o, =O(R%), for A—>0,,

where |u| ;_,.,m, : == gup |ue) |, (see, for example, [4, 10]). The above accuracy results
ecDf

can be improved by using u,, as a correction to uf. Indeed, we have |
Theorem 2.1. Let ul and ul be the solutdons of (2.1) and (2.2), respectively.

Take | ’
e R  es
T hen = |
"“'"u’h" rop =0(R*) Tor h—>0,. (2.5)
Proof. It is easy to see that the truncation errors for operators 43 and 47 will
be b a8 ¥ @
For . Arg o 2 1 0(hS
{Ah'u' du L(w) +0 %), (2.6)
Au— du=Fly (w) + O (h)
with 4
) § _ - &R
d 34 | il _ a{
Iy (%) = Ut 6‘% 72 3&:%'“ (2.8)
and .
= 2 1 (w)- +-- 1o (u) =5 A”M—A(E f). - (2.9)

Lot w; be the solution o:l:' the suxiliary problems

{ﬁl‘!ﬂ;=h(‘lﬁ), in Q, 'E'=l, 2,

2.10
'w;=—112- f, on oLl. ( )

Then we have by (2.5)—(2.10)
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A¥ (u—uf — hwy) = diu— AFui — A2 4w,

= 3y (1) — B dw, + A2 (dws— dfw,) +O (k) =0 (h“ , in 0%, (2.11)
u—uy —hPw,; =0, on &2}
and
( 45 (u—ufl — h%wy) = diju— Bu;y — h245 wa
: = %y () — 2 dwy + 2 (dw. — AFws) +0 (h‘) - O (A% in Q‘ (2.12)
u—ux—hfwa=0 on 944.

‘Conscyuently, by the maximum principle,
{ u—uy —w=0(RY) in O,

(2.18)
u—uy —we=00hY in G,

Hence
v—u,—hPw=0(h*), for A—0,

where, according to (2.9), =-l (2w, +ws) satisfies

{dw——— 1 () +5 L 100 = A= 112 f) ing,

w==-——f on 951,
Thus w——f, and (2.5) is proved. §

Ramark 2.2. Bramble [2] has proposed for the 3"(.']_11!19[1!101131 case a 19-poink
difference operator L}; and a difference solution u}, defined by

{ Lmu;lg -—f+ ﬂf, in Q:

2.14)
'H]_g =g, 0n 3&%

and proved that
u—ulpy=000"*, in 23 for A—0.
It scems that (2.1) and (2.2) are eagsier to solve than the Bramble scheme

{2.14) not only because of the 19-point operator Lf,, but also because of the Af

appearing in (2.14) (possibly causing rnumerieal differentiation for data).
As an alternative to the Bramble scheme we present
Remark 2.3. Let

2 1

be the 15-point approximation, and let u’{;. be the difference solution defined by
?ﬁu%ﬁ =,f1- in ﬂ?u

h? 2.1

{u§5=g——‘i§f, on 943, ( )

{t is easy to see that :
2
u——ui‘ﬁ——Tz—f=O(h‘f), in 23 for A—>Q.

Finally, we remark that all three schemes (2.4), (2.14) and (2.15) are of the
same acouracy O(%*). The esseritial difference in (2.4) is that %, can be computed
by two parallel schemes, and consequently can use parallel processors for finding a
computer solution efficiently. In Section 4 some numerical tests have boen presented
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e ey R

where schemes (2. 4) and (2 15) have been applied.

§ 3. Splitting Extrapolation

The extrapolation technique is a simple and effective tool for solving differential
equations (among others), especially in a ene-dimensional case. For the multidi-
mensgional problems the disadvantage of the standard isotropic extrapolation method
is the need for the computation of another approximation with a small parameter,
say /2. This involves computing once again an approximation of a much larger
size than the one corresponding to the original k. To remove this imperfection, we
present, in the following, a splitting extrapolation procedure which will save
computational work and storage.

Lot Q(hy, -+, hy) be the lattice domain with mesh size 7; along the variables
24, -+, wg. We denote by u(h) the corresponding finite difference solution which have
been obtained by using the central difference quotient equation (in 2-D, ad—point,
and in 3-D, a T-point difference upera.tor) If » is smooth enough, we have

u—w(hy, - > ek +O0(|2[ ™), (8.1)

1< xtsm

where m>>1, a= (a3, -, o), | | a4+ 4 ag, h*=h1+h3¢, and o, aT6 UDknowns 10

be determineéd in an approriate way.
The usual isobropic extrapolation methed involves. the following: make the

by N plB L BeY .
“homogeneous refinement lattices .Q( 5 s "T)’ .Q( 1 g ), , and compute

the isotropic extrapolation solutiong (ﬁf . (8.1))

