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§ 1. Introduction

The general form of the MGE method for solving the boundary value problem
of elliptic partial differential equations suggested in {[1] suits both the finite
difference scheme and the finite element scherme resulting from elliptic differential
equations. In order to decrease the number of mulligrid iterations on each level,
Cai ot al. suggested a revised MGE method by using auxiliary grids in [2—8]. For
the special equation —du=f(z, %), we combine the correction procedure with
multigrid method so that the interpolation level number is 1. The computatmna.l
work needed by this method is less than any revised MGE method™~%,

§ 2. The Multigrid Method with Correction Procedure

For simplicity, we consider the model probiem
du=F(z, uw), in Q,
{ (1)
u=g¢, on g4,

where 0 is & one—, two— or three—dimensional domain, and 8Q is the boundary of
the domain Q. Suppose that Q consists of some squares in the two—dimensional case
or of some cubes in the three—dimensional case, and that the solution % is smooth

enough and
fa(u) = fu(w, u)=0. (2)
Quc (k=0, 1, ++, 1) are uniform discretized grids of the domain, whose
width is A, and
TSyt = Elg -

The ratio of step size £ is usually 2.
Let 4; be the b—point approximation of the Laplace operator 4 in the two-
dimensional case and the 7—point approximation in the three—dimensional case on the

grid 2, ag usual.
Let 4; be the b—point approximation defined by

Bou(@e, ©g) = (Bu(wrthy, vothy) —du(ws, @) /202, (3)
S (w1 the, Tatle) =u(@s+hy, 2o hy) +u(@1+hy, 02+ hy)
+u(@y — Fony T2 — Puy) +ul@y — by, 2o+ )
in the two-dimensional case and the 9-point approximation defined by

R
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A;u‘(m:h T, 53) T (Eu(miihkr' Tyt fy, 5t Ry) —8u(zs, 2, ﬁa))/zﬂtg (4—)
in the three-dimensional case. - | R
Consider the finite difference solution w, defined by 1
| {Alsu’b=f(mr u‘k): ®E L, | “ (5)
w=g9—~hflz, 9)/12, €00, e
and a correction solution g, defined by the linearized finite difference equation |
{(d;“fl(uk))@k#f(mr ) "fi(un)ﬂb+h%f1(ﬂm)f§¢q uk) /4, | meﬂm . * )
p=9—hf(=z, 9)/12, 2€0Q, ' .
The finite difference equations (5) and (6) can be denoted by the abstract equations
Inptyy=F' % _ B wE g (7)
Lipy— T3, (8)
where I, Ly are discretized matrices and w, @, Fy and F* are grid fanctions,
In [4]; Lin and Lu have proved

S tht gyt = W F (2, w) ~u+ O(KY), €T, - (9)
under reasona&la conditions. Tt is obvious that if the following condition |
- u=uy+O), gu=pp+O0(hY), in B, . (10)

is valid, then one has also
Tﬁ-‘a_zq.-i-—;- a“"i:'l'é‘ «f(@, m) =u+O0(A), in B, (11)

In order to avorl solving equations (7) and (8) directly, we wish to find the
approximation= of u; and ¢, indirectly by using the solutions Uz-1 and @,y at the
level #—1. We can prove the following proposition.

Proposition 1. Let &,_,—2h, (b=1, +--, 7): then

2 '“5ir=—1*fr"‘:1L *Pk—i'*'-%é- ﬁrﬁ‘;-_if (@, Uy_1) =ux+0(hi_1), on 0, (12)
Proof. Let u; be the solution of the equation |
(4~ f1(w) s =F (2, we) — falw)um, @€,
{u:=g——1—1§ hif (e, 9), =€0Q. o

Then one may ouvtain

Up—1— U 11;2_ Ae-1v1=0(P4.1), on -f_?ap-i, (18
uﬁ_i (e l:; %-1‘1}2 — O(k;_i), on ﬁk—i (14)
from the proof of Proposition 1 in [4]. Hence
3 L 1 2 1
Z “Ja—i‘]'j{‘ ”n-:l"un‘f'Té- -1 (1;@1+-g-w3)=0(7b§_1). (15}.:
Set
74 -g— vy 1+ % Pa,.

