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I. Introduction

Ludwig, Jones and Holling (1978) modelled the spruce budworm problem by
using a scaled ordinary differential equation. Spatial effects were introduced by
Ludwig, Aronson, and Weinberger (1979) by the addition of a diffusion term 4o
the equation. Recently Guo Ben—yu et al. (1988) obtained some precise results for
the bifurcation,lengths in circular and rectangular regions. These analytic results
are extendéd in the present paper to cover the case of difference equations in
reaction diffugion. The analysis is restricted to one space dimension and only the
linear and nonlinear logistic models are considered. Despite these restriotions, the
techniques used and the comparison principles proved are useful for more general
problems,

II. The Linear Model

In this section we consider the linear model of the spruce budworm problem.
Let the region considered be an infinite strip of breadth I and W(y, t) be the
sceled density of the budworm population where (see Ludwig, Aronson and
Weinberger, 1979) '
&

%T aa;; W=0, O<y<l >0, |

W0, ) =W(, 1)=0, #>0, (1)

Wy, 0)=Wo(y), 0<y<li,

where 0<<Us(0) <M, Lot y=le, U(w, ) =W (—%’—, t) and s=—31§. Then (1) becomes -

2
‘?,? & %5— U=0, 0<o<l, >0,
U0, :)=U(3, £)=0, i=0, (2)

Uz, 0)=Uo(a), O<e<],

We cover the region [0<z<{1] X [t>=>0] by a rectangular grid, where h and =
are the mesh sizeg of the variables @ and ¢ respectively; also, Nh=1 where N is an
integer. We define
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I,={z|o=h, 2h, -, (N—1)A}, ILn=Ix+{0}+{1}.

Let #*(«) be the value of the mesh function 7 at point aCT, t=kv (k=>0). We use
the following notations

(@) =2 [P+ B) — (@], @) =na—h),
(&)= PR =3 @) T )

and

(@) = -1,; [n** (&) —n*(@)].

We iniroduce the discrete scalar product and the norms as follows:
(.7?1": gk) =h’§ ??k(ﬂ?) -gk(m)J

Ag*|2= ("% 9°)s Iﬂ”li=%ﬂnﬁll’ + -%-I\nféll“, lln“lln-—'g’-;f]n"(m) .
It is clear that
—-(n‘, k) = |11+ [n(h)]”—t-——[n(l*-h)]“- (3)

Lot «*(a) b the approximation 130 U"’ (m) The Orank-Nicolson scheme for
solving (2) is
ui (2) —'—(ilﬁz(m)+tt’£$1(m))—~——[u‘(m) +u**(@)] =0, &€y k>0,

w*(0) =u*(1l) =0, k=0,
(@) =Uo(a), z € Iy

(4)

Let
¥ (z) ='T§1w,&b“(ﬁ)sinﬁwm, e € I, k=0,
where ;_1
., Un(@)ﬁgﬂﬂﬂinﬁﬂ'ﬁ, .ﬂ}ETﬁ.
Then 1 s . o ik o
b % =
b(B)=1+2sr s Bmh 7 °
h? 2 2
‘We define
e R
= |
and let w*(@) be the solution of (4) with w®(@z)=M,. Then
ey 2o § bH(8)00s - sin (28— 1)ma
(m.):: E'_ vy BW T
2N

Clearly w"(:p)@_w“(}i) and w"(—ﬂ-)—}o as k—>oo provided 8> &

N_How suppose | , . opa
B (2’ 28 — h* )

By Lemma A, (see Appendix), 0¥ (o) <w™(@) and thus u*(2)—>0 as k-»co0 as long
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as e>>8;. On the other hand, if s<s! and u’(@) =deinmww, then for all >0 and
W‘EIM

u (@) =b*(1)u’{@)—>oc ag koo,

and we conclude that

(i) if I<h, then for any initial value (@) and o€ T,, tﬁ‘(m’)-'—}o as k—>o0;
(it) if I>1I;, then there are solutions with arbitrarily small initial values which
can grow without any bound for all » € I, as k—»>co.

The value I} is the critical size of budworm refuge for the discrete model (4).