Tu (k) =+ 4u(B/2) —u(®),
3.2
{ Tu(h/2) =~Zl5-(64u@/4) — 20u(b/2) +u®). -
Then it is well known® " that
u—Tu(h) =0(S'As), in @), for k0,
(44w

g
u— Tu(h/2) =o(2 hﬁ'), in Q@), for h—0,
f=x1
The splitting extrapolation method involves the following: Make the one-
-variable refinement meshes

Q(_}.;_L, T h.:), Q(hh __};i, oo, hg ), e, Q(hh b, ,_%_)

and
Q(._Ii, T },,',)_, Q(ﬁh __};:_9_’ s, g ), s, Q(hh R W, %‘.)
Compute the difference solutions
e Ble Ry o ),,,),
(8.4)
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and
(B R
- (3.5)
(]2,1, Biay. l”‘:_)
and then compute the 5p11tt1ng extrapolation solutions |
Suw‘z)——-{zm(hl, T ey hg)- c:4cz-3)u@} (3.6)
-
S h/4) = { 3] 64{ . )
—20u(hy ey B, o, )~ (44— ﬁ)uu} @D
Then, if « is suﬂimently smnoth one has (cf. (3 3))
fu—Su(r/2) —0(§h3), in Q) for h->0,,

d . (3.8)
u—8u(h/4) =0(FH), in Q) for k>0, -

This result obviously follows from the general exirapolation theory ([3, 91).
‘We shall go into details only in a special case. Actually, in the asympiotio sense,
‘the isoiropic extrapolation method and the splitting extrapolation method give the
same accuracy. We want, however, to emphagize the computational efficiency of the
aplitiing extrapolation method. Keeping in mind the parallel architecture computer
system, the algorithm for finding Su(h/2) or Bu(h/4) seems to be a promising
technique for multidimensional problems, -

Finally, in order to get more insight from the resulis given above, wo will
make the situation more concrete. |

Define in the interior of the lattice (%, -+, h) the difference operator

d - '
=72 3 e, v, Ty o, @) e, <y 0y - 3
"]-‘I-ﬂ(ﬂ?i, e mk‘}"h: S IE,;)}- |

Correspondingly we define in the inierior of the lattice .Q(h_, oev, %, sery h) (in one

dimension) the operators o
A;IHE(E) [u(mil sae, ﬂ;‘-—.%, oo md)—zu(mi} cos, Wy, "', md)

& 5 +u'(¢:l: Sy $¢+§: ey Iﬂ)]+h ’ g{'u(miy e, Ty— Ry oo0y mﬁ)

_gu(ﬂ;b see, @Lg, *0, md) -'}—'15(5'31, “._h.? ¢k+h: oer md)}‘

A flow chart for the spliiting extrapolation method is shown in Fig. 3.1.

' . The splitting extrapolation method ig numerijcally very efficient. The necessary
computational effort of the isotropic extrarolation method is about 23¢~* times that
of the splitting extrapolation method. As is evident from Fig. 3.1 the splitting
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| - Initialization |

k.

wl et s . e f e foe—

! !
‘ Compute 4 from Gﬁmpufe 4% from - Compute 42 from |
20k s b %)
5 4 M"—f, 10 Q(h: e, h:} | : { ﬂ?ﬂ{' -fj 1D.Q(-§'J By veey h) : { dgug f: in D(hi 7]
{uﬁng, in 8L (h, ++, h) Ylemg, in BQ{-;‘—, Ry e, h‘}:

o

! Sot ghm— (—4— o~ l)u"*l*—a- 21 ud

l—-—ﬁlﬁ—

Fig. 8. 1 Flow chart for the splitting eztmpola.tmn uchlmu

exirapolation method ig very efficient in parallel oomputer arc]ntecture
To end this section we shall give a rigorous proof for the convergenocs of the

splitting extrapolation method. For the purpose of simplicity, we restrict ourselves
to the two—diménsional case.

Theorem 3.1. Smosa that f =0 and that

i1

at four corners of £ (coherencs condition). Then, of f GO”“ (Q), _
22— U* | Locon,ap =0 R2*¥) for h—0, 0<a<1, (3.9)

Proof. Wae set the anxiliary problems
{ de;=1,(w), in Q,

3.10
8;=0, on 29, ( )

where 1 o ., 1 &%
i 12 dat i3 25

31(1-'»)“1 v , 1 0%

48 a5 12 30:%’
bt 1 &% , 1 &u

12 gzt 48 oOxf
- Clearly I, (4) =0 at four corners of 2 (coherence condition). We have
&; E U&-I-u (ﬁ) 3 ﬁ:‘ﬁi T ﬁﬂ; =) (:hi.hl) |

with A3=4*. Moreover,

| Ay — Au= R (u) +0 H3™).
Hence, 2 | -
A (w—ud— hoe) = Au— Ju— hﬂde; — k2 Ale;— da;) = O (R*®).
By the disorete max-min-principle |

u— 1 =P, + O (h*+%) (3.11)
and "
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(4o, 4-doy — 5ao) = 4 (41 () + 4l () —Blo (w)) =O.
Now the assertion of Theorem 8.1 follows from (3.11) and (3 12). B