Then we have
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w =f (ﬂi, 'Uq;_i) + 251+ 0 (h?:-i), (16)
where ;,_4 id the solution of the following equation

(de-1—F1(up-1)) g =f 1(4-1)f (@, w-1), on 3y
{ (17)
Z-1=0, on oy 12
Then (12) results from (16) and
Pr_1=Wp_1+ %— Pae 121
Proposition 2. ILet £=2; then
-;— %:.:_1-!--%- Pp—11- -i%—- hi-1(2f (@, up_1) ~ f(2, w)) =g, +0(hE_L), on Ty, (18)
Proof. One may obtain
-%- uk—i""%:‘ Ugo1 — Upy _116—' Foig— a2 = O(kg-ﬂ R ) I 0 (19)
from (13) and (14). Since
w=f(@, Uy_1) +2_1+ O(%%-1) = f (@, w,) + 2+ O(Ri_1)
hence
. W=2f(®, 1) +221~ f (&, w) —2,+O(AE_y). (20)
S0 (18) results from (20) and
Pr—1="Up_1+ —}' Zp-1he_1, P = Uy + haﬂp—iék/ 16. (21)

It is proved that the approximation of high accuracy of u;, and ¢, results from
s and @,_3 on the grid O, by using the interpolation operator. Let
INT (e, B): Uy s—> U, (22)
be a guitable interpolation operator. In general, agsume that INT is an affine
operator:

INT(s, &) =% _yo +a, (23)
where wy, € %; 19 a fixed grid function, and
o-12 Ui 1—> Uy (24)
is a linear operator. The interpolation error is assumed to be of order p
[INT (v, £) — | <KBE, k=1, «r, ], (25)

where K and p are independent of %.
By using the above results, we may construct the following algorithm:
Algorithm 1.

COmpute we=1o, Po=,
for k=1 (1) 1 do

begin
i AR P ’
HH—INT Z—ﬂqﬁ_i-l——q—:- ;Ir,_:[__'" 16 hk_if(m, U;,-,.q)_, k)
;I-IF;;:=MGI’.('ZFE;;, k, LJ,;;, FIG) |

. T e . Fos ~
B = INT (- Gt a6 HE2(2F (8 ) — (&, ), B)
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o, s

EH: EMGP‘(E’M k:'L;.r FID

end

. end;
In the above algorithm, operators
MQGI (e, & Ly, Fy): YUY
MGI"(., %, L, Fy):Ui—> Uy
are used for a suitable procedure consisting of s iberation steps of a suitable
iterative multigrid method for (7) and (8) (using grids Q, @i, ---, Qy cf. [5]).
The iteration operator of the multigrid method is denoted by M;. Under reasonable
assumptions, one has | | |
| 1My <p<l, k=0,1, 0 _ (26)
from [6]. Then for Algorithm 1 we have
Theorem 1. Assume p=>4, (9), (12), (18), (25) and (26). Lst upe»mtor %5
be bounded by O, é.e. -

4] <0, k=0,1, -, ¢ (27)
and Gp"d:l/lﬁ Then we obtain
th=u+0(R1). (28)
Proof. Set |
ﬁk=ﬂalﬁ_ /Py Br= "Ek““?k"/h%: k=0, 1, «-,1.
From the definition of Algorithm 1 ib is eagy to see thatb
o A+Cp (120 1+4B5-1), Br<A+00 (8- 1+8;3k—1]
where A= (KR *+CO(1))p" (C=0+M, |fi(w)|<M). If p=4 and OCp'<1/16,
then one may obtain _
fus—u] =0,  lox—@ul =0 (2)-
Hence (28) results from (9).