As ig well known, the critical size of the original problem (1) for the budworm
refuge is I"=u (see Ludwig, Aronson and Weinberger, 1979) and so I'~>I" as 40,

III. The Logistic Model and Its Steady Solution

We consider the logistic model (see Ludwig, Aronson and Weinberger, 1979)
which is given by

oW  *W

oy o ~W({1-W)=0, O0<y<l, t>0,
W0, ) =W, £)=0, t>0, = (6)
Wy, 0)=Wy(y), 0<y<i,
or
LA o —U@-T)=0, 0<a<l, >0,
U0, £)=U(1, £)=0, >0, - (6)
Uz, 0)=Uo(z),  0O<z<l. |
The corresponding steady problem is
il

| "'s otV (=) =0, 0<a<l,

LV (0)=V(1) =0.
The Crank-Nicolson type scheme for solving (8) is

(M)

(&) = 5 (ua(2) +3 (@) ~ F- () +4* (@) + ()" =0, ©CT,, k>0,
u*(0) =u*(1) =0, >0, | | &
() =U,(x), @ C Ly,
and the corresponding steady problem is
{ewﬂ(m)—l—w(m)(l—ﬂ(m))=0, eCI, ()
{2(0)=2(1)=0. -'

Now we look for the condition for (9) to have a positive solution. We take the

discrete scalar product of (9) with v(w). From (8), it follows that for a positive
solution,
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- a]wli—l—-z,fh—wﬂ(h) +-—2% *(1—h) — jo]*<0.

Let | In]
T lnl§+—1—-ﬂ”(?:?)+-—1—- (1—h)
1179 oh
Then 1 1
(8= mn) [ |01 +45- 03 (B) -+ 01— |<0.
If m,<e, then |v|i=0 and so v(z)=0 for v €I, Indeed _‘Ti'-j;: is the smallesb

{q!’ﬂ'(‘m) +?‘-‘h¢'(m) =0, @ C Iy,
$(0)=¢(1) =0.

WE have
_ ha= oy 0 Lrh, 1<p<N-1,

eigenvalue of

then (9) has no positive solution.

and g0 m,=er. Thus if e>>&;,
nt of (9). First we introduce

We shall show that &} is the first bifurcation poi
the discrete Green function gn(@, &), given by

{'—ghiﬁ(m: m’)=%5(m, Wr): x € 1Ly, m’ET;.,

gh({}} m!‘) = gi'l(l! ﬂ}r) ==0: mr EI:\\-

We nex?b define the operator Ly as -
(L) (&) =h Eigh(m’: x)n(e’) [1- ()]

and so (9) is now equivalent to the operator equation
| gv=TInv.

(10)

the norm [n]a= [l and for all
Then I,(0)=6. Let Li(n)

of I, respectively. We

can then prove thal on some open neig
b (o) | < M 1< 29, (11)
of h and || denotes the norm of the

Let B, be the discrete function Space with
n € By, n(0) =0(1)=0. Let 6 be the null element in Bh.

and Ll(»n) be the first and second order Frechet derivatives
hbourhood of &,

where M, is a positive constant independent

operator Ls(n)-
We now consider the following eigenvalue problem ¢

gxda(@) =Th(8)du(w)

orresponding to (10)

which is equivalent 0 |
{ exds,sz(@) +u(@) =0, € cly
‘i‘"h(ﬂ) L th (1) = ().

Lot o, (8) be the spectrum of the operator L4(§). Then

o(0) ={4ﬂnf=BWh / m;ﬁgN—l}.
2

with the corresponding eigenfunciion & (&) =din we.
d H(g,) and H(o}) denote the null space and the

The largest eigenvalue i8 &x
Now let oF =a4(f) — {en} an
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range of &,— .L;(#) respectively. Then

By=H () ®H(0}). (12)
E, and F; denote the projection operators of B, ontc H{e;) and H(o})
respectively. We define the operator Ah ad

= 1 —_ s
A, ol I 6:; [z L (E?):I dz,

where the curve I') is composed of a finite number of rectifiable curves. The curve
I’y containg ¢} in its interior and g; is in the exterior to I's. It can now be proved:

that
| ; H]A,,,}ﬂgll.{ 7
where M, is independent of 2 and |
Apleys—Li(0)] = [ei— L (0) ] Ay =Fs. (18):
Returning t0 equation (10) we let 8= g3 9, and expand L; about @ to obtain
(B;_ ;;(9))'17= '—Bh’l?_l‘Rh(‘u), | (14)

where
Rh(*?}) - L_:,,(‘L") s Lh (9) P L;I (ﬁ)'ﬂ == Lh ('IJ) '"'L;, (9) U,

From (11) it follows that for all v sufficiently small D
' | Ba (@) s, <2 0[5 SRR s

Now let ¢ be a parameter where ¢=+#0, and lei'- vo=c[Pr+ws] where w, E H (o). By"
using (12) and (18), (14) is equivalent to the sysbem