(3.12)

§ 4. Numerical Tests

Some numerical experiments are conducted to test the validity of the acourscy
results given in the previous swotions. Moreover, the presented methods have been
compared with the standard ones. All computations are performed on Sperry 1100/70:
2t the computing centre of the University of Jyviskyli, using double precision (18
digits). The linear systems have been solved by S. O, R with the relaxation parameter
_ 2

| i"l"ﬂfﬂl Whmjn 4
where Ay i8 the smallest mesh length parameter in lattice 2(k). The authors are.
indebted to Mr. K. Saarinen for his assistance in carrying out the numerical tests.

4.1, The two-dimensional case.

The methods tested are

(1) 5-point difference; acouracy H(44) =0k,

(2) multigrid with 5-point difference; accuraty MGE(4}) =0 (A%,

(8) the correction method; accuracy K (45) =0(h*), and

(4) splitting extrapolation; acouracy SE (4 =0 (kY.

The multigrid method tested is presented in [12] with the FORTRAN code. For
multigrid methods we refer to [5].

Ezample 4.1. Let Q= (0, 1) % (0,1). For
f(wn g) = ~— 28N @y — (wi—wﬂl)w”sinarmn

g(mir ﬂ?g) =D

€

and

the exact solution of (1.1) is |
| (@1, @g) = (01— 27) in ;s
Table 4.1 shows the results of numerical tests; B ( ) refers to L™error, R(h) =

Ei (h) /E (2h) convergence order. The CPU times have been given in seconds.
Table 4.1 Comparison of results obtained from the four different methods

% E(d) MGE 47} L B4 [ sE (&)
CPU, R(h) CPU, B() . CPU, R() CPU, 3(h)
1/4 0.677 x 10-3 0.677 x 10-* 0.190 3 103 0.159 x 10~
0.16 X 10~21; —— 0.17 x 10-1; — 0.48>10-1; — 0.13 X 109; -—
1/8 0.166x 10-3 0.166 x 10-3 0,112 X 10-8 0.101 x 104
0.12x 100; 4.1 0.67 x10-1; 4.1 0.27 % 100; 17.0 0.11x 10%; 15.8
S i i - i_ o
1/16 0.412x10-3 0.420 x 10~ 0.69 X 10-5 0.6 % 105
0.99x109; 4.0 0.27 x 109; 4.0 0.19101; 16.2 0.85 x 10%; 15.9
1/32 0.103 x 103 0.103x10-8 0.4 x10-6 0.4x10-8
0.76 x 104 0.11x10%; 4.0 0.15x10% 16.1 0.64x 10% 16.0
: 0.853 x 104 .
L o |—0.45><101,40 e
Accuracy
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4.2, The three—dimensional case.
The methods tested are
(1) 7T-point difference; accuracy B (4,) =0,

(2) 15—point difference; acouracy ¥ (Li5) =04,
(3) Richardsons extrapolation (isotropic extrapolation); acouracy RE (4,) =

O (%),

(4) the correction method; accuracy B (4;) =0(h*), and
(6) splitting extrapolation; accuracy SE (£)=0(A*).
Ezample 4.2. Let Q= (0, 1) x (0, 1) x (0, 1), For

and

the exact solution of (1.1) is

(@1, @, o) =sinawy (03— a3) (23— ).
Table 4.2 shows the resalis of numerical tests for Example 4.2,
Eoample £.3. Lot Q= (0, 1) X (0, 1) X (0, 1). For

f(%. T3, Tp) == —;M’ﬂinwmisin2wwgaﬁn3wm,

gl(ﬂ?i, Zay ‘r’l) _ 0

S (@1, @, xp) = —a® sin w1 (w2 — 23) (25 — 2§) — 28i0 wz; (ws — 28) — 2 8iD w2y (@9~ 23)

