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Abstract

A stability theorem is derived for implicit difference schemes approximating multidimensional
initinl-value problems for linear hyperbolic systems with variable coefficients, and lots of widsly
used difference schemes are proved to be stable under the conditions similar to those for the cases of
constant coefficients. This theorem is an extension of the atability theorem due to Lax—Nirenbergll.
The proof is quite simple.

§ 1. Introduction

»

In the 1960s, stability of difference schemes for initial-value problems for
linear hyperbolic systems with variable coefficients was extensively and intensively
studied, and some well-known and deep results were obtained, such as Kreiss
disgipative theorem™!, Lax—Nirenberg’s stability theorem®™’,

However, most of the resulls are only suitable to explicit schemes and some of
them are only applicable to the time—independent cases. Also the conditions
ensuring the stability of schemes are very strong and hard to be checked. And tha
proofs are very complicated.

In this paper, combining a skill in [1] with Lax-Nirenberg’'s theorem for
difference operators®, we obfain a stability theorem. The schemes considered here
could be both explicit and implicit, and their coefficients may depend on time
variable as well as space ones. The conditions needed are natural and easy to be
checked pointwise. The proof is quite simple. This theorem is an extension of
Lax—Nirenberg’s. As a consequence, we prove that lots of widely used schemes are
stable under the conditions similar io.those for the cases of constant coefficients.
Dissipation and symmetry (conjugacy) are not mentioned.

§ 2. Results

For convenience, we firgt introduce some notation and state the Lax-Nirenberg
theorem for difference operators™.

Let P,(w) be N XN complex matrices with elements depending on variables
o CR?, and u(x) be a complex vector function with N components & L*(R?). The
difference operator P, mth a single parameter A(positive real) is defined in the
following form:
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(Pu) (&) =3} Pa @) T°u (),

where a= (0, &g, **, Og), 04 (6=1, 2, -+, p) are integers and 7% are shift—operators:
Ty () = (@1 +ash, Ta+oah, <=+, Tptogh). &

Define Pz, £) =2 P, (x)e™** for £ R,
]Plfrﬂi:; %‘1:1? Hagpa (m> ltl.‘a' (&)™,
wE RF
where || +| is the spectral norm of matrix, 3 are multi—-indices, 8. (¢=1, 2, -+, p) are

non-negative integers, |B =ﬁ\,8; L (a)ﬂ=ﬁ a2, &P (z)=008%---02P. (@), and I,
=1 =1

m are integers.

The Lax-Nirenberg Theorem. If P(a, £ is a non-negauive Hermitian matrix
for all z, £ €R? and | P|a,e, | F 0.2 aTe bounded, then

Re (u, P;ﬂ#)?—%— h(O [ P|o.s+ | Plao) |ul

for all w € L2 (R®), where (-, +) is the scalar product in L?, [+ is the corresponding
norm, Re(uw, Pyu) is the real part of (v, Pw) and O is an absolute positive
constant. 4 |

.. In this paper, we will discuss the following schemes:

gR“ (w, &, d}Tﬂuﬁi (a;)——-—gﬂﬁ(m, £, A)T“u“ (%), | (*)

where the two sides of (#) are similar to the definition of Pj. The difference between

~ them is that the elements of R, S, depend on z, as well as on ¢ and 4 (4 represents

| _Jtime and space meshsizes), and | 1| are not larger than some constant. Superseript

o indicates that vector w depends on time .Variable' t=mndt, n=0, 1, -, t<T
(constant). - - |

In congtant coefficient cases, 4t/ is usually a constant, 1t is more reasonable to

assume 4t/h to satisly " |

Odconstiédt /h %-ﬂﬁﬂStg"’:-_F o0,
because the coefficients here are variable. | |
Theorem. If the following condetion (A) holds, then the schemes (%) are stable
with respect to initial-value in the sense of Lax™ with 17 norm, thab is, there ewists a
_ positive constent U such that £ o
lwr| <O, O<ndt<T, n=1,2, .
Condition (A). There exist two positive congtants 0,, O, and two invertible
matrices M(z, t), G(w, t) such that for all =, { & R?, O<t<T,
. A ("‘? MR, (o, t, 0)Ge™)" (E MR, (z, t, 0)Ge™)— (; MS, (x, &, 0)Ge”)"

(IMS,(, t, 0)Ge"™)=0;
A5

by SIMRB, (, ¢, O)G‘e“_"f)'(g MR, (z, t, 0)Qe"**) —0 I=0 (I is the unit matrix
m T - -

- of d_fder NY; | o ; P
") rla, ¢, A), s(z, t, 4)(elements of E(w, i, 4), S(z, £, 4) respectively) and
their main parts +(z, ¢, 0), s(=, t, 0) satisfy

7z, 8, 4) —r(o, t, 0)| <Cadt, |s(z,t, 4) —s(a, t, 0)|<Cadl,

"
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(& (=, &, 0) | <<0,, [03(, ¢, 0) | <0y, [B]<2
and Ir(a: 51, 0)"]"’($ utﬂj D) |§02 }.tl_tﬂl: tl: tﬂE:(O: T];

d) the elements of M(z, ), G(x, t} ~!(@, t) satisfy the same conditions as for
r{z, ¢, 0).

ﬂota a), b) mean that the corresponding’' Hermifian matrices there are non—

negative definite. For the reason why we introduce such type of conditions, see [1]
and later examples.

Proof. Let H** = - |§]M(m,r )R (@, t, HT " (z)|*dx. From c), d), we
have _

’ yriss! Qﬁ H un+1" 7 | (1)

where C is a positive constant. |

Set v (@, 1) =G (=, H)u(z, t). Obviously, there exist positive constants Ky, K4
such that

EJul*< o <K|ul*. (2)
For H""! we have the following expressions:

H*' = (I MR,(2, t, H@G T+, 3IMR, (2, t, GG T+
— (S MB, (2, 1, HG(T(@u)"+0 (4) T+,
Lt
S MR.(2, b, HETH(G )"+ 0(dt) Trurt)
i

=Re(v"*, DI MR, (=, t, 0)G)* (MR, (=, t, 0)GE) T #o* 1) £ O(4t) [ur+1|?
= 01| o™ |*+0(48) [ 3
+Re(v™*, [2UAMR, (2, §, 0)@)"(MR,(z, t, 0)F)T"*—0T°] o),
In the Lax—Nirenberg theorem, we take
Py=> (MR, (2, 1, O))*(MR,(z, t, 0)@)T*4—O,T°,
Ak, 1

According to b), ¢), d) and (2), thers exists a positive constant K, such that
| H"+1;&O " '11"+1||ﬂ—K At ” _.un+1uﬂ (3)
On the other hand, we have from ()

H— Hr=Re(2", 2[(_&{8#(:1:, t, O (MS, (2, t, )@
— (MR, (z, t, 0)G) (MR, (z, i, )G ] T #v*) +0(4t) [u*||*

(The L1psch1tz continuity of »(a, #, 0) with respect o ¢ is used here) |
In the Lax-Nirenberg theorem, we now take Py=D[(MR, (=, {, ) *(MR, (=,
Y%

t, 0) @) — (MS, (=, ¢, 0)D " (M8, (, t, 0)F)]T* . According to a), ¢), d) and (2),
there exists a positive constant K, such that

Hr+ . Hr < B 8]0 |2, : (4)
When 4i is sufficiently small, combining (8) with (4) gives
HiC Ho 4 K At 0" [|?< H*+ [K 4t/ (04— K 1 A) ] H*,
Let K be a constant larger than K,/ (Cy—K4t), we have
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Hriig (14+ K At) H™.,
Furthermore, H*< (14 K At)" H°<<e"E4¥ H%< T H?,
Thus, using (1), (2) and (3) we obtain
jur]?<(1/Ky) o [P <L/ (K1(01— K1 48))] H*

< [¢%%/(K;(0y— K At)1 H® |

< [Ce®T/ (K 1(0s— K 148))] [u°]>
Taking 0=~/ Ce*%/(K1(0Os— K14t)) we have

jur| <Ofu”.

This completes the proof.
Note. Condition b) guarantees that systems of (#) are well-conditioned, which

is obvious from (8). Usually, M equals G~1. Therefore, b) becomes (M@)"(MG )=
I>>0,1 for explicit schemes, which always holds if we take C;<<1.