Uy = Bhﬁy,w;.—l—%- A};Rﬁ,(ﬂ [9{); -+ 'wh] ), (16)
Buh = EuBa(o[dh-+unl) = Ma(o, B, (17)
Now assume { .
|85 ] <8°<

sup [ 4] 7
and so (16) becomes |
w,.==l(1+ 3vA,) 14, Ba(e [Bh+w:]) = Nalws: 0, By). (18)

We shall show that (18) has a solution w,(e, 8,) by using the contractwe
mapping theorem. Using (15), we obtain

| N(aon; 0, 84) | 5,<ody (19)
for all sufficiently small ¢, 8; and w; with an appropriate d;>>0. For [uwy]s<r<s°
where r° ig suitably small, choose |¢|d;<{r, and then N,(+; ¢, 8) maps S3(d, r) into

8,(6, ) where
8x(8, r) = {wn/ | wal 5. <r}.

Now we show thalt N, is contractive. From (14) and (11) it follows that for all
sufficiently small »®@ and »®,

| Ba(o™®) — Ba(o®) [ 5, <M [0 ] 5, +

Applying this to N;, we obtain
| N (v®; e, 8x) — Ny(v®; ¢, 83) |n,<dac|[o? — o], (20)
for all sufficiently small e, 8, v*® and v®, with d3>>0. Thus if |[¢|<c"<1/d; then

_%_ 1@ @ ] [0 — @ 5.,
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N, is a conlractive operator. Combining (19) with (20) on some S(f, r) and using

the contractive mapping theorem, there is a unique solution wy(e, &) in S;(f, r)
and w, =N, (ws; ¢, 85). Moreover from (19), | ﬁ

|wa(o, ) | <dsle|=0() e
uniformly for all small values of 8, and h. It means thab wa(e, 5,) is a uniformly
continuous function of ¢ and 8,. |
. Asfor (17), we use the same technique. For all small ¢ and s, by using (19)
and (21), we obtain
; “ th(ﬁ, an)lgdglﬂl
for d,>0 and all small ¢. Let [8,)/<» and choose |cds|<». This implies that
M,(c, +) maps the interval [—», »] into [—», v]. We have from (16), (11) and
(21) that |

| My(e, 85) — Ma(o, 357) |

3 'gﬁ[mﬁhm | By (cLr-+wnle, 35)1) — Balelda+unle, 37010 |2,

< cdy “ Wh (01 3{.&1)) i wi(”: 35&2)) "Bn<33d5| ,8'%1} -—-35"’3| |

for appropriate constgnts d,, ds>>0. Now applying the contractive mapping theorem
to the equation d,=M,(e, 3,), we obtain the existence of dx(e), |e|<c® for some
0°>0 and it follows easily that 8,(¢) depends continuously on ¢ and 8, =0 for ¢=0.
'~ The previous statements show that problem (9) has a unique solution ¥, (@)
and e = ¢g;-+8,, for which |
_ i’n=ﬁ[¢:+wh]:
aw, € Range (g3 — Li(0) ),
wy=0(0), O(c)=0(c).
The previous analysis is similar to thabt in Atkingon (1977). We take ¢ to be
sufficiently small and positive. Since ¢;>>0 for 0<a<1, s0 v,>0. Ag is shown
before, if e>s;, then (9) has only the zero solution and so (9) has a unique
positive solution v,(@) only for &< ss.

Next we shall show-that (9) has a unique positive solution for all s<Ca;. Let
g< e’ gt with |&’— e;| sufficiently small. Then there is a unique positive solution
@(z) of the following problem |

{ — &'pu(@) —@p(e) (L~p (#)) =0, a€I
. ?’(ﬂ’)=0; w=0, 1,
from which and 0<p(w) <1 for all € I,, we have

— 80 (2) — @ (@) (1—¢J§m))=(8’—6)¢?af(m =-§F;B o (@) (p(x) -1)<0."

Thus ¢(2) is a sirict subsolution of (9) (see Appendix). Obviously fr(z) =1+ 8
(8>>0) is a strict supersolution of (9). By Lemma A, (see Appendix), (9) has ab
least one pogitive solution.