In the cage of £ +#2, we can obtain similar results ag in the case of £=2.
ﬂProposition 1. Let hy_1=¢Ry (=1, »-+, 1); then
28241 1.1 31 = :
%gg U1+ 53 a— Peat i%ﬂ Moo f (@, geon) = +0(), o€ (127)
Proposition . Leb Ay 1=¢Eh (=1, ---, 1); then
BN 1P -Dupa+ 2+ 2D s + A1 (2 +2)f (2, tp-2)
—8f (@, w)) /1) =g+ O0(hi), on Oy 4. (18")
In Algorithm 1, #%; and @ are computed by means of the resulis of Propositions
1’ and 2'. In this case, if the condiftion Cp'<1/16 in Theorem 1 is changed into

O’ < &4, then we can obtain the same result as Theorem 1.
Note 1. For k=1, «--, [, we may change (b) into the linearization

{ LlﬁukEAJﬁuk_f 1 (‘E:a) =1 (ﬂ’: 'E“i:) —f1 (Ea) Em on {2,

w=9—=5 kf (@, g), on 8, (5')
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Woste Wy, =1, 20, T) are Yoo soiohions @ the Ylsrence *quation \Y)ﬁ With second
order accuracy. We can construct the same algorithm and obtain the same results

as above.
Note 2. In a similar way, we can discuss the following nonlinear problem

{ Em_f (@, %, U, 'I.L,) -_:01 in O,

29
w=¢g, on o{. (29)

§3. The Multigrid Method with Another Correction Approach

We consider again the model problem (1), assuming that - _ .
; ' W=y +hiva+O R, i (80)
Let 3, (§=1, 2, 8) be the two—point approxirﬁation defined by |
Oz = (u(®@y, *, ﬂ’rl‘:}?m very @) — Uy, +rv, Ty— Iy, wery @3)) /2Ry,
Then we have |

| 02 b =Y om0, +O(RYY, GR§ . - (31)
from (80). Let u, be the solution of the following linearization - |

(do— f1() ) va=f (@, w) — f1(w) wp+hE f1(w) f (m, w) /12

. — Bk 2 %,00%01/6, 0D L, (32)

uv=9—hf(z, g)/12,- on 80,
Since in [4] it has been proved that E g
| - wt R f (e, w)/12=u-+0 ), (33)

it is easy to show. -
Proposition 8. Let A, =&k, (=1, +--, I): then

ut+ ('~ 1)k f (0, w)/126* ~ 13,1 +O(hs), on &2, (34)
Asg in [4}, one may prove -
u=w+0(h;), on 0. (35)

From (8b) it is easy to see. -
Proposition 4. Let hp y=¢h (k=1, ++», 1); then

<o B @, T) =u+0(h), on I, (36)
i igl W f (@, U) =t~ O (L), on D, (87)

The algorithm of the multigrid method with another correction approach reads
as follows. Ly~ F, is an abbreviation of (82).
Algorithm 2.
compute uy=1ug
for =1 (1) I do
begin
ub=INT (G1-+ B2 ('~ f (2, Tys) /1285, B)
= l'!'d“:'::ll=]5"-[{-}I’F (ug: &, —_Lh: FIF):
: end
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e

T=ts+03 f (, 4y) /12
end;

Theorem 2. .Assa:zme (36), (837), (25), (26), (27) and
| p=>d, Op'<g™,
Then we have
u1=u+0(h %
Proof. By the definition of Algorithm 2, we know thab
th— Uz = M (U — ) .
According to Proposition 4, we have

1.&2--{5;,=H§_1 ({;Jﬂ—-:l + éfz_égl h,’,_,_f (m, Ek-i))"']"wk_'ﬁh

- 4 (%u—:t o 512 23 We-1f (2, ulﬁ-—l) -+ (uh-—i_uh-i)

: ﬁﬂzE} W1 (f @, G-t) —F (@ 1)) + 20—

=% (uiu+00z) + (%1 —Upg—1) ) + Wi — Vg
-—u,.|] /hE. Then
<p (A+08a, 1), A=KM7+00().
Provided Op"<<£~?, we have
U, — =048, k=0,1, -, L
8imilarly, provided Op’<£4, it is easy fo obtain (38).
Note 3. For the general problem
L= du— buy—cuy—du=F, . in Q,
{u=g, on 642,

Set

where d>>0, the discussion i the same.

(88)

(89)
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