§ 3. Applications

Consider two level difference schemes approximating
# o %,
; g Z A § _ag (#%)

(>0, o= (z1, ®a, +-+, @.) CR?), which is a hyperbolic system in p dimensions.
Supposing that these schemes are written in the form of (#), it is easy to see that
for lots of widely used schemes, R,, S, are some polynomials of A;(j=1, 2, :-+, p),
such as Lax scheme™, Lax—Wendroff scheme™® ™ (Richtmyer scheme™, MacUormack
scheme™’), Keller-Thomée scheme™, Urank—Nicolson schems™”, 'Rusanov scheme®?
and Burstein-Mirin scheme™, Godynov scheme™, Harten-Tal-Ezer scheme'®,
Abarbanel-Gottlieb—Turkel scheme, and so on.

If these A; are commutable Wlth each other, we can express R,(«x, £, 0), S8.(=, &,

0) in the following form:

N0,A%(w, t)

where O, are real and AY= A} A% ... A%, Furthermore, we suppose that there is an
invertible matrix P(z, {) such that
P(e, t)A4,(z, ) P(w, t)= Az, )

for j=1, 2, +-+, p, where A;(@, t) are real diagonal.
Taking M (2, t) =P (z, 1), Gz, 1) =P (=, t), we find that D] MR, (z, ¢, 0)Fe",
i

MM, (2, £ 0) @e'*¢ are both diagonal. Therefore, it is easy to check a), b).
b
- Ezample 1. p=1, A;— A. Congider the scheme of Harten et al.:

U}‘”-I—%—(U?ﬂ—zl? U —l"_ A (gt -t
~ U} + L (U= 234 Upo) + 2 A3 U3a—Tts), Ao 2/,

Obviously, R, (=, & O)EW=E‘3’-—I+ mgg I— i'h;? sin &,
b
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T e

18,0, ¢, 0ot m 2 T+ 285 14 P4] ging,

(EP.R#(:B, i, O)P—:temf) (2 PR, (z, t, 0) P~Y"¢)
"(ZPS (@, 3, 0)P~*e)* (3 P8, (s, t, 0) P~ ey =0,

and O PR, (=, t, 0) P14 (DI PR, (®, &, 0)P e
» &

According to the theorem, the scheme of Harten et al. is absolutely stable.
Example 2. p=2, A=A, A;=B. Oonsidering the Lax—Wendroff schematﬁ:!

we have
2R, (=, §, 0)e* =1,
)

and
S8, (z, t, 0)e' = T4+A(Adgin 4+ Bsin £,)
—Ade[A?(1—cos&y) + Bi(1—cos&,) + ABgin & siné,]|, A=At/h.

By multiplying M, G appropriately, 4, B are both transformed into diagonal
mairices. Discusg every diagonal element with tae method in (8), and we find that
stability conditions are |

1 1
max |AA(zq, Xa, , max |A y Tgy T
ﬂﬂﬂ I I( 1y 2 )]‘g 2\/’? T‘?EH I P:'J(mi T3 ) I“'; 2ﬁj

where Ay, p; (I=1, 2, ---, N) are the eigenvalues of A, B, respectively.

These conditions are similar to those for constant coefficient cages. This result is
better than that obtained with Kreiss’'s dissipative theorem™,

Lwample 3. Consider the Keller-Thomée scheme approximating (=),

== E(A;)“"‘f (Uit~ ke, + Usee,— Ul ),

where e;= (0, , 0,1,0, -, 0)*(j=1, 2, --; p), v are multi-indices 1, ;--, 4—1, 4,
41, -+, p indicating the mesh points in the p—dimensional space.
We have

SR, (a, 1, O)e*ﬂf=r—*'—-'"’“ﬁm(m, Hsing,,

and ES (@, &, 0)e't= I+ 2.&,(1:, $)sing,.

Taking M =G =1 (unit matrix), we get
(21 MR, (, 1, 0)Ge")" (X MR, (=, §, 0)Ge™¢)
T 7

— (M8, (2, t, 0)Ge)" (X M8, (=, £, 0)Ge'*¢) =0,
and MR, (w, §, 0)G*)*"OIMR,(z, £, 0)Ge) =1,

Thus, the above gcheme ig absolutely stable (Note. We do not require that those A,
be commutable with each other here).
Similarly, we can obtain the stability conditions for other schemes,
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