Finally we consider the uniqueness of the positive solution. Assume +*(») and
v () are two such solutions. Suppose v@ () >0P () for e €B I Choose 8>1
guch that ‘ *d -

v (0) <f(a), oEL
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and that

o' () > Bo® (), 2©cI,.
Let w{e) = ﬁwm(m) Then
— sw.a(2) —w(@) (1—w (@) = B(B—1) [6P ()]*>0

and so w(e) is a strict supersolution of (9). Let {*(#) be the solution of (8) with
£%(x) =w{x) and

b2
T<Imin. (2 2 )

QUTERTI )
By Lemma A4 (see Appendix), £*(z) is a giricily decreasing funclion of £ for all
w1, and 50 £¥(e) <w(a). On the other hand, Lemma A, leads to

V()< (z), wCIs k?ﬂ,
- and thus

o® (50 < ¥ () {w(mi‘”) < Bw(”(m‘”’)
which is mntrary 1o the assumption.
- Now we conclude that I; is the critical size of (9), that is
(i) if I<i;, then (9) has only the zero solution,
(i) if I>1y then (9) has a unique positive solution,
As is well known, the crifical size in the original problem (7) igs I"=m. Clearly
L—1" ag h—>0,

IV. The Asymptotic Behaviour of the Logistic Model

- In this section we consider the asymptotic behaviour of the solution of (8),
denoted by «*(#). Suppose 0<u’(x) <M, and Ms—max(1l, My). If

<7 < min (2, 2K 73 ) :

28 +4Mh2—
then by Lemma Aj;, 0<<u* (@) < M,.
Now let u*(@) and w*(z) be the solution of (8) and (4) respectively and «°(a)
= () =>0. Then

() — -5 (i (@) + () — 5 (@ (0) +0()) = ~ [WH(@)]'<0, @€, k>0,

(@) =0, =0, 1, k>0,
w(z) =w'(x), «CI,.

By using Lemma A, and Lemma A;, we have 0<u*(a)<w*(»), and thus u* (m) —>0
a8 k—>»oco provided &> sy.

Now assume e<Csg;. Then (9) has a unique pomtwe golution fu(a:) For
simplicity, assume O0<m<<u’(e)<M, for all o€ I;. Let s'<g; and |&'—e;] be
sufficiently small. Let ¢ () denote the solution of (9) with ¢ =g'. Then 0< |p].<m.
Let £%(#) and %*(a) be the solution of the following problems

£(0) —5 (Ea(2) +€41 (@) =5 (%(0) +£1(0)) + [$*(®)]*=0, o€, k>0,
§*(w)==0, =0, 1, k>0,
(z)=M;s, €I,
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and

i (@) — —(nﬂ(m) + 53 (@) ) — ——(n"’(w) +0¥* () + [*(2)13=0, @&, k>0,
n* (@) =0, x=0, 1, £=0,
(@) =q:(§t:), o€ Iy
Because £ («) and +P(#) are supersolution and subsolution of (9) respectively,
Lemms A and Lemma Ay lead to
v(2) =lim £*(2) =lm»*(=).

By spplying Lemma. A, we have
n*(@) <u*(2) <¢* (@)

and thus v*(z)—>v(z) as k—oo.

The conclusion is as follows:

(i) If I<l}, then for any u’(z)>0 and all @ c1,, u*(2)—0 as k—>oo.

(ii) If I>1}, u®(@)>=>0 and u’(w) 0, then u’(@)—>v(x) as k—>co.

Ag is known, if I<I*=m, then U(w, t)—0; if 1>, Uos(z)>0 and Uu(m}$0
then U(z, £)>V (&) ag t—>o0 where V (x) is the unique positive solution of (7).

Since [1—1" as 70, the asymptotm solutmn. of the discretised problem (8) tends to
that of (6) as A—0. |

V. The Convergence of the Approximate Solution

Sometimes we want to know not only the asymptotic but also the temporal
behaviour. Thus we must consider the accuracy of the appromma’ﬁe solutmn at each
value of the time #. Let u*(a) =v*(x) —U*(#). Then

uf (2) -~ (tz(a) + uE" ()

— (@) + i) + [WH(2) + U*(2)18*(0) = B¥(2), @€Iy k>0, (22)
w(w) =0, «=0,1, k>0,
ﬁﬂﬁm) =Q,- . ﬂ:EI]”. = |
where R*(#) is the truncation error. If U(s, t) is smooth enough, then |
| B (a) | <M(z+5%). |
0<u*(z) +U* (o) <Ms—2Ms.
From (22) it follows that

We also suppose

(1+_-'°'h%—--— 2% 1( ) 23}':; (¥ (@ —h) +u* (o+h))
- (1 if | ; ¥ (@) —*rU“(m)’)E"(m) 5 hﬂ (u"(m-— h)
+u*(@+ k) +7R*(x).
; 25t
G s (2-" st M gh? — I )
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then from the maximum principle we obtain
( —%) |]z’23+1ﬂ,,<(1+%+ Mﬂ-:.-) |*] ..+ %] RY] .

and thus |%*] e < M7 (1+ Mer)*(v A7),

which implies the convergence of «*(¢) to U*(w) uniformly for all kr<t<T, T
being any fixed positive constant,

Appendix

Let f(2) be a continuous function. We consider the following steady problem
{ —8vs(2) — f(v(2)) =0, €l (Ay)
v(z)=0, «=0, 1. - '
Define the discrete Green function as follows:

{_gh-ﬁ(ﬂ?, x') =-;]a;3(m, ), o€l & €I,
(@, @)=0, @=0,1, '€,
and F;,— —i— G"if where

[

Gn (=) =hr2;| (o', ®)n(a").

Then (A;) is identical to the operator equahun v=F0.
Deflnition A,. If
{ sna(@) — f(n(@)) =0, zEI,,
2(2)>0, @=0, 1,
then we say that n(ax) is @ supersolution of (As). In particular, éf one of the above

inegqualities holds strictly, then we sey that n(@) is a strict supersolution of (Ag).
Definition A, If

{ —&nes(@) — f(n(2))<0, @€,
7(e)<0, «=0,1,

then we say that n(w) is @ subsolution of (Ay). In particular, if one of the above
wnequalities holds siréioily, then we say thet n(e) s a strict subsolution of (Ay).

- Now let p(2) and i(@) be two continuous functions such that ¢(e)<y(z) for
all 1, We deﬁne

of(P(@)), forz>(a),
of (;:»,1 ¥, 0)(2) -{ of(z), for p(o) <z<y(a),
cf(g(e)), for:z<p(a),

and Balp, ) ) =2 Ghof (g, ¥, o).

Clearly Fp(e, ¥, o) is a continuous operator.

Let '
K (p, ) - {w(e)/p(2) <w(z) <y(a), for all mEf;},

the interior of which is denoted by K (p, ). It is easy to show that the fixed
points of (g, ¢, 1) in K (g, ) are the solutions of (A;) in K (g, ).
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Lemma A;. If (&) and Y(&) are strioct subsolution and supersolution of (A1)
vespeciively, o(a)<t(w), then Fy has at least one fiwed point in Kp, ¥).

Proof. We first prove that Fo=F(o, ¢, 1) in K(p, ). In fact for all ww) &
K (p, ) and 2 €I, we have p(e) <v(#) <i(e) and thus

(g, Do =2 Gref(p, §, 1)(0) = Gne f@) = Fro-

We shall next show that all fixed points of Fy(p, ¢, 1) are in K{p, ). To see
this, we assume that o(x) is one of the fixed poinis of Fi(p, ¥, 1) and let
Br={oCIi/viz)<p(r)} B ={aCI,/v(e)>P(a)}.

In general E; and Hy are composed of a finite number of connected sets. Wilthoub
losing any generality we suppose tha} Er is a connected set as well as Hi. We have

g, ¢, 1) (v(@)) =Ff(p(@)) > —epas(a), for % € E,.
Because v=F(o, y, 1)v, we have

fl@, ¥, 1) (v(@)) = — 8v.z(®)

and =0
p

— 80z (@) < — 8vz().
On the other hand we have @(2)<v(») for all # € 2E; and so
p(2)<v(w) for «€ E7, |
which is conirary to the definition of Hy. Thus E; is empty. ﬂ:}mﬂaﬂy, Ey is
empty. Therefore v € K (p, ). Furthermore, we can show that v € K (@, ).

We now prove that there exists a sufficiently large positive constant, denoted by
r, such that all of the fixed poinis of F.(p, ¥, o) are in B, where

B, = {w/|w|-<r}.
Indeed, if @ is a fixed point of Fi(g, ¢, o), then

Jola=1Fs(p: r )0k St 170, @) (@)
Because

N flp by o) (@) |w—max | fp &, o) (v(2))]
“ <max {max |0f(p(2)) |, max |af (p(@))],  max [of @I}

wETa o) ay<yia)
T

«o there exists a constant »>0 independent of », such thab | || <o
Finally we obtain |

deg(1—Fu(@s ¥, 1), By, 0) =deg(1—Fr(e, ¥, 0), By, 0)
=deg(1, B,, 0)=1.

Hence Fi(o, ¥, 1) has at least one fixed point in K (@, yr).-
Combining the above statements, we complete the proof.
Now we consider the unsteady problem. Define |

D(k, 7, &, 6)7*(@) =7 (&) — = (nla(@) +15" (@)

— L (@) +a ) +alr @), a>0.
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Lemma A, Assume s v
| - . oh32
e B s AT (2’ 2s+4505h2—h”)
{D(h: T, &, ﬁ)??k(ﬂ’)‘gﬂ(h: 7, & ﬁ)‘fh(m): wE Iy 5220,

md (o)< (2), =01, k>0,
ﬁ P@)<ea), a€l
Then for all ® € Iy and k=0,

() <&().
Proof. Putn*(@)=¢ "(m) +7% ). We obtam
7t (@) — ﬁﬁm () +752" (=) - (@) +7 (m))
+a [5;}"‘(&:) 124 2am*(2)£* (o) @'0
which leads fo

(1455~ 5) @) 35 (@ +B) +71(@— )]
-g(l— T+ T —207¢ (@) ) 7(2) + - (7 () + (0 — W],
Clearly, E“(‘w)ﬁg() for all # € .I,. Now suppose that for all € 1, and j<k, 7'(»)<0.
Assume

"“’h+1 ( m‘“’) s Ela';f ;'?'H:L(m)

Then

(1__ ‘;) g1 (mcm)g(l ; ; %Oﬂr)maxn (@),

2ETa

from which 7**(2®) <0 and so for all € l;, 7 (@)<0. Thus the induciuon ig
completed. |
Now we consider the following equation
Dk, z, &, a)u*(x)=0, a€l,, k>0,
{ u*(x) =0, =0, 1, k=0, (A
(@) =Usla), x€I,.

Lemma A, Assume 0<Uo(a)<<U;, Oi=max (Oa, -l-) and

&
252
- - Tgﬁ Aol (2 2e + 40 A2 — ) '
Then for all &€ I» and k=0,
Oxuk (ﬂﬁj QO‘,

Proof. Let 7*(a) =u*(2), £*(#) =C,. Applying Lemma A, we have Oﬁu‘(w)ﬁ
0,. On the other hand

(1 | Lhﬂ 2) uw*ti(az) 28;5 [u** (a4 h) +u* 1 (z—h)]

= (1- S+ F —ant () Ju*(@) + o [ (@ +B) +uH(e—)].  (As)
Olea.rly u“(m)?{] Assume maxu’(m);() for j<k and «*1(2®) = min v *1(s). Then

O&Ta f<Th

from (Ag) it follows that
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(1 — %) (50N ;?*( — hﬂ HE §- —arv0 ) w?(297) ;;ﬂ [ (&' +h) 4 u* (@@ —h)]

;},;(1-[-E.— GT 0.,,) min #*(2) >0
2 acTs

and so for all 2 € T;, ©**2{x)>>0. The induction is completed.

Lemma A,. Let u*(2) be the solution of (As) and Us(w) be a mp&a’snwtfzron of
(Ay) with f(z)=2(1—a2), 0<Uo(®)<0s, v<71. Then u“(m) i3 @ mnoninoreasing
Function of K for all ¢ €1, and ‘

]Jm u"(m) = w(m) ;

where v(z) s the positive solution of (A4). In pm'tq.culm' if Uu(m) i3 @ sirict
supersolution of (As), then w*(w) s strictly decreasing.

Proof. From Lemma As, we know that
Ogﬂk(ﬂ}) %’03, RFE.TM k=0,
Putting n*(o) =u*(z) and £*(a) =Uo(#) in Lemma A,, we gel
<o) <Uo(w).
In particalar, «? (a:)QUo(m) Putting n*(e) =u***(w) and £{*(a) =u"(¢u) in Lemma
A-‘n, WO ﬁb'ball‘l *
<o) <u*(z), @€l k>0.
Hence there is a function q:r(m) such that

lim (@) = 2(2).

Let k—>oc in (A,), and the firgt conclusmn follows. Sm:llla.rljr, we gel the second
conclusion.

Similarly, we can prove the following resuls.

Lemma A, Lot w*(w) be the solution of (Aa) and Uolx) be a subsolution of
(A)) with f(z)=2(1—az), O<Uo(2)<<Us, 7<71. Lhen W) is & nondsécreasing
function of k for all x €1, and

]Jm u"(m) =o(a),

awhere v(x) is the positive satutwm of (Ay). In particular, if Us(w) is a sirict
subsolution of (Ay), then u*(z) is sirictly increasing.
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