and |
»
. Table 4.2 Comparison of the different methods nsed in Example 4.2
n E(4) | B RE(dy) By | sE@)
CPU, B(®) CPU, B(k) | CPU, B() CPU, B(x) | CPU, R()
' _l —— —
| . :
1/4 0.117 x 10-3 0.180 % 103 0.67 % 10-5 0.112 x 10-2 0.300 % 10-4
0.75x101; — | 0,10 x100; — 0.15x 101; — 0.17 x 100y — 0.76 % 100, —
1/8 0.282 % 10~3 0.104 %104 0.40 x 108 0.565 x 104 0.19 x 105
0.10x10%; 4.1 | 0.16x10%; 17.4 | 0.23x10% 15.2 | 0.21x 104; 17.3 | 0.12x10% 15.4
b= = 4 el o --
1/16 0.701 x 104 0.60 x 10~8 0.26 X 10~7 0 40 X 10-5 1 0.20x 10-8
0.16x10% 4.0 | 0.27x10%; 16.4 | 0.35%10%: 15.4 | 0.32X 10%; 16.3 | 0.74x108; 16.0
188 0.175x10~¢ | 0.37x107 _ | 0.2x10-8 »
0.26x10% 4.0 | 0.37x108; 16.1 0.51 %108 16.1 |
O (B9 O (k%) O (h%) O (ht) O (hd)

Table 4.3 Comparison of the different methods used in Example 4.3

T E— P

3 B4 B(L%s) BE(4,) E{4) SE(4)
| OPU, B() CPU, R(B) OPU, B(k) CPU, R(k) OPU, R(h)
- I# —
1/4 0.439 x 100 0.131 x 109 0.205 x 10-1 0.679 x 109 0.606 x 101
0.43 % 100; — 0.17x109; — 0.16 x 101; — 0.30 x10%; — 0.10x10%; —
1/8 0.944 x 10-1 0.853x 1012 } 0.113x10-3 0 203 % 10-2 ¢ 305x10-2
0.14x10%; 4.7 0.19x10%; 13.7 | 0.21x103; 18.1 | 0.29x10%; 23 0.14x10% 19.9
1/16 { 228 x 101 0.613 x 103 0.669 % 104 0.168 x10-3 0.181x 10-3
0.20x10%; 4.1 0.29%10% 15.6 | 0.30¢10% 16.5 | 0.42x10% 17.6 | 0.19x10%; 16.9
1/33 | 0.564x10-3 0.386 x 10—+ - 0.103 % 10-3 -
{ 0.31x109; 4.0 | 0.47=10%; 15,9 0.66 X 10°; 16.4
ACCUTACY O(h?) 1 O(h#) 1 O (hé) Q (k) O (ht)
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g (mis La, ﬂig) ={

the exact solution of (1.1) is

u(ws, Ta, T3) =91narm1mn2wmﬂsm3wma

Table 4.3 shows the results of numerieal tests for Example 4.3.

The above numerical results confirm the theoretical resmlis. The parallel

properties of the correction and the splitting exirapolation schems have not been
utilized above. In spite of that the correction and splitting exirapolation methods
seem 10 be superior to other methods tested.

(1]
(2]

[3]
[4]

[5]
[6]
[7]
[8]
[9]
(10]
[11]

[12]

References

H. Blum, Lin, Q., B. Rannacher, Asymptotic error expansion and Richardson extrapolation for
linear finite elements, Numer. Math., 49, 1986, 11—-37. -

J. Bramble, Fourth order finite difference analogues for the Dirichlet problem for Poisson’s squations,
Math. Comyp., 17, 1963, 217—222.
C. Brezinski, A general extrapolation algorithm, Numer. Math., 35, 1980, 175—187.

&. E. Forsyte, W. R. Wasow, Flinite mﬁmn{:ﬂ Methods for Pa.rtla.l Differential Equations, J. Wiley &
fHons, London, 1960,

W. Hackbush, Multigrid Methods and Applications, Eprmger series in mmputa.tmnal mathematics, Vol.
4, Bpringer Verlag, Berlin, 1985.

M. Krizek, P. IV mtga.anmah, On superconvergence techmquas, Umveraltﬁ.t Jyviskyld, Dept. Math.,
Preprint 33, 1984.

Lin, Q., Lu, T., Splitting extrapolations for multidimensional problems, J. Comp. Math., 1, 1953,
4h—51.

Lin, Q., Tu, T., The combination of approximate solulions for accelerating the convergence, RAIRBO
Anal. Numér., 12, 1984, 153—1640.

& I Mmhuk Methods of Numa:rmal Mathematica, Applications of mathamatma , Vol. 2, Eprmge::
Verlag, Betrlin 1975.

A. R. Mitchell, {}omputa.tmnal Methnda in Partial Differential Equa.tmna, .T ohn Wllay & Sons, London,
1969

A. Bchiiller, Lin, Q., Efficient algorithms to accelerate the convergence in finite difference methods for
elliptic boundary value problems using full mulhgnd technique in connection with extrapolation methods,
to appear.
K. Stiiben, U. Trottenberg, Multigrid Methods: Fundamenial Algonthmu, Model Problem Analysis and
Applications, in LN in Mathematics 960, Springer Verlag, Berlin, 1982,



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg

